<<

University of Alberta

Individual and ontogenetic variation in theropod teeth: a case study of bauri (: Coelophysoidea) and implications for identifying isolated theropod teeth.

by

Lisa Glynis Buckley

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of

Master of Science in Systematics and Evolution

Department of Biological Sciences

Edmonton, Alberta Spring 2009 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition

395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 OttawaONK1A0N4 Canada Canada

Your Tile Votre reference ISBN: 978-0-494-54656-7 Our file Notre reference ISBN: 978-0-494-54656-7

NOTICE: AVIS:

The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats.

The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission.

In compliance with the Canadian Conformement a la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondaires ont ete enleves de thesis. cette these.

While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis.

•+• Canada ABSTRACT

Isolated theropod teeth are useful data for paleogeographical and paleoeco- logical studies, though ambiguous tooth morphotypes are frequently recovered from Late microfossil localities. It is not known if these morphotypes result from individual or ontogenetic variation. Eight hundred forty-eight teeth from twenty- three of the Late (Carnian - ) theropod Coelophysis bauri from Ghost Ranch, New Mexico, were analyzed using statistical and multivariate analy­ ses. Principle component and discriminant analyses show that, despite heterodontic morphology, teeth from premaxillae, maxillae, and dentaries, and teeth from small (juvenile) and large (adult) skulls occupy a similar morphospace and would not be mistakenly identified as newtaxa. Teeth with longitudinal ridging only occur in small (juvenile) skulls also occupy the same morphospace as non-ridged teeth, and may be an ontogenetically controlled character of tooth morphology in C. bauri. Ridged tooth morphotypes from Late Cretaceous microfossil localities may be ontogenetic variants from known theropod taxa. ACKNOWLEDGMENTS

I wish to extend my thanks to the following for their aid in the completion of this study: my advisor Dr. Philip Currie (University of Alberta) and committee mem­ bers Dr. Michael Caldwell (University of Alberta) and Dr. Donald Brinkman (Royal Tyrrell Museum of Palaeontology) for their discussions and critiques of this study; Dr. Eva Koppelhus for her aid in coordinating my thesis activities; and Eric Snively (University of Alberta) and Julia Sankey (University of California - Stanislaus) for their discussions on theropod tooth morphology. I also wish to thank Mark Norell and Carl Mehling (American Museum of Natural History), Ken Carpenter and Logan Ivy (Denver Museum of Nature), David Gillette and Janet Whitmore-Gillette (Museum of Northern Arizona), Spencer Lucas, Justin Speilmann, and Larry Rhinehart (New Mexico Museum of Natural History), and Andy Neuman and Brandon Strilisky (Royal Tyrrell Museum of Palaeontology) for access to their institution's collections and for their hospitality during my visits. This study would not have been completed were it not for the many discus­ sions and unwavering support, encouragement, and patience of my husband and colleague Richard T M'Crea. I also wish to thank my family (parents Tom and Su­ san, sisters Cynthia and Sally, grandparents Doreen and Ted Burger) and my husband's family (Raymond, Marlene, Julie, and Kari) for support and encourage­ ment. I also wish to thank my great-aunt Molly Gresley-Jones for inspiring in me an interest in natural history at an early age. Funding was made available through the University of Alberta (Dr. Philip Currie's Lab, Faculty of Graduate Studies and Research Queen Elizabeth II Scholar­ ship, Department of Biological Sciences Graduate Teaching Assistantship), the Foundation, and the Dinosaur Research Institute. I also wish to thank the Tumbler Ridge Museum Foundation for employing me during my graduate studies and for their drive and passion to protect British Columbia's fossil heritage. TABLE OF CONTENTS

1.0 INTRODUCTION 1 1.1 Shed theropod teeth in paleontology. 1 1.2 Variation in tooth morphology of tetrapods 2 1.3 Documentation of theropod tooth morphology 3 1.4 Individual variation in theropod teeth 6 1.5 Ontogenetic variation in theropod teeth 7 1.6 Wrinkles, ridges, and tooth crowns 8 1.7 Purpose of study 9 1.8 Institutional abbreviations 9 2.0 TAXONOMIC HISTORY OF COELOPHYSIS BAURI 11 2.1 History of Coelophysis bauri 11 2.2 Taxonomic history of Coelophysis bauri. 11 2.3 Colbert (1989) description of C. bauri dental formulae and morphology 12 3.0 MATERIALS AND METHODS 14 3.1 Specimen variables affecting data collection 14 3.2 Equipment used for data collection 15 3.3 Data collected 15 3.4 Description of statistical analyses 17 3.5 Description of multivariate analyses 18 3.6 Measurement and anatomical abbreviations 19 4.0 RESULTS 20 4.1 Description of C. bauriteeth 20 4.1.1 Overal description 20 4.1.2 Premaxillay and anterior dentary teeth 22 4.1.3 Mid-tooth row maxillary and dentary teeth 23 4.1.4 Posterior maxillary and dentary teeth 25 4.1.5 Longitudinal ridged teeth in C. bauri. 27 4.2 Individual variation in teeth of C. bauri. 28 4.3 Patterns in C. bauritooth replacement 31

4.4 Regression results 33 4.5 Multivariate results 36 4.5.1 Normality and specimen variation 36 4.5.2 Separating teeth from premaxillae, maxillae, and dentaries 39 4.5.3 Separating teeth from large (adult) and small (juvenile) specimens 43 4.5.4 Separating anterior and posterior tooth positions 45 4.5.5 Multivariate results of denticle measurements 48 4.6 Multivariate comparison of teeth from C. bauri and sp 50 SYSTEMATIC PALEONTOLOGY. 53 5.1 Revised description of Coelophysis bauri 53 DISCUSSIONS AND CONCLUSION 55 6.1 Amendment to Colbert (1989) description of C. bauri dentition 55

6.1.1 Revised dental formula for observed C. bauri specimens 55 6.1.2 Premaxillary teeth and denticulate carinae 55 6.2 Sexual variation and tooth morphology in C. bauri 56 6.3 Variation and heterodonty in C. bauri 57 6.4 Allometry and C. bauriteeVh 57 6.5 Ontogenetic change and C. bauriteeth 58 6.6 Longitudinally ridged tooth crowns and ontogeny 60 6.6.1 Longitudinally ridged teeth in C. bauri. 60 6.6.2 Longitudinally ridged teeth in 61 6.6.3 Longitudinally ridged teeth in Theropoda 62 6.6.4 Functionality of longitudinally ridged tooth crowns 63 6.7 Implications of dental variation in C. bauri for shed theropod tooth identification 64 6.8 Conclusions 68 6.8.1 Updated description of C. bauri dentition 68 6.8.2 Potential variation in shed theropod tooth morphology 69 7.0 REFERENCES 71 APPENDIX: Data collected from Coelophysis bauri skulls SV LIST OF TABLES

Table 1.1: Methodology and description for shed theropod tooth meaurements 5 Table 3.1: List of repositories with Ghost Ranch Coelophysis quarry blocks 12 Table 4.1: Univariate statistics on C. bauri tooth measurement s for tooth bearing elements 21 Table 4.2: Skulls with longitudinally ridged teeth in C. bauri sample size series from Figure 2 23 Table 4.3: Reduced major axis (RMA) results for bivariate comparisons on tooth and measurements of C. bauri 31

Table 4.4: Shapiro-Wilks normality test for C. bauri sample 33 Table 4.5: Variable loadings for principle component analysis on whole C. bauri sample 37 Table 4.6: Principle component analysis results from C. bauri dataset interalveolar distance removed 39 Table 4.7: Discriminant anlysis results of C.bauri comparisons and percent of teeth correctly identified 43 Table 4.8: Principle component analysis percent variance results on C. bauri denticle measurements 47 LIST OF FIGURES

Figure 1.1: Graphical description of theropod tooth measurements in study. 4 Figure 3.1: Sample ontogenetic series for whole C. bauri skulls in study 16 Figure 4.1: C. bauri specimen NMMNH P-42579 tooth IM5 anterior carina denticles, labial view. 22 Figure 4.2: C. bauri specimen AMNH 7240 right premaxillary tooth P3 showing denticles on posterior carina 23 Figure 4.3: C. bauri specimen RTMP 1984.63.1-1 left lateral view showing longitudinally ridged maxillary teeth 24 Figure 4.4: C. bauri specimen NMMNH P-42200 left lateral view of longitudinally ridged premaxillary, maxillary, and dentary teeth 25 Figure 4.5: C. bauri specimen MNAV3318 premaxilla and anterior dentary, rostral view, showing longitudinally ridged premaxillary teeth 26 Figure 4.6: Positional variation in FABLand crown basal width (CBW) for all C. bauri specimens in study 28 Figure 4.7: Positional variation in crown height (CH) and crown angle (CA) for all C. bauri specimens in study 29 Figure 4.8: Positional variation in FABLfor C. bauri specimens NMMNH

P-42200 (small) and AMNH 7240 (large) skulls 30 Figure 4.9: Reduced major axis (RMA) graphical results for In-FABL vs. In-femur length for C. bauri study skulls 32 Figure 4.10: Reduced major axis (RMA) graphical results for In-FABL vs. In-CH and In-FABL vs. In-CBW for C. bauri study skulls 34 Figure 4.11: Reduced major axis (RMA) graphical results for In-FABL vs. crown angle (CA) and In-tooth bearing element lengths vs. number of tooth positions for C. bauri sample 35 Figure 4.12: Principle component analysis (PCA) graphical results of PC1 vs. PC2 and PC1 vs. PC3of all C. bauri data 38 Figure 4.13: Principle component analysis (PCA) graphical results of PC1 vs. PC2 and PC1 vs. PC3 of C. bauri teeth coded for tooth bearing element 40 Figure 4.14: Discriminant analysis graphical results of C. bauri teeth coded for tooth bearing elements 41 Figure 4.15: Canonical variant analysis (CVA) for C. bauri teeth coded for tooth bearing elements 42 Figure 4.16: Principle component analysis (PCA) graphical results of PC1 vs. PC2 of C. bauri teeth separated into juvenile- and adult- sized

groups 44 Figure 4.17: Discriminant analysis results on C. bauri teeth separated into small (juvenile) and large (adult) categories 45 Figure 4.18: Principle component analysis (PCA) graphical results PC1 vs. PC2 and PC1 vs PC3 showing C. bauri outlying tooth positions 46 Figure 4.19: Discriminant analysis on anterior (M1 - M11) and posterior (M12 -M28) maxillary tooth positions in C. bauri sample 47 Figure 4.20: Principle compoenent analysis (PCA) graphical results PC1 vs. PC2 and PC1 vs. PC3 for C. bauri denticle measurements 48 Figure 4.21: Discriminant analysis graphical results for denticle measurements and denticle density for C. bauri teeth coded for small (juvenile) and large (adult) skulls 49

Figure 4.22: Multivariate results (principle component analysis and discriminant analysis) of comparing C. bauri and Allosaurus sp. teeth 51 LIST OF ABBREVIATIONS

Institutional Abbreviations AMNH - American Museum of Natural History DMNS - Denver Museum of Nature and Science NMMNH - New Mexico Museum of Natural History MNA - Museum of Northern Arizona TMP - Royal Tyrrell Museum of Palaeontology

