PHYSICS 149: Lecture 3 • Chapter 2

Total Page:16

File Type:pdf, Size:1020Kb

PHYSICS 149: Lecture 3 • Chapter 2 PHYSICS 149: Lecture 3 • Chapter 2 – 2.1 Forces – 2.2 Net Force – 2.3 Newton’s first law Lecture 3 Purdue University, Physics 149 1 Forces • Forces are interactions between objects • Different type of forces: – Contact vs. non-contact forces – Contact forces are due to EM interactions • Forces always exist in pairs – When you push on the ground to walk, the ground pushes back on your foot • Measuring forces: Hooke’s law F = kx • Forces are vectors: magnitude plus direction Lecture 3 Purdue University, Physics 149 2 Force • Force: a push or pull that one object exerts on another – Force can also be defined as any action that alters a body’s state of rest or of constant speed motion in a straight line. • Forces always exist in pairs – Anything that exerts a force also has a force exerted on it. – For example, when you push on the ground to walk, the ground pushes back on your foot. • Two types of forces on macroscopic objects: – Long-range forces: Forces that do not require the two objects to be touching. Example:) gravity and electromagnetic forces. – Contact forces: Forces that exist only as long as the objects are touching one another. Example: kicking a ball. Lecture 3 Purdue University, Physics 149 3 How to Measure a Force? • The SI unit for force is the Newton (N). • One way to measure forces is using springs (F ∝ x). • Hooke’s low for an ideal spring: • F = kx where k is the spring constant Lecture 3 Purdue University, Physics 149 4 Net Force • More than one force can act on an object at once. • The “net” force means the “total force”. • Be careful since the force is a vector. • The sum is easy if all forces act in the same direction. • If Fnet = 0 we have “translational equilibrium”. Lecture 3 Purdue University, Physics 149 5 Adding Vectors in 1-D • If two vectors are in the same direction, their sum is in the same direction and its magnitude is the sum for the magnitudes of the two. • If two vectors are in opposite directions, the magnitude of their sum is the difference between the magnitudes of the two vectors, and the direction of the vector sum is the direction of the larger of the two. Lecture 3 Purdue University, Physics 149 6 Forces Lecture 3 Purdue University, Physics 149 7 Forces • Quantifies the “interaction” between two objects • 4 Fundamental Forces – Gravity – Electromagnetic – Strong Nuclear – Weak Nuclear • Forces come in pairs, equal and opposite • Vector – Has magnitude and direction – Be careful when you add two forces! Lecture 3 Purdue University, Physics 149 8 Contact/Action-at-a-Distance F F F Lecture 3 Purdue University, Physics 149 9 ILQ 1 Which of these is not a long-range force? A) The force that makes lightning flow between an electrically charged cloud and an oppositely charged area on the ground B) The force that keeps the Moon in its orbital path around the Earth C) The force that a person exerts on a chair while sitting D) The force that makes the compass point North Lecture 3 Purdue University, Physics 149 10 Isaac Newton (1643-1727) • Newton’s Law of Motion • The law of universal gravitation • Principia • Newton’s laws form the basis of classical mechanics. The Principia or Philosophiae naturalis principia mathematica published 1687 Lecture 3 Purdue University, Physics 149 11 Newton’s Laws of Motion 1. An object at rest remains at rest and an object in motion remains in motion unless acted upon by an unbalanced force (law of Inertia) 2. An unbalanced force is equal to the rate of change of momentum ( F = ma ) 3. For every action, there is an equal and opposite reaction. Isaac Newton (1643-1727) Humans could explain/understand the most complex phenomena with only 3 assumptions. Lecture 3 Purdue University, Physics 149 12 Newton’s Laws 1. No forces → no change in velocity magnitude or direction 2. 3. For TWO objects, forces on each other are equal and opposite Lecture 3 Purdue University, Physics 149 13 Newton’s Laws of Motion 1. If the sum of all external forces on an object is zero, then its speed and direction will not change. Inertia 2. If a nonzero net force is applied to an object its motion will change. F = ma 3. In an interaction between two objects, the forces that each exerts on the other are equal in magnitude and opposite in direction. Lecture 3 Purdue University, Physics 149 14 Newton’s First Law of Motion • An object’s velocity (a vector) does not change if and only if the net force acting on the object is zero. • In other words, if there is no net force on an object, its speed and direction of motion do not change (including if it is at rest). • Also called “the law of inertia.” Inertia means