Tooth Measurement Abbreviations Refer to Figure 1.1 in text for a graphical description of tooth measurement nomenclature. ACL - Anterior carina length ACDL - Anterior carina denticulate length AP(M)(D)/0.5mm - Number of denticles per 0.5mm on the proximal (middle, and distal) part of the anterior carina CA - Crown angle CBW - Crown base width CH - Crown height Curv - Crown curvature FABL - Fore-aft basal length LA(P)D-W - Largest anterior (posterior) denticle width LA(P)D-L - Largest anterior (posterior) denticle length LA(P)D-H - Largest anterior (posterior) denticle height IAD - Inter-alveolar distance PCL - Posterior carina length PCDL - Posterior carina denticulate length LIST OF ABBREVIATIONS (CONTINUED)

Tooth Measurement Abbreviations (continued) PP(M)(D)/0.5mm - Number of denticles per 0.5mm on the proximal (middle and distal) part of the posterior carina

Anatomical Abbreviations P- Premaxillary tooth M- Maxillary tooth D- Dentary tooth r - Right lateral side I - Left lateral side LIST OF NOMENCLATURE

Anatomical and Positional I Anterior- Skull, towards the premaxilla Posterior - Skull, towards the quadrate/back of the skull Lateral/Labial - Skull or tooth, towards the outside of the skull Lingual - Skull or tooth, towards the midline of the skull/towards the tongue

In situ - Tooth within the alveolus of the tooth bearing element Isolated - Tooth, shed or not articulated with the original tooth bearing element Proximal - Tooth, towards the base of the tooth crown Distal - Tooth, towards the tip/apex of the crown Skull length - Distance from the premaxilla to the quadrate unless otherwise stated Carina(e) - Raised edge or keel on the enamel of the tooth crown, may or may not bear serrations/denticles Serrations/Denticles - Raised enamel structures on the carinae of teeth LIST OF SYMBOLS The symbols below represent individual specimens for comparisons in the PAST program. Due to the limited number of unique symbols (16) available in PAST, the same symbol has been used for more than one specimen.

© AMNH 7227 Complete skull in block, left lateral view • AMNH 7228 Complete skull in block, left lateral vie • AMNH 7230 Distorted skull in block, palatal view • AMNH 7231 Complete skull in block, left lateral view • AMNH 7239 Complete skull, left and right lateral views © AMNH 7240 Complete skull, left and right lateral views X AMNH 7241 Complete skull, only right lateral side exposed HH AMNH 7242 Skull missing premaxillae, left and right maxillae visible • DMNS 30596 Anterior portion of skull, right premaxilla and anterior maxilla • DMNS 32156 Incomplete tooth bearing element, possible right dentary O DMNS 39022 Complete skull, left and right lateral views A MNAV3315 Complete skull, left and right lateral views V MNAV3318 Complete skull in block, right lateral view * NMMNH P-42200 Complete skull in block, left lateral view • NMMNH P-42353 Left (lingual view) and right (labial view) maxillae in block II NMMNH P-42579 Incomplete skull in block, ventral view of right maxilla, and left and right dentaries, some left maxillary teeth • NMMNH P-44551 Right maxilla, labial view, and associated isolated premaxillary tooth, in block • NMMNH P-44555 Incomplete skull in block, left and right premaxillae and anterior maxillae • NMMNH P-50529 Right dentary in block, labial view A NMMNH P-50530 Articulated left (labial view) and right (lingual view) premaxillae and anterior maxillae in block V TMP 1984.63.1-1 Complete skull in block, left lateral view • TMP 1984.63.1-2 Complete skull in block, only articulated right premaxilla and anterior maxilla visible O TMP 1984.63.1-3 Associated left maxilla and dentary in block 1.0 INTRODUCTION

1.1 Shed theropod teeth in paleontology Theropod skeletal elements have a low preservation potential due to their fragile osteology. The usual lack of multiple specimens of most taxa of theropods makes it difficult to determine the presence of a theropod taxon for paleoecology studies. Theropod teeth, being more mechanically and chemically resistant, are commonly recovered from microfossil localities as isolated shed elements. Theropods, as with other non-mammalian tetrapods, exhibit polyphyodonty (Bolt and DeMar 1986). Determining the presence or absence of theropod taxa at a locality based on the occurrence of shed teeth is more practical than relying on the occurrence of other skeletal elements for faunal and paleobiological studies (Currie etal. 1990; Brinkman 1990; Fiorillo and Currie 1994; Ryan etal. 1998; Fiorillo 1999; Fiorillo and Gangloff 2000; Sankey 2001, 2008a, 2008b; Vullo etal. 2007). Shed theropod teeth are often used in the identification of new taxa (Currie etal. 1990; Baszio 1997a, 1997b; Sankey 2001; Sankey etal. 2002) but there are uncertainties surrounding the usefulness of shed theropod teeth for taxonomic purposes (Smith 2002), as there are few studies on intraspecific dental morphology variation in theropods (Smith 2005). Due to the low preservation potential of theropod skeletal material there are few chances to study morphologic variation at lower taxonomic levels. As a result, information on individual variation in tooth morphology is seldom available, although there are exceptions. One example is of the several studies on diagnostic skeletal characters completed on taxa within the (Carr 1999; Brochu 2003; Currie etal. 2003; Holtz 2004; Carr and Williamson 2004; Smith 2005). Variation in shed teeth of multiple theropod taxa has been addressed (Currie et al. 1990; Sankey et al. 2002), but the amount of variation in tooth morphology among individuals of a single taxon remains uncertain. Unless skulls have in situ teeth, the potential range of individual variation in theropod tooth morphology cannot be connected with a single theropod taxon. The low preservation potential of theropod skeletal material also makes it difficult to document ontogenetic variation in theropod tooth morphology. The variability of teeth between juvenile and adult specimens within the Tyrannosauridae has been discussed (Currie etal. 1990; Carr 1999; Brochu 2003; Currie 2003; Holtz 2004), although there are few confirmed juvenile specimens of any tyrannosaurid taxa with which to accurately document ontogenetic variation of teeth. The morphologic range of individual and ontogenetic variation in theropod teeth needs to be documented to identify shed theropod teeth for paleoecological studies or to use tooth morphology to support or refute the validity of theropod taxa.

1.2 Variation in the tooth morphology of tetrapods Morphological differences in fossils provide the basis for describing new taxa (morphotaxa) in paleontology, but in some cases it is difficult to determine if the differences observed have taxonomic significance or result from variation within a pre-existing taxon. Variation among the skeletal elements of the Theropoda summarized by Molnar (1990, page 76) attributes morphologic variation to individual, sexual, ontogenetic, geographical, chronological, and intraspecific population variation. Among the skeletal elements susceptible to variation, teeth were described to vary in number (Molnar 1990). Statistical tests on specimens of small sample size are not practical (Molnar 1990), but taxa known from multiple specimens could produce significant results.

Variation in tetrapod tooth morphology has a potential link with the

Zahnreihen tooth replacement theory (Bolt and DeMar 1986). Slightly larger 2 crowns replace existing teeth and the addition of new tooth positions often occurs during growth of tooth-bearing elements in archosaurs. Tooth replacement and the increase in replacement tooth size and/or number must keep pace with jaw growth to avoid tooth "crowding" in the middle of the tooth row, potentially affecting the proportions of tooth crowns (Bolt and Demar 1986). Novel tooth positions are hypothesized by Edmund (1962) are added by the production of new tooth families, or "Zahnreihen", in-between existing tooth positions. There are many examples of ontogenetic variation in tetrapod tooth counts and morphology. Both young and middle-aged alligators have 80 teeth, but this number decreases with age as some alveoli cease to replace tooth crowns (Niell 1971). The tetrapod Diadectes, the archosaur Trilophosaurus (Bolt and DeMar 1986), and the lepidosaur Varanus (Lonnberg 1903) increase tooth width during ontogeny (Bolt and DeMar 1986).

1.3 Documentation of theropod tooth morphology The first works on theropod tooth morphology were as part of larger osteological descriptions of skull material. The observations were generally limited to the number of alveoli present in the tooth bearing elements, overall tooth shape, and the presence or absence of serrations on the anterior and posterior carinae. However, there are exceptions. Ostrom (1969) provides a detailed description of the dentition of Deinonychus antintiopus, and uses the discrepancy in size between the denticles on the anterior and posterior carinae as a diagnostic character for the subfamily Velociraptorinae, supporting a phylogenetic relationship between D. antintiopus and Velociraptor mongoliensis. Currie et al. (1990) completed the first comprehensive multi-taxon study of theropod tooth morphology on the late Campanian theropod teeth of the Judith River Group, showing that shed theropod teeth may be identifiable to the familial, 3 Crown Apex Anterior

(0 // / / 3 Apical/ w O) c Basal/ Crown

/ / (errati c vt Basal f J Denticle • Width >• (CBW) \ Anterior Carina

Posterior Crown Base Carina Posterior

D1

Denticle Q2 Lengtht(L) Crown Height o (CH)

& Denticle Width (W) Denticle Height (H) Fore-aft Basal Length' (FABL) B

Figure 1.1: Terminology and measurements taken on theropod teeth. A, Maxillary crown of Sauromitholestes showing measurement terminology. B, Tooth in A with applied measurements shown. C, Cross section in basal view of schematic theropod tooth crown base with applied measurements. D, Schematic of theropod denticles on the posterior carina and applied measurements in lateral view (D1) and anterior view (D2). Modified from Currie et al. (1990), Sankey et al. (2002) and Smith and Dodson (2003).

4 Terminology (this study) Description Reference

Lingual Towards the tongue/midline of the skull Currieetal. (1990)

Labial Towards the lateral surface/outside of the skull Currieetal. (1990)

Anterior/rostral Towards the front of the skull Currieetal. (1990)

Posterior/caudal Towards the back of the skull Currieetal. (1990)

Fore-aft basal length (FABL) Long axis of tooth crown base Currieetal. (1990)

Crown basal width (CBW) Largest labial-lingual distance of tooth crown base Smith and Dodson (2003)

Crown height (CH) Distance from base to tooth tip, perpendicular to FABL Currie et al. (1990); Smith and Dodson (2003)

Curvature length (Curv) Straight-line distance from tooth tip to anterior-most Smith and Dodson (2003) edge of FABL length

Anterior carina length (ACL) Straight-line apicobasal length of anterior carina Currie (pers. comm.)

Anterior carina denticulate Straight-line apicobasal length of serrated portion of length (ACDL) anterior carina

Posterior carina length (PCL) Straight-lone apicobasal length of posterior carina Currie (pers. comm.)

Posterior carina denticulate Straight-line apicobasal length of serrated portion of length (PCDL) posterior carina

Denticle width Lingual-labial length of denticle Sankey et ai. (2002)

Denticle length Apicobasal length of denticle Sankey et al. (2002)

Denticle height Anteroposterior length of denticle Sankey et al. (2002)

Table 1.1: Terminology of measurements used in this study modified from Currie et al. (1990), Sankey et al. (2002) and Smith and Dodson (2003). Refer to Figure 1.1 for a graphical description of tooth measurements. generic, and specific level. This methodology (Figure 1.1 and Table 1.1) has been used to identify shed theropod teeth in faunal studies (Currie et al. 1990; Fiorillo and Currie 1994; Baszio 1997a, 1997b; Rich era/. 1998; Ryan era/. 1998; Fiorillo 1999; Parrish 1999; Fiorillo and Gangloff 2000; Sankey 2001, 2002, 2003; and Sankey et al. 2002), and in studies of theropod niche partitioning and feeding behavior (Bakker 1998; Henderson 1998; Holtz et al. 1998; Ryan et al. 1998; Bakker and Bir 2004). Shed tooth distribution within the Como Bluff locality was used by Bakker and Bir (2004) to interpret parental care, potential prey, and habitat selection of allosaurids, ceratosaurids, and megalosaurids.

5 Smith and Dodson (2003) proposed a standard for vertebrate dental terminology, with modifications made to the original terminology used in Currie et al. (1990) for describing theropod teeth. Smith (2002) developed a model with which to identify shed tyrannosaurid teeth, and the multivariate analyses of Smith et al. (2005) separated shed teeth of close taxonomic affinity within the Tyrannosauridae, though the analyses could not separate teeth from closely related species. Theropod tooth morphology also has a place within phylogenetics. Holtz (1998) used the number of teeth, relative size of maxillary and denary teeth, denticle morphology, crown root constriction, and presence of enamel crenulations associated with serrations as characters in revising the phylogeny of the Theropoda. Rauhut (2004) used the number of premaxillary alveoli as a character in the systematic analysis of the Theropoda, but no mention was made of variation of maxillary and dentary alveoli number within a single taxon.

1.4 Individual variation in theropod teeth Madsen (1976) notes that in Allosaurus fragilis the number of maxillary tooth alveoli vary from 14 to 16, and in the dentaries from 14 to 17, and that the variation was likely individual and not ontogenetic. Dental variation in C. bauri was concluded to be due to individual rather than ontogenetic variation, and that the number of maxillary alveoli was dependent on the length of the maxilla (Colbert 1990), while in tyrannosaurids there is no correlation to alveoli number and age and/or size of the individual (Currie 2003). Currie (2003) also notes that in the Tyrannosauridae tooth alveoli number can vary between the left and right maxillae and the left and right dentaries within an individual. Smith (2005) and Smith et al. (2005) showed that the dentition of rex exhibits a high degree of positional variation.

6 1.5 Ontogenetic variation in theropod teeth The most detailed work on ontogenetic variation in theropod tooth morphology focuses on genera within the Tyrannosauridae. However, the status of the type specimen of Nanotyrannus libratus, whether it is a distinct taxon (Bakker et al. 1988) or a juvenile specimen of T. rex (Carr 1999; Carr and Williamson 2005), polarizes the literature on tyrannosaurid ontogeny. Carr (1999) reports that libratus increased tooth width and decreased the number of tooth alveoli from 16 in juveniles to 13 in adults, though this is treated with some skepticism (Currie pers. com. 2008). Currie (2003) showed that tooth crown basal width in Tyrannosauridae changes from laterally compressed as juveniles to conical in adults. T. rex was documented to lose up to three alveoli from the anterior end of the tooth row during ontogeny (Carr 1999; Carr and Williamson 2005). However, this observation is only valid if N. libratus is treated as a juvenile T. rex, and tyrannosaurids may not change the number of tooth positions during ontogeny. The number of maxillary tooth positions in tyrannosaurids was shown to be not ontogenetically controlled (Currie 2003). Hypotheses that tyrannosaurid tooth counts either increase or decrease with age have no statistical support when comparing tooth number with tooth row length (Currie 2003).

Colbert (1990) documents a gain in tooth alveoli during the ontogeny of C. bauri, but also notes that the number of alveoli in the maxillae is "not entirely related to size" (Colbert 1989, page 70), though also states that "there probably was some increase in the number of teeth during growth" (Colbert 1989, page 133). The presence or absence of denticles on the premaxillary teeth, once thought to be diagnostic of the genus , now considered a nomina dubia by Holtz (2004) and Carr and Williamson (2005), may be due either to post-mortem damage (though teeth do not appear to be damaged through the 7 author's personal observations) or to ontogenetic factors (Brochu 2003). Other than in the Tyrannosauridae (Carr 1999; Carr and Williamson 2006; Currie 2003; Smith 2002, 2005; Smith et al. 2005), and in isolated shed teeth with uncertain taxonomic affinity (Sankey et al. 2002), there has been little opportunity to document the range of morphologies due to ontogenetic and individual variation within one theropod taxon.

1.6 Wrinkles, ridges, and tooth crowns Certain features on theropod tooth crowns previously used as diagnostic characters for shed, isolated crowns have either no diagnostic power or their diagnostic strength is questionable. One of these features is the presence of enamel wrinkles oriented perpendicular to the long axis of the tooth crown. Once considered diagnostic of the and their presence on shed teeth used to identify shed teeth as carcharodontosaurid (Vullo et al. 2007), these ridges are also documented in several genera within the Spinosauroidea, , and the in varying strengths and sizes (Brusatte et al. 2007). The presence of enamel wrinkles, as some carcharodontosaurid teeth do not possess wrinkled crowns (Brusatte et al. 2007), should not be considered a diagnostic feature of the Carcharodontosauridae, though large and well developed wrinkles (when present) may be a feature restricted to the Carcharodontosauridae (Brusatte et al. 2007). Another characteristic often seen in shed theropod tooth crowns are parallel ridges running the long (apicobasal) axis of the tooth crown, hereon referred to as "longitudinal ridges" or simply "ridges". Longitudinal ridges are frequently documented in spinosaurid teeth (Brusatte et al. 2007), nasicomis, C. magnicomis, and C. dentisulcatus (Madsen and Welles 2000), and in teeth identified as Paronychodon lacustris (Currie et al. 1990; Sankey 2008), 8 cf. Saurornitholestes sp., cf. Troodon sp., cf. Pectinodon bakkeri (Carpenter 1982; Longrich 2008), cf. sp. (Longrich 2008; Sankey 2008), (Sankey 2008), and in "Dromaeosaurus Morph A", a tooth morphology of uncertain taxonomic affinity (Sankey et al. 2002; Longrich 2008). It is not known whether the presence of these ridges (in taxa other than those in the ) is the result of intraspecific individual or ontogenetic variation, or whether the presence of longitudinal ridging on theropod teeth is diagnostic of certain taxa. While there has been a great deal of work conducted on the identification and use of shed theropod teeth, there are uncertainties remaining as to the identification and interpretation of shed theropod teeth. Further documentation of theropod tooth variation (ontogenetic and individual) would increase the usefulness of these elements for paleoecological, paleobiogeographical and taxonomic studies.

1.7 Purpose of study The goal of this study is to address uncertainties regarding ontogenetic and individual variation in theropod tooth morphology. The in situ teeth (teeth within their original alveoli) in multiple individuals of a single theropod species were documented via measurements and photography. Tooth data were analyzed using bivariate and multivariate analyses, and the results used to describe the acceptable amount of morphologic variation potentially displayed in the teeth of any theropod taxa. The study taxon is the (Carnian- Norian) coelophysoid ceratosaurid Coelophysis bauri.

1.8 Institutional abbreviations Institutional abbreviations are AMNH, American Museum of Natural History, New York, New York; DMNS, Denver Museum of Nature and Science, 9 Denver, Colorado; MNA, Museum of Northern Arizona, Flagstaff, Arizona; NMMNH, New Mexico Museum of Natural History and Science, Albuquerque, New Mexico; and TMP, Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta, Canada.

10 2.0 TAXONOMIC HISTORY OF COELOPHYSIS BAURI

2.1 History of Coelophysis bauri The Ghost Ranch locality occurs within the upper part of the Petrified Forest Member in the Chinle Formation, which is dated palynologically to be in the late Carnian - early Norian (Colbert 1989). Coelophysis was first described from material discovered in 1881 by David Baldwin (Colbert 1989) as longicollis and C. bauri (Cope 1887a) and then changed to Tanystrophaeus longicollis and T. bauri with the addition of a new species, T. willistoni (Cope 1887b). The generic assignment of the three species was later changed by Cope to Coelophysis longicollis, C. bauri, and C. willistoni (Cope 1889). The material was redescribed by von Huene (1906,1915) as being from the Arroyo Seco area of New Mexico because the original material was described with only vague locality information (Colbert 1989).

The Ghost Ranch locality in Arroyo del Yeso, New Mexico, now famous for the numerous complete and partially articulated specimens of C. bauri and representing a range of ontogenetic stages, was discovered in 1947 (Colbert 1989,1990). Twenty-nine bone-bearing blocks excavated from the quarry are now deposited in multiple institutions (Table 2.1). The site is interpreted as a mass death assemblage of a population of C. bauri (Colbert 1989,1990; Schwartz and Gillette 1994).

2.2 Taxonomy of the Ghost Ranch Coelophysis bauri There was debate as to whether the original C. bauri material is diagnostic and comparable to the Ghost Ranch specimens (Hunt and Lucas 1991). A new name, Rioarribasaurus colberti (holotype AMNH 7224), was proposed for the Ghost Ranch coelophysoids (Hunt and Lucas 1991), but a

11 Quarry Block Number Repository of Material (as of 1990)

AMI Ghost Ranch AM II Yale Peabody Museum AM III American Museum of Natural History AM IV Connecticut State Dinosaur Trackway Park AMV American Museum of Natural History AM VI American Museum of Natural History AM VII Museum of Northern Arizona AM VIII American Museum of Natural History AM IX American Museum of Natural History AMX Harvard Museum of Comparative Zoology AM XI (non productive) AM XII Cleveland Museum of Natural History AM XIII University of Texas

Ph-1-81 Carnegie Museum

C-1-81 Royal Ontario Museum C-2-81 Carnegie Museum C-3-81 Royal Ontario Museum C-4-81 Carnegie Museum C-5-81 Museum of Northern Arizona C-1-82 Carnegie Museum Royal Tyrrell Museum of Palaeontology C-2-82a Carnegie Museum C-2-82b Carnegie Museum C-3-82 Smithsonian Institution- C-4-82 Carnegie Museum C-5-82 Carnegie Museum C-6-82 Carnegie Museum C-7-82 Carnegie Museum C-8-82b New Mexico Museum of Natural History C-9-82 Ghost Ranch Museum, Ruth Hall Wing C-10-82 Carnegie Museum

Table 2.1: Repositories of blocks removed from the C. bauri Ghost Ranch quarry (modified from Colbert 1990).

neotype specimen from the Ghost Ranch quarry (AMNH 7224) was erected for C. bauri by the International Commission on Zoological Nomenclature (1996) on petition (Colbert etal. 1992), resulting in all Ghost Ranch coelophysoids being classified as C. bauri (Tykowski and Rowe 2004).