resistance to changes in velocity. – Example: the start or stop of a car’s motion, dusts on clothes, a quarter on top of an index card on a cup. – Note that circular motion is NOT a constant motion, that is, net force is not zero. Why? Lecture 3 Purdue University, Physics 149 15 Newton’s First Law Objects at rest remain at rest and objects in motion remain in motion in a straight line unless acted upon by an external agent - External agents are called Forces - Forces change the state of motion of an object A force which causes a standard mass of 1 kg to have an acceleration of 1 m/s2 is, by definition, a force of 1 newton (N) Lecture 3 Purdue University, Physics 149 16 Newton’s First Law • An object continues in a state of rest or in a state of motion at a constant speed along a straight line, unless compelled to change that state by a net force • The state of rest and constant velocity are “equivalent” • If the object is in a circular trajectory there must be a force • Leads to the definition of inertia: the tendency of an object to remain at rest • Mass and Inertia are measured in kg Lecture 3 Purdue University, Physics 149 17 Mass • The mass of an object quantifies the amount of inertia that an object possesses – an intrinsic property of the object • Objects with a lot of inertia (large mass) are harder to change the state of motion of compared to objects with a small amount of inertia (small mass) • The units of mass are grams, kilograms, or slugs F Small acceleration F Large acceleration Lecture 3 Purdue University, Physics 149 18 Weight • Weight is the force of gravity on an object with mass • Units of weight are Newtons or Pounds Same mass but Different weight! r On earth W=mg where g=9.8 m/s2 Lecture 3 Purdue University, Physics 149 19 Weight The weight (W) of an object is equal to the magnitude of the gravitational force acting on a body of mass m W = mg Dropping an object causes it to accelerate at free-fall acceleration g Fg = mg W = Fg Lecture 3 Purdue University, Physics 149 20 Weight on Earth • Your weight on Earth is the magnitude of Earth’s gravitational force exerted on you (m). where R is the distance between you and Earth’s center • The weight of an object of mass m “near” Earth’s surface is: where (g is called the gravitational field strength) Lecture 3 Purdue University, Physics 149 21 Weight on Other Planets • The weight of an object of mass m “near” a planet’s surface is: • For example, gMoon = 1.62 N/kg ≈ 1/6 gEarth. – Let’s say there is a man whose mass is 100 kg. • At the surface of Earth, his mass and weight are 100 kg and 980 N (=m×gEarth), respectively. • At the surface of Moon, his mass and weight are 100 kg and 162 N (=m×gMoon), respectively. Lecture 3 Purdue University, Physics 149 22 ILQ 2 A parachutist drifts slowly downwards towards the earth with constant speed. Only two forces, P and W, act on the parachutist. Force P is the upwards pull from the parachute and W is the downwards pull from the Earth. A) P and W are equal in size and opposite in direction B) W is larger than P C) P is larger than W Lecture 3 Purdue University, Physics 149 23 Free Body Diagrams • A simple recipe: – Simple picture of just object of interest – Choose coordinate system (x,y) – Identify all forces acting on object and draw arrow showing direction Lecture 3 Purdue University, Physics 149 24 Free Body Diagrams • “Free-body” means your diagram is free of other objects • “The zeroth law”: An object responds only to forces acting on it! • Draw force vectors only for forces exerted by other objects on the object of interest • Put the tail of the vector on the dot that represents the object of interest • Use a symbol for the force that indicates the kind of force. • Use subscripts to indicate the object on which the force is acting (first subscript) and the object that exerted the force (second subscript) Lecture 3 Purdue University, Physics 149 25 Labeling Forces • Which force are important when you do FBD? • Draw force vectors only for forces exerted by other objects on the object of interest. First index must always be the one representing the object Lecture 3 Purdue University, Physics 149 26 Labeling Forces F = Force on 2 by 1 F12= Force on 1 by 2 21 Fmf Ffm Fgc Fcg Fae F F Fea sh hs Using indices you can recognize easily force linked by third law Lecture 3 Purdue University, Physics 149 27 Book Pushed Across Table • Book sliding across table y – Choose Object (book) – Label coordinate axis x – Identify All Forces • Hand (to right) Normal • Gravity (down) • Normal (table, up) friction hand • Friction (table, left) Gravity Physics Lecture 3 Purdue University, Physics 149 28 Summary • Force • 4 fundamental forces • Newton’s first law • Inertia: mass vs.