2.3 Colbert (1989) description of C. bauri dental formulae and morphology A revised diagnosis of the genus Coelophysis (Colbert 1989) describes 12 the dental formula (premaxilla + maxilla/dentary) as both 4 + 23 - 26/25 - 27 (on pages 29, 33 and 68), and 4+22 - 26/? (on pages 60 and 69). Dentary teeth are more difficult to document as the jaws are usually tightly occluded in most skulls (Colbert 1989). The following description of C. bauri tooth morphology is modified from Colbert (1989). Premaxillary teeth P1 - P 3 are rounded in cross-section, with P4 elliptical and with anterior and posterior carinae. P1 - P4 lack serrations. Premaxillary teeth of small individuals are "ribbed" (Colbert 1989, page 70). There is a diastema at the contact between the premaxilla and maxilla. Maxillary teeth are laterally compressed, strongly recurved and have anterior and posterior carinae. Maxillary tooth M1 anterior and posterior carinae lack serrations, and M2 lacks serrations on the anterior carinae only. All other teeth in the maxilla are serrated.

Anterior carina serrated lengths vary from the distal half of the tooth crown to the entire carinae length. Posterior carinae serrated lengths run the entire posterior edge of the crown. Serrations are small (eight to nine per millimeter). Maxillary teeth decrease in size anteroposteriorly along the tooth row, with the smallest teeth seen in M21 - M26. Dentary teeth D1 - D 4 are elliptical in cross- section with the rest of the teeth being laterally compressed. D1 - D7 lack serrations, D8 only has posterior serrations. The remaining dentary teeth have anterior and posterior serrations.

13 3.0 MATERIALS AND METHODS

3.1 Specimen variables affecting data collection Data were collected from 848 in situ tooth positions in 23 complete and par­ tially complete C. bauriskulls. Partial skulls either lacked certain elements (premaxil- lae were the most common element missing) or possessed tooth-bearing elements that were too damaged to collect data from along their total lengths. TMP1984.63.1 is the catalogue number for a block bearing the remains of several individuals of Ghost Ranch Coelophysis. Data from three complete and partial skulls were col­ lected from this block. The complete skull, the anterior portion of one skull, and the disarticulated large maxillae and dentaries are denoted in the text as TMP 1984.63.1-1, TMP 1984.63.1-2, and TMP 1984.63.1-3, respectively.

Five skulls are fully prepared with both lateral views visible (AMNH 7239, AMNH 7240, AMNH 7242, DMNS 39022, MNAV3315), and five skulls have both left and right lateral views exposed due to disarticulation of skull elements (MNA V3318, NMMNH P-42353, NMMNH P-42579, NMMNH P-44555, NMMNH P- 50530). Seven skulls are only visible on the left lateral side (AMNH 7227, AMNH 7228, AMNH 7230, AMNH 7231, NMMNH P-42200, TMP 1984.63.1-1 and TMP 1984.63.1-3) and six skulls are exposed on the right lateral side (AMNH 7241, DMNS 30596, DMNS 31256, NMMNH P-44551, NMMNH P-50529, TMP 1984.63.1 -2). One isolated premaxillary tooth crown and root associated with the skull NMMNH P-44551 was treated as part of that specimen. However, it could not be assigned to that specimen because the premaxillae were not preserved, and no in situ teeth in the maxilla have ridges.

Many teeth were only partially visible (due to the incomplete removal of sedi­ ment or the use of adhesives during preparation), were missing (due to natural tooth replacement processes or post-mortem damage), or were not visible due to 14 preservational positioning. In situ teeth are usually only visible in labial view in articu­ lated skulls. Some teeth are visible in lingual view in partially disarticulated skulls. Measurements from total dentary tooth rows were not available in articulated skulls due to dentary occlusion (Colbert 1989). Premaxillary and anterior maxillary teeth often hide anterior dentary teeth, and the posterior tooth row was not visible at all with the maxillary tooth row overlapping the posterior-most dorsal margin of the dentary.

3.2 Equipment used for data collection Data were collected using Marathon (CO 030150) electronic digital calipers for measurements of tooth morphology, skull element lengths, and femur lengths. Measurements were taken in millimeters from each visible tooth position. An Olympus SZ61 dissecting scope with ocular micrometer was used where teeth were inaccessible to digital calipers and for small-scale measurements. Digital pictures were taken of each tooth with an Olympus C5060 5.1 megapixel camera and a Pentax Optio W30 7.4 megapixel camera. Line drawings were completed by tracing digital photographs using a Manhattan drawing tablet.

Data were processed in Excel 2003 spreadsheets and Paleontological Statis­ tics software (PAST) version 1.78 (Hammer et al. 2001). The PAST program is constantly revised so the most current version available of PAST will be more up-to- date than the version used for these analyses, although the results of analyses from different versions of PAST do not differ.

3.3 Data collected Teeth were measured using the parameters established by Currie etal. (1990), and Sankey etal. (2002), and Smith and Dodson (2003) (Figure 1.1, Table 1.1). Where possible denticle measurements were collected from unworn, unbroken 15 denticles near the middle of the denticulate portion of the carinae. Denticle counts were collected over a distance of 0.50mm rather than 1. 0mm or 5.0mm (as in most other studies) due to the small size of C. bauri teeth and denticles. Refer to Figure 1.1 and Table 1.1 for descriptions of the measurements taken. Crown angle (CA), or apex displacement of Smith (2005) was calculated

using the Law of Cosines: 2 2 2 Angle (8) = arcos (a + b - c /2ab), with a = for-aft basal length (FABL), b - crown curvature (Curv), and c = crown height (CH). Tooth positions are designated as originating from the left (I) or right (r) premaxilla (P), maxilla (M) or dentary (D), followed by the alveolus number. Alveoli are numbered from 1 to n in the anteroposterior direction, with "1" being the most anterior alveolus of the tooth row in the tooth-bearing element. Tooth bearing ele­ ments often have visible alveoli but do not display whole tooth crowns due to either

180

160

140 AMNH 722$ 120 q AMNH 7227; AMNH 7228 100 AMNH 7241 X ....!..P.AMNH72ba..

80 tMP 84i63.1-t o DMN 39022 o * AMNH 7236 60 £ NMMNH P-42200 AMNH 7242 i 40 AMNH 7231! 20 X* MNA V3315 v MNAIV331S 60 80 100 120 140 160 180 200 220 Skull length (mm)

Figure 3.1: Size plots showing a sample ontogenetic series using length vs. element length for whole C. bauri skulls in study. The separation of the small skulls AMNH 7242 and MNA V3318 to the left, and the large skulls AMNH 7228 and AMNH 7240 to the right, from the central skull grouping represents arbitrary breaks in what would otherwise be a continuous growth series.

16 preservation factors or tooth replacement processes. In these cases, data were still collected for FABL, crown basal width (CBW), and inter-alveolar distance (IAD), and observations on cross-sectional shape for these tooth positions. However, the qualifiers "adult" and "juvenile" were determined based on grouping of skull size (Figure 3.1), though the qualifiers used to make such assignments in a sample that represents a continuous ontogenetic range are somewhat arbitrary (Tykoski and Rowe2004).

3.4 Description of statistical analyses Analyses performed using PAST version 1.78 were basic descriptive univariate statistics and multivariate analyses (principle component analysis, dis­ criminate analysis, canonical variate analysis) on non In- and In-transformed data. Prior to bivariate and multivariate analyses, the dataset was tested using the Shapiro-Wilk test to determine if the sample data were collected from a population with a normal distribution (Sokal and Rohlf 1995; Hammer and Harper 2006). Reduced major axes (RMA) correlations of bivariate relationships were con­ ducted using PAST version 1.78. While RMA and linear regression bothfit bivariate data to a straight line, RMA was chosen for this study as it does not assume the dependence of one variable on another, and reduces the errors of both x and y (Hammer and Harper 2006). Missing data were not mathematically reconstructed, which avoids possible reductions of non-ontogenetic variation (Dodson 1975; Smith 1998) and avoids exaggerating the eigenvalue of the first principle component in morphometric analyses (exaggerating variation attributed to size) (Smith 1998). Prior to bivariate and multivariate analyses, all measurements were log transformed (unless otherwise stated) to reduce the influence of absolute size (Atchley etal. 1976), and to reduce the effects of possible heteroscledacity (heterogeneity of vari­ ances) (Sokal and Rohlf 1995). 3.5 Description of multivariate analyses Multivariate analyses conducted include principle component analysis (PCA), discriminant analysis, and canonical variant analysis (CVA). PCA is the two- dimensional projection of multivariate data to identify the components that account for the maximum amount of variance in the data (Hammer and Harper 2006). The first principle component represents variation due to size, and is usually the largest principle component in terms of percentage of total variance within the sample (Hammer and Harper 2006). PCA was used to find the percentage of total variation (variance) each measured variable or combinations of variables contributes to the total variation in the dataset. Discriminant analysis projects a multivariate dataset down to one dimension in a way that maximizes separation between two a priori separated groups (Hammer and Harper 2006). The analysis is based on a function (Z) formed by the equation Z = yiXi, which is the linear function of each variable used in the analysis (Sokal and Rohlf 1995). This is a useful tool for testing hypotheses of morphologic similarity or difference between two groups. A 90% or greater separation between two groups is sufficient support for the presence of two taxonomically distinct morphotypes (Ham­ mer and Harper 2006). Skulls were divided a priori into two groups based on size for the purposes of the discriminant analysis (Figure 3.1). Discriminant analysis was used to test similarity between teeth in juvenile- and adult-sized skulls, and between teeth from tooth bearing elements (premaxilla to maxilla, premaxilla to dentary, and maxilla to dentary). CVA performs a similar function to that of discrimi­ nant analysis, but three or more groups are determined a priori in the dataset (Ham­ mer and Harper 2006). CVA was used to visually evaluate differences among pre- maxillary, maxillary, and dentary teeth. DMNS 31256, an incomplete, partially exposed tooth-bearing element, was removed from analyses that required accurate tooth-bearing element identification. This is because it could not be confidently identified as either a maxilla or dentary. Inter-alveolar distance (IAD) was also removed from the analyses, even though it was the second-most common measurement collected (N = 364). How­ ever, IAD is not an available measurement for shed theropod teeth, and was re­ moved to avoid masking the variance contributed by the remaining data.

3.6 Measurement and anatomical abbreviations Measurement abbreviations are ACL, anterior carina length; ACDL, anterior carina denticulate length; CA, crown angle; CBW, crown basal length; CH, crown height; Curv, crown curvature; FABL, fore-aft basal length; H, denticle height; IAD, inter-alveolar distance; L, denticle length; PCL, posterior carina length; PCDL, posterior carina denticulate length; and W, denticle width. Refer to Figure 1 and Table 1 for a schematic of measured variables. Anatomical abbreviations are D, dentary; M, maxilla; P, premaxilla; I, left; and r, right.

19 4.0 RESULTS

4.1 Description of Ghost Ranch C. bauri teeth

4.1.1 Overall description Unless otherwise stated, the following description is characteristic of all teeth in the C. bauh sample. Fore-aft basal length (FABL) was the most common measurement collected for each tooth position (71.3%, N = 605).

Teeth from C. bauri are laterally compressed, with the largest average crown basal width (CBW) found in premaxillary teeth (1.54mm). Maxillary teeth have a larger average FABL, crown height (CH), and crown angle (CA) than do teeth from the premaxillary and dentary (Table 4.1). Teeth exhibit a wide range of crown curva­ tures from weakly (97.3 degrees) to strongly (26.6 degrees) curved. Maxillary teeth are on average more curved (61.2 degrees) than premaxillary teeth (74.3 degrees), but are similar in average curvature to that of dentary teeth (62.2 degrees).

Anterior carinae, when present, average 72.7% of the length of the crown angle length (Curv) and range from 0% (on premaxillary and most anterior dentary teeth) to 100% (for the most posterior tooth positions in the maxilla and dentary). When present, anterior and posterior carinae are finely serrated (average serration anteroposterior length 0.10mm). Denticles of the anterior carinae have an average smaller width (LAD-W), length (LAD-L), and height (LAD-H) (LAD-W = 0.053mm, LAD-L = 0.088 mm, LAD-H = 0.090 mm) than those of the posterior carinae (largest posterior denticle width = 0.10 mm, largest posterior denticle length = 0.10 mm, largest posterior denticle height = 0.10 mm). Denticles are on average higher than long or wide, and are rounded in lateral profile (Figure 4.1).

20

I w i i

e Minii uinu Maximum .DEV iber | | Element Dim ension Me1 a CO CO t*- m co o> o 6 d d h- O o o CO T^ ^- CO © o T- d 0 CO r- in CM O Premaxilla FABI_i c c c IAD c cooo>oioif>oo> •* CMx-^ CMIOIDi-COCMCMCO C OOOOOOOO C ^^doiciridT-' OOOHCS«IOOO JOfflUrOOO C Nr«Ml)rOO* rNOr^ddri rNIONOOOS ooooooooo> oioico'i^^iridio I^O)OCMO)OOI*- CMOOCOOCMOO> OOOCOOOOO C (onifl(M*moN h-^Ot^COOOO C OOOO<<0-Q._l X CO 5 JS 23 j m co CO COCOCOOCOCOOOCO T-IOOOOlO^r-CM NO^IOCONOOO (ON(00<0(DO)0) CM CMOt^CMCMCMC NOti-OOrN Moa^onioia CDCMCO^COT-COCO omocooococoo OCOOCOOOOO T- CO ^co'cMcbcbodoid W^COCMOOOO OOOOOOOO i-;cocMCN!qcqc\jir e»ir>o*o>*-o>cM d^dddddd OOOO<<0-£L I =CO Dentary 0 > 1 If) COT-M CM 3l»-If)O*•» WNIOi-r O co r-^iif) O O C •«-: d^Ti if) CM•*cor«-i^ 0) If*CO •^ OCD*•>- If) COM^ CO 0)M O) CM*- •^ dCM o icCM o i•<* od r--r-T 0 IOC CO ^M d 0 O T- CO ) CO )r odd 000 CO CO B^x = S5 CO If) CO d E "CJ *-»* til I to j2a> 1 ill (On" CO = £ P a>c CO °) c E 3 E E BO x ®" CO £±5 - c t| •§ 03 to ill IS fji Q or .Ewe JD .Q< £ 8C ^ CO rf CDto Jio in g£ § 8 Q-T3 m O(U u--C Q. Figure 4.1: Photograph of NMMNH P^44555 left maxillary tooth M5 anterior denticles, labial view. Scale = 1.0mm.

4.1.2 Premaxillary and anterior dentary teeth Premaxillary and anterior dentary teeth are round to sub-round in cross section, with an average fore-aft basal length (FABL) to crown basal width (CBW) ratio of 1.50 (N = 10) for premaxillary teeth. They are on average more rounded in cross section than anterior dentary (D) teeth D1 - D5, which have an average FABL/CBW ratio of 1.63 (N=10). Premaxillary and anterior dentary teeth in juvenile-sized skulls usually lack anterior and posterior carinae and serrations (Colbert 1989), but serrations are present on the posterior carina of DMNS 39022 left (I) premaxillary (P) tooth P4 and AMNH 7240 right (r) P3 (Figure 4.2), and (contra Colbert 1989) on the anterior and posterior carina of NMMNH P-50529 rD4. The denticles are within the size range observed on denticulate teeth of the maxillae and dentaries. Four skulls (AMNH 7242, MNA V3318, NMMNH P-42200, TMP 1984.63.1-1) possess premaxillary and anterior maxillary and dentary teeth with longitudinal ridging (Figures 4.3 - 4.5, Table 4.2) The isolated premaxillary tooth crown associated with skull NMMNH P- 44551 is also longitudinally ridged.

22 Figure 4.2: Line drawing (left) and photograph (right) of premaxillary tooth P3 of C. bauri specimen AMNH 7240 showing denticles on the posterior carina. Scale = 2.0mm.

4.1.3 Mid-tooth row maxillary and dentary teeth Maxillary teeth from the middle of the tooth row have a morphology that is consistent with the overall tooth morphology described in 4.1.1. Mid-tooth row maxillary tooth positions M1 - M9 are the largest teeth in

Specimen Figure 2 order Most posteriori ridged maxilla tooth Most posterior ridged dentary tooth

MNAV3318 1 M4 Not visible AMNH 7242 2 M2 Not visible AMNH 7231 3 No ridged teeth observed No ridged teeth observed TMP 1984.63.1-1 4 M5 D3 AMNH 7230 5 Teeth missing Teeth missing AMNH 7241 6 No ridged teeth observed No ridged teeth observed NMMNH P-42200 7 M1 D6 DMN 39022 8 No ridged teeth observed No ridged teeth observed MNAV3315 9 No ridged teeth observed No ridged teeth observed AMNH 7227 10 No ridged teeth observed No ridged teeth observed AMNH 7239 11 No ridged teeth observed No ridged teeth observed AMNH 7228 12 No ridged teeth observed No ridged teeth observed AMNH 7240 13 No ridged teeth observed No ridged teeth observed

Table 4.2; Ontogenetic series of C. bauri skulls with longitudinal ridged teeth from Figure 3.1. M, maxilla; D, dentary.

23 Figure 4.3: Photograph (top) and line drawing (bottom) of C. bauri specimen TMP 1984.63.1-1, left lateral view, showing longitudinally ridged maxillary teeth. M, maxilla; D, dentary; Dt, uncertain dentary tooth position; r, right. White, tooth crowns; light grey, skull elements; dark greys, sediment. Scale = 3.0mm.

24 I > > •>">':; i • i i i i i i i i i i • i i » i i i i i i i i i i i i I I I I 1 1 I I

Figure 4.4: Photograph (top) and line drawing (bottom) of C. bauri specimen NMMNH P-42200 left lateral view of longitudinally ridged premaxillary, maxillary and dentary teeth. P, premaxilla; M, maxilla; D, dentary. White, tooth crowns; light grey, skull elements; dark greys, sediment. Scale = 5.0mm. the skull. Posterior maxillary and dentary teeth have fore-aft basal lengths and crown heights, and are the most recurved (Figures 4.6 - 4.7). Maxillary tooth positions M6 - M20 have on average larger fore-aft basal lengths (FABL) and crown heights (CH) (FABL = 3.00, N = 175; CH = 4.10, N = 104) but have on average a smaller FABL/CH ratio (FABL/CH = 0.84, N = 89) than do dentary teeth D6 - D20 (average FABL = 2.60, N = 106; average CH = 3.73, N = 34; average

25 Figure 4.5: Photograph (top) and line drawing (bottom) of C. bauri specimen MNA V3318 premaxilla and anterior dentary, rostral view, showing longitudinally ridged premaxillary teeth. P, premaxilla; D, dentary; r, right; I, left. White, tooth crowns; light grey, skull elements; dark greys, sediment; stippled, missing. Scale = 5.0mm. FABL/CH = 0.87, N = 28).

4.1.4 Posterior maxillary and dentary teeth Posterior maxillary and dentary tooth positions 21 through 28 have a propor­ tionally larger fore-aft basal length (FABL) than crown height (CH), giving the teeth a squat, triangular shape (Figure 4.7). Comparing the average FABL/CH ratio for anterior and posterior tooth positions, the FABL/CH ratio for maxillary (M) teeth M21 - M27 (FABL/CH = 1.03, N = 13) and teeth D21 - D28 (FABL/CH = 1.31, N = 4) is higher than the FABL/CH ratio of the anterior and mid-skull teeth (M: FABL/CH = 0.765, N = 14; D: FABL/CH = 0.714, N = 53).

4.1.5 Longitudinally ridged teeth in C. bauri The specimens described below are presented in the order they appear in Figure 2. MNAV-3318 has ridged teeth in positions IP2 and rP1 - P2 of the pre- maxilla, and rM2 and rM4 of the maxilla (Figure 4.5). Other teeth in the premaxilla are either incomplete or not visible. In AMNH 7242 weak ridges were present on the crowns of tooth positions of the right maxilla M1 - M2. Ridges are more promi­ nent towards the apex of the crown. There was no ridging observed on the tooth crowns posterior to tooth position rM3. Apparent weak ridging was also observed on the partial crown in the left maxilla IM5, though the ridging may be due to colour striations in the tooth enamel and not structural. There are no teeth preserved in maxilla positions IM1 - M4. TMP 1984.63.1-1 preserves ridged teeth in premaxilla positions IP1, maxilla IM1 - M5, and dentary ID3. Teeth are either missing or hidden for premaxillary teeth IP2 - P4 and dentary teeth ID1 - D2 (Figure 4.3). Skull NMMNH P-42200 has ridged teeth in premaxilla teeth IP1 - P4, rP1 - P4, maxilla tooth IM1, and dentary teeth ID1 - D6, and rD1 (Figure 4.4). Maxillary tooth IM2 is not ridged, and the crown in position IMS was not preserved. There are no ridged Fore-aft basal length (FABL) positional variation in C. bauri

4.5

4

3.5 II 111 T. 3 „ " I. i- nil "llll ,„"ll"ll "' " FABL (mm)z.5 I ii.. "II 2 , |L II "+- .n. --f--H- 1.5 • T +1 iTt] II 1 1 + 0.5 -

^«*-m«or-«*-«io^.<»^-rttf»t»*-mw>r-tt*--««nr--a>»-rti4>r*

Tooth Position

Crown basal width (CBW) positional variation in C. bauri

3.5

3

2.5

2 CBW(mm 1.5 '^IA • ST ' ;^t M 1 F. 0.5 >n? i '

0 i i i i i i i i i i i t i E X X 3C Tooth Position

Figure 4.6: Positional variation and average fore-aft basal length (FABL) (top) and crown basal width (CBW) (bottom) for all specimens, +/- one standard deviation. Zero values indicate tooth positions for which data were not available. P, premaxilla; M, maxilla; D, dentary. crowns posterior to position IM4.