Recommended publications
  • Capacitance and Dielectrics
    Chapter 24 Capacitance and Dielectrics PowerPoint® Lectures for University Physics, Twelfth Edition – Hugh D. Young and Roger A. Freedman Lectures by James Pazun Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Goals for Chapter 24 • To consider capacitors and capacitance • To study the use of capacitors in series and capacitors in parallel • To determine the energy in a capacitor • To examine dielectrics and see how different dielectrics lead to differences in capacitance Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley How to Accomplish these goals: Read the chapter Study this PowerPoint Presentation Do the homework: 11, 13, 15, 39, 41, 45, 71 Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Introduction • When flash devices made the “big switch” from bulbs and flashcubes to early designs of electronic flash devices, you could use a camera and actually hear a high-pitched whine as the “flash charged up” for your next photo opportunity. • The person in the picture must have done something worthy of a picture. Just think of all those electrons moving on camera flash capacitors! Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Keep charges apart and you get capacitance Any two charges insulated from each other form a capacitor. When we say that a capacitor has a charge Q or that charge Q is stored in the capacitor, we mean that the conductor at higher potential has charge +Q and at lower potential has charge –Q. When the capacitor is fully charged the potential difference across it is the same as the vab that charged it.
    [Show full text]
  • Rigid Body Dynamics: Student Misconceptions and Their Diagnosis1
    Rigid Body Dynamics: Student Misconceptions and Their Diagnosis1 D. L. Evans2, Gary L. Gray3, Francesco Costanzo4, Phillip Cornwell5, Brian Self6 Introduction: As pointed out by a rich body of research literature, including the three video case studies, Lessons from Thin Air, Private Universe, and, particularly, Can We Believe Our Eyes?, students subjected to traditional instruction in math, science and engineering often do not adequately resolve the misconceptions that they either bring to a subject or develop while studying a subject. These misconceptions, sometimes referred to as alternative views or student views of basic concepts because they make sense to the student, block the establishment of connections between basic concepts, connections which are necessary for understanding the macroconceptions that build on the basics. That is, the misconceptions of basic phenomena hinder the learning of further material that relies on understanding these concepts. The literature on misconceptions includes the field of particle mechanics, but does not include rigid body mechanics. For example, it has been established7 "that … commonsense beliefs about motion and force are incompatible with Newtonian concepts in most respects…" It is also known that replacing these "commonsense beliefs" with concepts aligned with modern thinking on science is extremely difficult to accomplish8. But a proper approach to accomplishing this replacement must begin with understanding what the misconceptions are, progress to being able to diagnose them, and eventually, reach the point whereby instructional approaches are developed for addressing them. In high school, college and university physics, research has led to the development of an assessment instrument called the Force Concept Inventory9 (FCI) that is now available for measuring the success of instruction in breaking these student misconceptions.
    [Show full text]
  • Students' Depictions of Quantum Mechanics
    Students’ depictions of quantum mechanics: a contemporary review and some implications for research and teaching Johan Falk January 2007 Dissertation for the degree of Licentiate of Philosophy in Physics within the specialization Physics Education Research Uppsala University, 2007 Abstract This thesis presents a comprehensive review of research into students’ depic- tions of quantum mechanics. A taxonomy to describe and compare quantum mechanics education research is presented, and this taxonomy is used to highlight the foci of prior research. A brief history of quantum mechanics education research is also presented. Research implications of the review are discussed, and several areas for future research are proposed. In particular, this thesis highlights the need for investigations into what interpretations of quantum mechanics are employed in teaching, and that classical physics – in particular the classical particle model – appears to be a common theme in students’ inappropriate depictions of quantum mechanics. Two future research projects are presented in detail: one concerning inter- pretations of quantum mechanics, the other concerning students’ depictions of the quantum mechanical wave function. This thesis also discusses teaching implications of the review. This is done both through a discussion on how Paper 1 can be used as a resource for lecturers and through a number of teaching suggestions based on a merging of the contents of the review and personal teaching experience. List of papers and conference presentations Falk, J & Linder, C. (2005). Towards a concept inventory in quantum mechanics. Presentation at the Physics Education Research Conference, Salt Lake City, Utah, August 2005. Falk, J., Linder, C., & Lippmann Kung, R. (in review, 2007).