4.2 Individual variation in the teeth of C. bauri C. bauri skulls have variable tooth numbers in relation to tooth-bearing element size, with the exception of the premaxillae: regardless of tooth row length, 28 Crown height (CH) positional variation in C. bauri

lU

y

o

/ II D II 1 1 n • JL 1 ' II o II 1 II n CH{mm) i II II •I " II II • H 1 1 II II II _ n n • II ll " 1 .1 " II II + •I • z T" + •

, r-eo*-co>ni*-o»T-(owt"-o>;r-rtiri£;,-cowr*.T-rt '>'^ u l_£L5S5SS,-T"*",~,~c>'c>'t>'CM(-iOnrin»-T-T-«-«-CNJWO*CM

Tooth Position

Average crown angle (CA) positional variation in C. bauri

• • •• • - •• • • • ... • •- •• • •- .- • .-• .". •

CA (degrees) • • •

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 •! 1 1 1 1 !•!•! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1WI •!!I I Ml 1 • co Ul l^ en CO U) h~ CN CN Cy s s s s 555558 o o o Tooth Position

Figure 4.7: Positional variation in average crown height (CH) +/- one standard deviation (top) and average crown angle (CA) (bottom) in all specimens of C. bauri. Crown angles of zero show tooth positions for which data were not available. P, premaxilla; M, maxilla; D, dentary. C. bauri premaxillae invariably possess four teeth. The dental formula range (num­ ber of premaxillary alveoli + number of maxillary alveoli/number of dentary alveoli) for skulls with complete tooth-bearing elements is P4 + M13 - M28/D17 - D27. Average fore-aft basal length, crown basal width (Figure 4.6), crown height and crown angle measurements (Figure 4.7) were plotted for each tooth position 29 NMMNH P42200: FABL positional variation for C. bauri, small specimen

3 - •

2.5 • • • 2 • • FABL (mm) • • • • • • • • 1.5 - • • • • • • • • • • • • 1 • • • • 0.5

P1 P3 M1 M3 M5 M7 M9 M11 M13 M15 M17 M19 M21 D2 D4 D6 08 D10 D12 D14 D16 D18 D20 Tooth Position

AMNH 7240: FABL Positional variation for C. bauri, large specimen

. •

• •+•• • i * • • I • • • V T- • FABL (mm) 3 • • • Li. + ' • i T • • •

P1 P4 M3 M6 M9 M12 M15 M18 M21 M24 D3 D6 D9 D12 D15 D18 D21 D24 D27 Tooth Position

Figure 4.8: Positional variation forfore-aft basal length (FABL) in C. bauri specimens NMMNH P- 42200 (small, top) and AMNH 7240 (large, bottom) +/- one standard deviation. The largest maxillary and dentary tooth position shifts posteriorly as skulls increase in size. Zero values indicate tooth positions for which data were not available. P, premaxilla; M, maxilla; D, dentary.

30 RMA on bivariate comparisons Slope (k) Intercept (b) Correlation coeff Icent (r2) Number

In-skull length vs. In-femur length with Colbert (1989) data 0.488 1.140 0.834 8 In-skull length vs. In-femur length 0.361 1.396 0.808 6 In-FABL vs. In-PCL 1.361 0.013 0.723 115 FABL vs. PCL 1.900 -1.025 0.721 115 Skull length vs. average FABL 0.010 0.855 0.576 13 In-skull length vs. In-average FABL 0.766 -1.282 0.480 13 In-TBE length vs. In-average TBE FABL 0.295 -0.147 0.460 35 In-dentary length vs. tooth number 15.924 -8.350 0.434 9 Dentary length vs. tooth number 0.093 13.892 0.299 9 In-FABL vs. In-CH 1.244 0.110 0.283 296 In-FABL vs. In-CBW 1.043 -0.347 0.277 113 In-PCL vs. In-PDL 0.436 -1.243 0.276 96 In-maxilla length vs. tooth number 28.140 -32.704 0.234 14 Maxilla length vs. tooth number 0.151 7.937 0.227 14 PDCLvs. PCL 0.013 0.050 0.195 96 FABL vs. CBW 0.463 0.021 0.181 113 FABL vs. CA -10.974 90.065 0.139 204 In-FABL vs. CA -58.624 83.590 0.136 204 FABL vs. CH 1.966 -0.799 0.062 296 In-skull length vs. FABL/CBW 5.532 -9.983 0.004 76 Table 4.3: Reduced major axis (RMA) results for bivariate comparisons on tooth and skull dimensions of C. bauri. See Figure 1.1 and Table 1.1 for a description of abbreviations. following the format of Smith (2005). Much of the variation in tooth crown morphol­ ogy for T. rex is due to positional variation (Smith 2005). The positional variation graphs (Figures 4.6 - 4.7) show the heterodonty described for C. bauri by Colbert (1989,1990). The largest crowns are in maxilla positions M3 - M13, while the crowns in positions M15 - M28 become progressively smaller. Premaxillary and dentary teeth show less positional variation than do maxillary teeth. The largest average crown sizes for fore-aft basal length (FABL) are seen in positions M5 and D19 (Figure 4.6), and positions M9 and D5 for crown height (CH) (Figure 4.7). Heterodonty is seen in both small and large skulls. Positional variation graphs (Figure 4.8) were constructed for specimens AMNH 7240 (large skull) and NMMNH P42200 (small skull). The largest maxillary tooth in AMNH 7240 is M11, and the largest dentary tooth is D19. The largest maxillary tooth in NMMNH P-42200 is M7 and the largest dentary tooth is D14. The largest tooth position shifts posteriorly as skulls increase in size.

4.3 Patterns in C. bauri tooth replacement Tooth development in the study specimens follows the same general pattern 31 280

260

240

I20

^^ ^TZ? poLo

&80

160 ,a7227 *aT22S

140 *p42200 - 120 4i7230*

100 1 1 30 90 120 160 180 210 240 270 PraraidQa - quadrate tangth(ifflnn l

: '. 1.12H ; • ; ; • ! ; : -^ \ a 96 •y^ i •. : ; ; : 0.8 L X X •*K .: . .. -'o . ; • x"'> X : a 64 : ; * i i i >^K ; ; ; o 0 • y ;«° : 0.48 •• X. • + ^'+ + * : : ; : ; i * 0.32- • y ,A : o •*--^g. v i :.... + : * ni 0.16- ; ! •^i y - % B : ^y * : 0- y * * /'I •r>i - / -0.16- y'

-0.3?- i i i 1 i '• i i i i 0.3

In-FABL

Figure 4.9: Reduced major axis (RMA) of In-skull length vs. In-femur length (top) including data from Colbert (1989), and In-fore-aft basal length (In-FABL) vs. In-posterior carina length (In-PCL) (bottom) for C. bauri in study. Refer to Table 4.3 for RMA best fit line equation compo­ nents. 32 Variable W p(normal) N Proportion of dataset

FABL 0.985 5.80E-06 605 0.713 CH 0.977 4.32E-05 322 0.380 Curv 0.982 0.005048 233 0.275 LPD-L 0.893 1.02E-11 231 0.272 LPD-H 0.842 4.63E-14 216 0.255 LAD-L 0.866 3.98E-12 196 0.231 LAD-H 0.895 3.52E-10 186 0.219 CBW 0.953 0.0002439 127 0.150 PCL 0.971 0.01098 119 0.140 PCDL 0.944 0.0003182 101 0.119 ACDL 0.882 8.30E-07 88 0.104 ACL 0.964 0.01642 87 0.103 LAD-W 0.707 0.007345 6 0.007 LPD-W 0.981 0.9055 4 0.005

Table 4.4: Shapiro-Wilks normality test results of C. bauri sample. All variables were collected from a sample whose population has a not non- normal distribution (p < W). W, Shapiro-Wilks test statistic; p(normal), probability; N, number of teeth that have measured variable. Refer to Figure 1.1 and Table 1.1 for measurement abbreviations.

as seen in other vertebrates with tooth bearing elements (Kardong 1995; Smith 2005; Caldwell 2007). The existing tooth crown develops a re-absorption pit on the lingual surface, and the replacement crown develops in the pit on the posterolingual surface of the alveolus. The long axis of the replacement tooth shifts so that it is perpendicular to the tooth row. The replacement tooth continues developing until the alveolus is filled. In reference to the "zigzag" pattern of tooth replacement observed in mosasaurs by Caldwell (2007), stages l-l V were not visible in any of the speci­ mens.

4.4 Regression results Reduced major axis (RMA) regressions performed on bivariate comparisonsdo not show strong correlations (Table 4.3). The strongest correlation was between In- length to In-femur length (r = 0.83, N = 8), with skull length 33 ..#.. I AT..1. .!*-' '*x' '- «'"«'* 9i .•.•*...*..».._.*"<* *•.

• x~ • _*• * !' ' B

X- * I ' *" "" L .T'"« n

: ••••••• • •* D • * V'»o " * • x •

* *

•0J6 4.24 4.12 0 0.12 0.24 0.36 0.48 In-FABL

C C O ' O ^ O ..C.CD. ..£....'.g.^,,-^

'o--'

In-FABL

Figure 4.10: Reduced major axis (RMA) results for In-fore-aft basal length (In-FABL) vs. In- crown height (In-CH) (top), and In-FABL vs. In-crown basal width (In-CBW) (bottom) for all study specimens of C. bauri. Refer to Table 4.3 for RMA best fit line equation components.

34 -0.36 -0.24

;B 26 a7228lm 5 a7227ln • a7239lm 26 a7239rm •

2+ iaCT v-&7240rm *^ : mv3315lm 22 Ms46311lrri

*>42200lm ^0* k> 18 d39022rm : 18463131m i a7242rmj_ j 16 a7242>r-

14 \ X a7241nn 12

1.86 ia In-Element Length

28 O a7240 26 en p505i 9 1^.

34 c r7240 d39022 i t84631-3 22 a7227 ° A i O mv3315 5 20 | ^^_---"p4220O I* a7231 ^ """ 16

14

12

KM ' i i , In-Dentary Length

Figure 4.11: Reduced major axis (RMA) comparisons for C. bauri of In-fore-aft basal length (In-FABL) vs. crown angle (CA) (top); In-maxilla length vs. number of tooth positions (middle); In-dentary length vs. number of tooth positions (bottom). Refer to Table 4.3 for RMA best fit line equation components. 35 increasing with negative allometry compared to femur length (k = 0.36) (Figure 4.9). The next strongest correlation was between In-fore-aft basal length (FABL) vs. In- 2 posterior carina length (PCL) (r = 0.72). FABL increases in size with positive allometry (k = 1.4) when compared with PCL (Figure 4.11). There is weak correla­ tion (Figure 4.10) for In-FABL vs. In-crown height (In-CH) (r2 = 0.28, k = 1.24) and In-FABLvs. In-crown basal length (In-CBW) (r = 0.27, k= 1.04). Both crown height and crown basal length increase in size with positive allometry with fore-aft basal length. Comparing In-FABL to crown angle (CA) (Figure 4.11) shows a strong negative allometry (k - -58.6) and a low coefficient of determination (r = 0.136). Tooth number increases with negative allometry when compared to an increase in tooth row length in maxillae and dentaries (Table 4.3). Conversely, tooth number increases with positive allometry when comparing with In-tooth bearing element length (Table 4.3). There is a lower correlation between In-maxilla length and tooth number (r = 0.234, N = 14) than between In-dentary length and tooth number (r = 0.434, N = 9) (Figure 4.11).