    [Show full text]
  • PHYSICS 360 Quantum Mechanics
    PHYSICS 360 Quantum Mechanics Prof. Norbert Neumeister Department of Physics and Astronomy Purdue University Spring 2020 http://www.physics.purdue.edu/phys360 Course Format • Lectures: – Time: Monday, Wednesday 9:00 – 10:15 – Lecture Room: PHYS 331 – Instructor: Prof. N. Neumeister – Office hours: Tuesday 2:00 – 3:00 PM (or by appointment) – Office: PHYS 372 – Phone: 49-45198 – Email: [email protected] (please use subject: PHYS 360) • Grader: – Name: Guangjie Li – Office: PHYS 6A – Phone: 571-315-3392 – Email: [email protected] – Office hours: Monday: 1:30 pm – 3:30 pm, Friday: 1:00 pm – 3:00 pm Purdue University, Physics 360 1 Textbook The textbook is: Introduction to Quantum Mechanics, David J. Griffiths and Darrell F. Schroeter, 3rd edition We will follow the textbook quite closely, and you are strongly encouraged to get a copy. Additional references: • R.P. Feynman, R.b. Leighton and M. Sands: The Feynman Lectures on Physics, Vol. III • B.H. brandsen and C.J. Joachain: Introduction To Quantum Mechanics • S. Gasiorowicz: Quantum Physics • R. Shankar: Principles Of Quantum Mechanics, 2nd edition • C. Cohen-Tannoudji, B. Diu and F. Laloë: Quantum Mechanics, Vol. 1 and 2 • P.A.M. Dirac: The Principles Of Quantum Mechanics • E. Merzbacher: Quantum Mechanics • A. Messiah: Quantum Mechanics, Vol. 1 and 2 • J.J. Sakurai: Modern Quantum Mechanics Purdue University, Physics 360 2 AA fewA (randomfew recommended but but but recommended) recommended) recommended) books books booksBooks B. H. Bransden and C. J. Joachain, Quantum Mechanics, (2nd B. H. H.B. H. Bransden Bransden Bransden and andand C. C. C. J. J.
    [Show full text]
  • Teaching Light Polarization by Putting Art and Physics Together
    Teaching Light Polarization by Putting Art and Physics Together Fabrizio Logiurato Basic Science Department, Ikiam Regional Amazonian University, Ecuador Physics Department, Trento University, Italy molecules. In mechanical engineering birefringence is exploited to detect stress in structures. Abstract—Light Polarization has many technological Unfortunately, light polarization is usually considered a applications and its discovery was crucial to reveal the transverse marginal concept in school programs. In order to fill this gap, nature of the electromagnetic waves. However, despite its we have developed an interdisciplinary laboratory on this fundamental and practical importance, in high school this property of subject for high school and undergraduate students. In this one light is often neglected. This is a pity not only for its conceptual relevance, but also because polarization gives the possibility to pupils have the possibility to understand the physics of light perform many beautiful experiments with low cost materials. polarization, its connections with the chemistry and the basics Moreover, the treatment of this matter lends very well to an of its applications. Beautiful and fascinating images appear interdisciplinary approach, between art, biology and technology, when we set between two crossed polarizing filters some which usually makes things more interesting to students. For these materials. The pictures that we can see are similar to those of reasons we have developed a laboratory on light polarization for high the abstract art. Students can create their own artistic school and undergraduate students. They can see beautiful pictures when birefringent materials are set between two crossed polarizing compositions, take photos of them and make their experiments filters.