4.5 Multivariate results

4.5.1 Normality and specimen variation Shapiro-Wilks analysis on the dataset shows that data for each dimension were falsified as having a non-normal distribution (Table 4.4). Principle component analyses (PCA) on In-transformed data do not show a distinct separation of any specimen based on variation within the dataset (Figure 4.12, Tables 4.5 -4.6). Principle component (PC) 1 (size) accounts for 44.0% of the variation within the dataset. PC2 interpreted as the crown height (CH) - fore-aft basal length (FABL) difference variance (13.4%), and PC3 is interpreted as the variation contributed by the CH and FABL/crown curvature and carinae lengths difference (10.3%). 36 Principle Component

Variable 1 2 3 4 5 6

FABL 0.479 -0.850 0.0465 -0.0834 0.00635 -0.00749

CH 0.545 0.420 0.577 -0.157 0.0546 -0.238

Curv 0.470 0.132 0.0335 -0.0253 -0.179 0.411

CBW 0.027 -0.141 0.0977 0.0420 -0.114 -0.583

ACL 0.184 0.103 -0.344 -0.288 -0.0551 0.156

ACDL 0.197 0.148 -0.589 -0.526 -0.0487 -0.313

PCL 0.299 0.152 -0.245 0.328 -0.113 0.0581

PCDL 0.267 0.0900 -0.342 0.696 -0.0183 -0.199

LAD-W 0.000787 -0.160 0.0270 0.0442 0.0116 0.0471

LAD-L 0.0583 0.0213 -0.0879 -0.0119 0.790 -0.221

LAD-H 0.0389 0.00640 -0.0235 -0.0482 0.331 0.326

LPD-W 0.000450 -0.00207 0.00122 0.000151 -0.00379 -0.00219

LPD-L 0.103 0.0072 -0.0236 0.101 0.395 0.0331

LPD-H 0.0629 0.000246 -0.0478 0.0129 0.209 0.333

Table 4.5: variable loadings for the first six principle components (PC) of the principle compo­ nent analysis on all measured variables. FABL, fore-aft basal length; CH, crown height; Curv, curvature; CBW, crown basal length; ACL, anterior carina length; ACDL, anterior carina den­ ticulate length; PCL, posterior carina length; PCDL, posterior carina denticulate length; LAD, largest anterior denticle; LPD, largest posterior denticle; H, denticle height; L, denticle length; W, denticle width.

Principle components 4 though 14 account for the remaining 32.4% of the variation (Table 4.6). AMNH maxilla position rM14 and NMMNH P-42200 maxilla positions IM14-IM21 appear as outliers (low x and low y values) in PC1 vs. PC2. AMNH 7240 dentary positions rD5 and ID6 appear as outliers in PC1 vs. PC3 (high x, low y), and AMNH 7239 maxilla positions IM4, IM5, IM9, and rM3 (lowx, high y) appear as outliers in PC2 vs. PC3 (see Ontogenetic change and C. bauri teeth in the Discussion section).

37 -06 -0.3 Component 1

0.48- •

0.36- D K. * • 0 • 0

0.S- * 0.12-

c 0- ••.••** v v ** »i»&l, C»= <> ^ :j * * * &••• va *fc«HW * * flr-P && 0.12- * * « . "wan* S« o • + o 4.24- * a • 0.36- a • a X \ 0.48- \ FAH.

-0.6 -0.3 Componoit 1

Figure 4.12: Principle component analysis graphical results for C. bauri dataset, PC1 (size) vs. PC2 (CH-FABL difference) (top), and PC1 vs. PC3 (CH-FABL/Carinae length difference) (bottom). PC1 (size) accounts for 44.0% of the variation in the dataset.

38 PCA Results-All data Eigenvalue % variation Variation Description

PC1 0.0482393 43.956 Size PC2 0.0146526 13.352 CH-FABL difference PC3 0.0112886 10.286 CH-FABL/CAL-Carinae length difference PC4 0.00762554 6.948 PC5 0.0060556 5.518 PC6 0.0042087 3.835 PC7 0.00409492 3.731 PC8 0.00360456 3.285 PC9 0.00325119 2.963 PC10 0.00253536 2.310 PC11 0.00184395 1.680 PC12 0.00153361 1.397 PC13 0.000742635 0.677 PC14 6.80E-05 0.062

Table 4.6: Principle component analysis (PCA) results for C. bauri dataset, inter-alveolar dis­ tance (IAD) excluded.

As fore-aft basal length (FABL) increases, crown angle (CA) decreases as the tooth crown becomes more recurved. The affect of the variation contributed by carinae and denticle measurements is proportionally much smaller than that of FABL, crown height (CH), and crown curvature (Curv). In PC3, as CH increases there is a proportionally large decrease in FABL, with smaller increases in all other tooth measurements.

4.5.2 Separating teeth from the premaxillae, maxillae and dentaries Principle component analyses (PCA) on teeth categorized by their tooth- bearing element (premaxilla, maxilla, or dentary) show that while tooth dimensions do not greatly differ among premaxillary, maxillary, and dentary teeth, there are subtle differences (Figure 4.13). Maxillary teeth have a higher crown height (CH)/ fore-aft basal length (FABL) difference ratio than do dentary teeth. Premaxillary teeth fall roughly in the centre of the maxillary-dentary teeth grouping, but group more closely with dentary teeth. Discriminant analysis shows the morphologic similarity between premaxillary and maxillary teeth have a percent correctly identi­ fied score of 82.2%, and premaxillary and dentary teeth are76.2% correctly 39 Ip * •0.1-

os -a3 Companertl

a So. 16

«6 -tt3 Componertl

Figure 4.13: Principle component analysis graphical results for principle component (PC) 1 vs PC2 (top) and PC1 and PC3 (bottom) on C. bauriteeth from the premaxilla (blue), maxilla (purple), and dentary (green). There is no separation of teeth based on tooth - bearing element origin.

40 n rl

|.«H

Oncriniir»it

•acflmimn

Figure 4.14: Discriminant analysis graphical results on C. bauri tooth data coded from the pre- maxilla (blue), maxilla (purple), and dentary (green). Premaxillary - maxillary teeth 82.2% cor­ rectly identified (top); premaxillary-dentary teeth 76.2% correctly identified (middle); maxillary- dentary teeth 62.6% correctly identified (bottom). The percent separation is not high enough to consider teeth from different tooth-bearing elements different morphotaxa.

41 -aie -aos Axisl

0 Axisl

Figure 4.15: Canonical variant analysis (CVA) graphical results of teeth of C. oauri from the pre- maxilla (blue), maxilla (purple), and dentary (green), showing a high degree of overlap of tooth morphology among premaxillary, maxillary, and dentary teeth (top), and the CVA showing the amount of variation contributed by each measured variable (bottom). Refer to Figure 1.1 and Table 1.1 for measurement abbreviations. identified (Figure 4.14). Discriminant analysis also shows there is considerable morphologic overlap between maxillary and dentary teeth, with a 62.6% correct identification of maxillary and dentary tooth positions (Figure 4.14). Canonical 42 Discriminant analysis comparisons Correctly identified (%)

TBE - Premaxilla and maxilla 82.2 TBE - Premaxilla and dentary 76.2 Ontogenetic - Group 1 and Group 3 73.1 Ontogenetic - Group 2 and Group 3 73.0 Ontogenetic - Juvenile group and adult group all data 70.5 Ontogenetic - Group 1 and Group 2 69.8 Heterodonty - Anterior maxillary vs. posterior maxillary teeth 65.9 Ontogenetic - Juvenile group and adult group, denticle density (per 0.50mm) 64.8 TBE - Maxilla and Dentary 62.6 Ontogenetic - Juvenile group and adult group, denticle dimensions only 60.1

Table 4.7: Discriminant analysis results of C. bauri comparisons and percentage of teeth cor­ rectly identified. Teeth from these groupings should have a percent correctly identified score of 90% or greater to be considered different morphotaxa (Hammer and Harper 2006). TBE, tooth- bearing element.

variant analysis also shows considerable overlap among the tooth positions from the premaxilla, maxilla, and dentary that follow the same trends seen in the principle component analysis (Figure 4.15).

4.5.3 Separating teeth from large (adult) and small (juvenile) specimens Bivariate plots of the 13 complete skulls with both dentigerous element and skull lengths available (Figure 3.1) show there are three groupings based on size within this data set. The skulls are listed in order from smallest to largest skull length in the sample ontogenetic series (Figure 3.1). Skulls AMNH 7242 and MNA V3318 fall in the smallest group (Group 1), skulls AMNH 7227, AMNH 7230, AMNH 7231, AMNH 7239, AMNH 7241, DMN 39022, MNAV3315, NMMNH P-42200, and TMP 1984.63.1-1 fall into an intermediate group (Group 2), and AMNH 7228 and AMNH 7240 fall into the largest group (Group 3).

Discriminant analyses performed on the teeth in skulls from Groups 1 and 2, Groups 2 and 3, and Groups 1 and 3 show the percentage of teeth correctly identi­ fied is not high enough to consider these three groups morphologically distinct (Table 4.7). Skulls in Groups 1 and 2, having the lowest percentage of separation,

43 0.48- +•

0.36- a -^ - .1- •^ -f a

o.»- 1- "'/-^

-i- a * *•%; £*<- 0.12- D

N a 1 1- + + t- + -1- j TSKB ,&,, =ti i- a a a H- 3- a ,5>o D 00.12 + + p + t. + •«*• 1 4-

-0.24 +

-0.36 a \

-0.48- \ \ FABL -0.6- *•• • ' " 1 -——.•• I... 1 • r • •••' T r ' • ' -0.6 -0.3 Canponenti

Figure 4.16: Principle component analysis graphical results for principle component (PC) PC1 vs. PC2 of teeth separated into juvenile-sized (red) and adult-sized (blue) groups, showing the relative amount of variation contributed by each measured variable. Refer to Figure 1.1 and Table 1.1 for measurement abbreviations. are grouped together as juvenile-sized skulls, and skulls from Group 3 are consid­ ered adult-sized skulls. The lengths of the tooth bearing elements in Groups 1 and 2 were used to classify partial skulls and isolated tooth bearing elements as juvenile- sized, and those in Group 3 for classifying adult-sized skulls for multivariate analy­ ses. Discriminant analysis on the skulls in the juvenile- and adult- sized categories shows 70.5% of correctly identified tooth positions (Figure 4.17). This percentage is not high enough to assign teeth from the two skull categories into two distinct morphotypes (Table 4.7). The teeth from juvenile- and adult-sized skulls fall into distinct clusters in PCA, but there is considerable overlap between the juvenile and adult groupings (Figure 4.17). The differences in proportions of tooth dimen­ sions between skulls in the juvenile and adult categories show that teeth from juve­ nile-sized skulls plot lower along PC1 (x-axis) than teeth from adult -sized skulls.

44 270-

240-

210-

180-

Siso- 1 120- I ! : II ! 90- I eo- ! I I

30- • 1 i i • II 0- —. • _•_M M •I--C3 i=-...=».. _ ! CEscrimirart iJ

Figure 4.17: Discriminant analysis on C. bauri teeth from specimens separated into small (juvenile) and large (adult) categories. Percent of teeth correctly identified = 70.5%. Teeth from these two groups can be considered the same morphotaxon.