    [Show full text]
  • Integrated Dynamics and Statics for First Semester Sophomores in Mechanical Engineering
    AC 2010-845: INTEGRATED DYNAMICS AND STATICS FOR FIRST SEMESTER SOPHOMORES IN MECHANICAL ENGINEERING Sherrill Biggers, Clemson University Sherrill B. Biggers is Professor of Mechanical Engineering at Clemson University. He has over 29 years of experience in teaching engineering mechanics, including statics, dynamics, and strength of materials at two universities. His technical research is in the computational mechanics and optimal design of advanced composite structures. He developed advanced structural mechanics design methods in the aerospace industry for over 10 years. Recently he has also contributed to research being conducted in engineering education. He received teaching awards at Clemson and the University of Kentucky. He has been active in curriculum and course development over the past 20 years. He received his BS in Civil Engineering from NC State University and his MS and Ph.D. in Civil Engineering from Duke University. Marisa Orr, Clemson University Marisa K. Orr is a doctoral candidate in the Mechanical Engineering program at Clemson University. She is a research assistant in the Department of Engineering and Science Education and is a member of the inaugural class of the Engineering and Science Education Certificate at Clemson University. As an Endowed Teaching Fellow, she received the Departmental Outstanding Teaching Assistant Award for teaching Integrated Statics and Dynamics for Mechanical Engineers. Her research involves analysis of the effects of student-centered active learning in sophomore engineering courses, and investigation of the career motivations of women and men as they relate to engineering. Lisa Benson, Clemson University Page 15.757.1 Page © American Society for Engineering Education, 2010 Integrated Dynamics and Statics for First Semester Sophomores in Mechanical Engineering Abstract A modified SCALE-UP approach that emphasizes active learning, guided inquiry, and student responsibility has been described as applied to an innovative and challenging sophomore course that integrates Dynamics and Statics.
    [Show full text]
  • University Physics I COURSE SYLLABUS: Spring 2013
    PHYS 2425: University Physics I COURSE SYLLABUS: Spring 2013 Instructor: Dr. Kent Montgomery Office Location: Science 148 Office Hours: MTWTh 9:00–10:00 or by appointment Office Phone: 903‐468‐8650 University Email Address: [email protected] Course Location and Time: Lectures: MWF 11:00 a.m. – 11:50 a.m., Science 123 Labs: Wednesday 1:00 p.m. – 2:50 p.m., Science 114 or Thursday 1:00 p.m. – 2:50 p.m., Science 114 Suggested Companion Course (not required): PHYS 201: Problem Solving in Mechanics, Call #21384, Tuesday 3:30 p.m. – 4:20 p.m., Science 123 COURSE INFORMATION Materials – Textbooks, Readings, Supplementary Readings: Textbooks Required: Fundamentals of Physics Extended, 9th edition, Halliday, Resnick, and Walker There are alternate versions of the text that are acceptable; contact me for details. Course Description: Physics is the study of the interactions of matter and energy. This course will cover mechanics, or the study of how objects move. We will study motion, forces, gravity, and rotation during this semester. Prerequisites: Math 191 or Math 2413 (Calculus I) or be concurrently taking Calculus I Student Learning Outcomes: 1. You will be able to describe the motion of objects in up to three dimensions in terms of their position, displacement, velocity, and acceleration. 2. You will be able to describe how forces change an object’s motion. 3. You will be able to calculate the motion of an object due to the application of one or more forces. 4. You will be able to describe and calculate various kinds of energy and use energy to calculate the motion of objects.
    [Show full text]
  • Department of Physics College of Arts and Sciences
    DEPARTMENT OF PHYSICS COLLEGE OF ARTS AND SCIENCES Faculty I. Major in Physics—38 hours William Nettles (2006). University Professor of Physics, A. Physics 231-232, 311, 313, 314, 420, 424(1-3 hours), Department Chair, and Associate Dean of the College of 430, 498—28–30 hours Arts and Sciences. B.S., Mississippi College; M.S., and Ph.D., B. Select three or more courses: PHY 262, 325, 350, 360, Vanderbilt University. 395-6-7*, 400, 410, 417, 425 (1-2 hours**), 495* C. Prerequisites: MAT 211, 212, 213, 314 Ildefonso Guilaran (2008). Professor of Physics. B.S., *Must be approved Special/Independent Studies Western Kentucky University; M.S. and Ph.D., Florida State **Maximum 3 hours from 424 and 425 apply to major. University. II. Major in Physical Science—44 hours A. CHE 111, 112, 113, 211, 221—15 hours Geoffrey Poore (2010). Assistant Professor of Physics. B.A., B. PHY 112, 231-32, 311, 310 or 301—22 hours Wheaton College; M.S. and Ph.D., University of Illinois. C. Upper Level Electives from CHE and PHY—7 hours; David A. Ward (1992, 1999). Professor of Physics, B.S. and maximum 1 hour from 424 and 1 from 498 M.A., University of South Florida; Ph.D., North Carolina State University. III. Major in Physics with Discipline-Specific Honors Students who are pursuing a major in physics have the option Staff of completing an honors program in the discipline. Students Christine Rowland (2006). Academic Secretary— who are interested in this Honors program should refer to the Engineering, Physics, Math, and Computer Science.
    [Show full text]
  • PHY 2140 Physics for the Life Sciences II Cr
    PHY 2140 Physics for the Life Sciences II Cr. 4 PHY - PHYSICS Second part of introduction to physics for students in the life sciences, students preparing for medicine, dentistry, pharmacy and health PHY 1001 Perspectives in Physics, Biomedical Physics, and Astronomy sciences and for general Liberal Arts and Sciences students. Covers Cr. 1 thermodynamics, electric fields, oscillations, waves and optics. No credit Survey of educational and career paths including specializations in basic after PHY 2180. Offered Every Term. research and applied disciplines; recommended for entering students and Prerequisites: PHY 2130 with a minimum grade of C- those considering or beginning a major or minor concentration. Offered Corequisite: PHY 2141 Fall. PHY 2141 Physics for the Life Sciences Laboratory Cr. 1 Restriction(s): Enrollment is limited to Undergraduate level students. Laboratory experiments in electric fields, fluids, optics and spectroscopy. PHY 1020 Conceptual Physics: The Basic Science Cr. 3 Offered Every Term. Satisfies General Education Requirement: Natural Scientific Inquiry, Course Material Fees: $25 Physical Sciences, Quantitative Experience Comp PHY 2170 University Physics for Scientists I Cr. 4 This course will introduce key concepts of classical and modern physics. Satisfies General Education Requirement: Natural Scientific Inquiry, Students will be able to demonstrate knowledge of physics concepts Physical Sciences starting from the foundations of measurements, describing motion, and For students specializing in physics, biology, chemistry, mathematics or Newton's Laws. Building on these foundations, they will be able to explore engineering. Statics, kinematics, dynamics, energy and linear momentum, the concepts of conserved quantities, states of matter, temperature rotational kinematics and dynamics, angular momentum, solids and and heat, waves and sound, electricity and magnetism, optics, atomic fluids, vibrations and wave motion, thermodynamics.
    [Show full text]
  • THE THEORY of QUANTUM MECHANICS: Sflvtin LI.,Lc'[URI.]S F OR S'l'ui)L.Ln'l.Sol..- TN'froi)UC'i'o RY UNI V I.]RSI'i'y I' H YSICS
    THE THEORY OF QUANTUM MECHANICS: SFlVtiN LI.,lC'[URI.]S F OR S'l'UI)l.lN'l.SOl..- TN'fROI)UC'I'O RY UNI V I.]RSI'I'Y I' H YSICS by I)aniel'l'.Gillespie ResearchDepartment; Naual WeaponsCenter China Loke, California gSSSs Approvedfor publicrelease; distribution is unlimited" Preparedfor the Final Reportof the Carleton College Conference (August lg88) of the lntroductory University Physics Project I'REI.'ACE I came to write these lectures in the course of participating in the [ntroductory University Physics Project (IUPP), which was organized in 1987 by the American Ph-vsicalSociet-v and the American Association of Physics Teachers under the sponsorship of the Nationarl Science Foundation. The ultimate goarlof IUPP is to develop some new models for the introductory, calculus-based, university physics course. As envisioned by IUPP chairman John lligden, the new course models should have a "leaner story line," and should if at all possible contain something meaningful about quantum mechanics. My own involvement in tUPP is as a membcr of the working group on quanturn mechanics,which is chilired by llugen Merzbacher and co-chaired by Thomas Moore. I musl emphusize tlwt lhe set of'lecture,spresente.d here. is rutt patterned after the syllabus 'l'he recommended hy the IUPP quctntum mechanics worhin14!:roup. approach taken in these lectures is frankly too abstract and too formal, too long on theory and too short on applications, for mttst of thc students rvho tuke the introductory carlculus-basedphysics course. But.sorne of those students, those with a more mathemartical and philosophical bent, might possibly prolit flrom thcse lccturcs.
    [Show full text]
  • 9 | Linear Momentum and Collisions 405 9 | LINEAR MOMENTUM and COLLISIONS
    Chapter 9 | Linear Momentum and Collisions 405 9 | LINEAR MOMENTUM AND COLLISIONS Figure 9.1 The concepts of impulse, momentum, and center of mass are crucial for a major-league baseball player to successfully get a hit. If he misjudges these quantities, he might break his bat instead. (credit: modification of work by “Cathy T”/Flickr) Chapter Outline 9.1 Linear Momentum 9.2 Impulse and Collisions 9.3 Conservation of Linear Momentum 9.4 Types of Collisions 9.5 Collisions in Multiple Dimensions 9.6 Center of Mass 9.7 Rocket Propulsion Introduction The concepts of work, energy, and the work-energy theorem are valuable for two primary reasons: First, they are powerful computational tools, making it much easier to analyze complex physical systems than is possible using Newton’s laws directly (for example, systems with nonconstant forces); and second, the observation that the total energy of a closed system is conserved means that the system can only evolve in ways that are consistent with energy conservation. In other words, a system cannot evolve randomly; it can only change in ways that conserve energy. In this chapter, we develop and define another conserved quantity, called linear momentum, and another relationship (the impulse-momentum theorem), which will put an additional constraint on how a system evolves in time. Conservation of momentum is useful for understanding collisions, such as that shown in the above image. It is just as powerful, just as important, and just as useful as conservation of energy and the work-energy theorem. 406 Chapter 9 | Linear Momentum and Collisions 9.1 | Linear Momentum Learning Objectives By the end of this section, you will be able to: • Explain what momentum is, physically • Calculate the momentum of a moving object Our study of kinetic energy showed that a complete understanding of an object’s motion must include both its mass and its velocity ( K = (1/2)mv2 ).
    [Show full text]
  • Potential Energy and Energy Conservation
    Goals for Chapter 7 • Learn the following concepts: conservative forces, Chapter 7 potential energy, and conservation of mechanical energy. • Learn when and how to apply conservation of mechanical energy to solve physics problems. Potential Energy and • Examine situations when mechanical energy is not conserved, that is, when there are non-conservative Energy Conservation forces such as kinetic friction and air resistance. • Learn to relate the conservative force to the potential PowerPoint® Lectures for energy curve. University Physics, Twelfth Edition – Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 7_14_2010 Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Copyright © 2008 Pearson Education Inc., publishing as Pearson Addison-Wesley Introduction/Summary Work done by a conservative force - e.g. gravity • Start with W-KE theorem: • Work done by gravity: f ! " ! ! y f y f K f ! Ki = W = " F • d# (or F • s for constant force) i W = ! Fdy = ! "mgdy = mgyi " mgy f • There are two type of forces: yi yi Conservative forces (such as gravity and spring force) Define gravitational potential energy : Non-conservative forces (such as kinetic friction and air resistance) U(y) ! mgy ! K " K = W + W f i conservative non"conservative " W = Ui #U f • If there are only conservative forces then “mechanical energy” is If only gravity is doing work, then by conserved. Mechanical energy=kinetic energy (K) + potential energy (U) combining with the W - KE Theorem K ! K = W = U !U " (K + U ) ! (K + U ) = 0 f i conservative i f f f i i K ! K = W = U !U • If there are also non-conservative forces then “mechanical energy” is f i i f NOT conserved, but total energy is still conserved " K f + U f = Ki + Ui ! (K f + U f ) " (Ki + Ui ) = Wnon"conservative; ""Conservation of mechanical energy" (Wnon"conservative ) = other form of energy, e.g.
    [Show full text]