4.5.4 Separating anterior and posterior tooth positions Certain tooth positions occur as outliers in PC1 vs. PC2, and PC1 vs. PC3. Teeth from juvenile-sized skulls that group together as outliers (low x-axis values) areAMNH 7242 (rM11), MNAV3315 (rM25), NMMNH P-42200 (IM14-M18, IM20 and IM21), andTMP 1984.63.1-2 (rD1) (Figure 4.17). Teeth from adult-sized skulls that group together as outliers (high x-axis values) are AMNH 7240 (rM4, rM9, and IM4), NMMNH P-42579 (rM9), NMMNH P-44555 (rM8), NMMNH P-50530 (IM3, IM5, IM7, IM8, rM5, nWand rM9), andTMP 1984.63.1-3(IM3, IM9, and IM11) (Figure 4.18). The outlying juvenile-sized teeth have a smaller crown height (CH) to fore-aft basal length (FABL) difference ratio than the outlying adult-sized teeth. Juvenile-sized teeth also have a lower FABL-CH/crown curvature and carinae length difference ratio than teeth in adult-sized skulls (Figure 4.18). To test whether the teeth mentioned above were occurring as outliers due to size or due to their position (anterior vs. posterior),discriminant analysis was performed on anterior (M1-M11)and 45 + +

+ $ + +• ++++ r

Tooth positions M3 - M11

Tooth positions M11 - M25, D1

Component 1

Tooth positions M3 - M11

Component 1

Figure 4.18: Principle component analysis (PCA) graphical results of PC1 vs. PC2 (top), PC1 vs. PC3 (bottom) of C. bauri tooth data with outlying tooth positions circled. posterior (M12 - M28) tooth positions in the maxilla for all skulls. Anterior and posterior tooth positions are similar enough to consider teeth from each group the same morphotype (Figure 4.19, Table 4.7) though a higher percentage of teeth were correctly identified in comparing juvenile- sized to adult-sized skulls (70.5%, 46 Discriminant

90 -t

80 - 1 M12-M28 Small

70 - >•••••••••*••••>.•>_...•..••%••••••••_ j m :±m\. Aduit ; 60 -

50 -

40 - 8 30 -

20 - - jM . u-:-l| ML -H

W ' ••• i bfi n i -2.4 -1.6 -0.8 0.8 1.6 2.4 3.2 Discriminant

Figure 4.19: Discriminant analysis graphical results comparing anterior maxilla teeth (purple) and posterior maxilla teeth (dark blue) for all observed skulls of C. bauri (top, percent correctly identified = 65.9%), and large skull (blue) tooth positions M1 - M11 to small skull (red) tooth positions M12 - M28 (bottom, percent correctly identified = 72.8%). The percentage of cor­ rectly identified tooth positions is low enough in both comparisions to consider the teeth from these two groups the same morphotaxon.

47 OSn

0-4- •

03- D ^'LADL • Q 0.2- _/ s*

« 0.1- %, "•' D *\ w' •:;' | * * 0 °" • * C D n -0.1- a m • ° * \ \ 0 -0.2- \ \ * 0 \ * \ • • -i \ s -0.3- \ \ LAQH LfOH

-0.4-

Component 1

0.4-

/LAD+t 0.3' / / a a a 0.2- a * / • --^"LADL 0.1- on

-0.3- \ \ -04- \LPDi .

-0.5-

Component 1

Figure 4.20: Principle component analysis graphical results of C. bauri denticle measurements for PC1 (size) vs. PC2 (height-length difference) (top) and PC1 vs. PC3 (anterior-posterior denticle size difference) (bottom), with relative amount of variation contributed by each measured variable. Refer to Figure 1.1 and Table 1.1 for measurement abbreviations.

Table 9).

4.5.5 Multivariate results for denticle measurements Principle component analysis (PCA) were conducted on denticle measure­ ments only, as analyses including all available measurements tend to mask the 48 460-

400-

350-

300H

t 200- • 190- i

100-

50 1 mm " ^p • 0.8 JuQscriminant

i I200'

-1.5 -1 0.5 Uscrtminart

Figure 4.21: Discriminant analysis graphical results of C. bauri denticles from juvenile (red) and adult (blue) sized skulls using denticle dimensions (top) and denticle density (bottom). Percent­ age of teeth correctly identified = 60.1 %. This percentage is low enough to consider the teeth from these two groups the same morphotaxon. influence of variation contributed by denticle proportions. Principle component (PC) 1 (size) contributes to 42.3% of the variation in the dataset, PC2 (denticle length - denticle height difference ratio) contributes 24.6% (Figure 4.20), and PC3 (anterior denticle - posterior denticle size difference ratio) contributes 17.4% of the variation in the dataset (Figure 4.20). PC4 though PC6 account for the remaining 15.7% of Principle Component Eigenvalue % variance Variation Description

PC1 0.00664686 42.299 Size PC2 0.00387139 24.637 Denticle length - height difference PC3 0.00273154 17.383 Anterior denticle - posterior denticle size difference PC4 0.00158244 10.070 PC5 0.00081297 5.174 PC6 6.88E-05 0.438

Table 4.8: Principle component analysis percent variance results on C. bauri denticle mea­ surements. the variation (Table 4.7). PC2 shows that, for some tooth positions in juvenile-sized skulls AMNH 7239 (IM13 and IM22, IM24), and MNAV3315 (rM1, rM2, rM8, rM17, IM3, IM6, rD10) the denticles on these teeth are generally smaller and have larger anterior denticles relative to posterior denticle size. The majority of denticulate teeth have anterior and posterior denticles that are roughly equal in size or have posterior denticles that are slightly larger than anterior denticles. This is a trend also found in the averages for denticle measurements for all tooth positions (Table 4.1). Discriminant analyses using the juvenile- and adult-sized groups shows that neither denticle dimensions nor denticle density provided enough separation to consider the two groups distinct morphospecies (Figure 4.21, Table 4.7).

4.6 Multivariate comparison of C. bauri teeth and teeth from Allosaurus sp.

The multivariate results on the C. bauri teeth suggest all of the study teeth come from a single (but highly variable) morphotaxon. Given that the C. bauri tooth sample has a large amount of morphologic variation, it is useful to know whether teeth from a morphologically and temporally distinct theropod taxon would be classified as a separate morphotaxon from C. bauri.

Isolated Allosaurus sp. teeth from the Upper Jurassic Morrison Formation (N = 7; DMNS 18364, four crowns; DMNS 21634, two crowns; DMNS41306,one

50 -0.4 D (U Component 1

1 720-

640-

560-

480-

320

240

160 Allosauws sp. teeth C.bauri teeth.

80

0- . . ! , _ , -• -,n ,,.ttJ..O—-in ...... ——»^ 1 •200 -160 -120 -80 -40 80 Discriminant

Figure 4.22: Principle component analysis graphical results (top) and discriminant analysis (bot­ tom) using C. bauri and Allosauws sp. teeth. In both analyses, C. bauri and Allosauws sp. teeth occupy different morphospaces, and the discriminant analysis shows a 100% separation between C. bauri and Allosauws sp. teeth. The 100% separation between the C. bauri and Allosauws sp. teeth is large enough to consider these tooth groups discreet morphotaxa. 51 crown) were analyzed with the C. bauriteeth (N = 848) using principle component analysis and discriminant analysis. In both analyses the C. bauri teeth group to­ gether in a morphospace separate from that occupied by the Allosaurus sp. teeth (Figure 4.22). Discriminant analysis also shows that the C. bauri and the Allosaurus sp. teeth are morphologically distinct (Figure 4.22), with 100% of the teeth correctly identified from the two groups. The 100% separation is high enough to justify clas­ sifying these two tooth groups as separate morphotaxa (Hammer and Harper 2006).

52 5.0 SYSTEMATIC PALEONTOLOGY

5.1 Revised dental description of Coelophysis bauri Theropoda (Marsh 1881) Ceratosauria (Marsh 1884) Coelophysoidea (Holtz 1994) Coelophysis (Cope 1889) C. bauri (Cope 1889)

Original Diagnosis: The original diagnosis of Coelurus bauri modified from Cope (1887, page 368) states "... the sides of the cervical centra are deeply and widely grooved on the posterior half, and the [dorsal] face of the neural arch is strongly grooved on each side of the anterior half. The femur is not so strongly grooved at the third trochanteric ridge."

Revised Diagnosis by Cope (1887, 1889): The first revision of the Coelurus bauri diagnosis was completed by Cope (1887) to rename the genus Coelurus to Tanystrophaeus. Cope (1889, page 626) later revises Tanystrophaeus bauri to Coelophysis bauri, and states that the skeletal material in question"... [differs] from Coelurus in the biconcave cervical vertebrae, and from Megadactylus in the simple femoral condyles..."

Revised Anatomical Description by Colbert (1989): "Four premaxillary teeth with rounded cross-sections; 23 to 26 laterally compressed, serrated, pointed maxillary teeth; 25 to 27 dentary teeth" (Colbert 1989, page 33). Refer to Colbert (1989, pages 33-34) for his complete revised osteological description of C. bauri.

53 Emended Dental Anatomical Description: Four premaxillary teeth with rounded cross-sections, with the variable presence of denticles on the posterior carina of premaxillary tooth P4; 13 - 28 maxillary teeth; 17 - 27 dentary teeth. The remaining anatomical description of C. bauri by Colbert (1989) is unchanged.

Remarks: The anatomical description of C. bauri is emended to account for the range of dental formulae exhibited by individuals at different ontogenetic stages. It is unclear which skull sizes Colbert (1989) referred to in the revised description. The emended description also accounts for the possibility of denticulate premaxil­ lary teeth, which differs from the description of the premaxillary teeth by Colbert (1989, page 71). The emended dental characters are not included in the diagnosis of C. bauri as they are not autapomorphies for this species, and the diagnosis remains unchanged.

54 6.0 DISCUSSION AND CONCLUSIONS

6.1 Amendments to Colbert's (1989) description of C. bauri dentition

6.1.1 Revised dental formula for observed C. bauri specimens Colbert (1989) presents ambiguous descriptions of the dental formulae of C. bauri, and it is uncertain whether he referred to specimens of similar skull size or several skull sizes when presenting the two formulae: 4 + 23 - 26/25 - 27 (Colbert 1989, pages 29, 33 and 68), and 4+22 - 26/? (Colbert 1989, pages 60 and 69). There was no explanation given for the discrepancy between the dental formulae. There is one additional maxillary tooth position (dental formula 4 + 13- 28/17 - 27) added to the previous maximum number of positions presented in dental formulae of Colbert (1989), while there were no changes to the maximum number of tooth positions in the premaxillae and dentaries.

6.1.2 Premaxillary teeth and denticulate carinae Denticulate premaxillary teeth occur in both the adult (AMNH 7240) and juvenile (DMN 39022) groups. The sample size is small (n = 2), but suggests that denticulate premaxillary teeth are not limited to C. bauri skulls of a certain size or ontogenetic stage. Observations made on the lack of serrations on premaxillary teeth by Colbert (1989) are revised to include the presence of serrations on pre­ maxillary tooth positions P3 and P4, although this was not observed for all speci­ mens. The presence of serrated carinae is considered the plesiomorphic state in theropods (Abler 1997; Smith 2005), and the absence of serrations in premaxillary teeth is often used for identifying isolated premaxillary teeth. For example, the absence of serrations has been used to identify shed tyrannosaurid teeth

55 recovered from the Upper Cretaceous Dinosaur Park (late Campanian) (Currie et al. 1990) and Hell Creek (late Maastrichtian) formations (Molnar and Carpenter 1989; Carpenter 1992) as belonging to Aublysodon sp. Thorough studies of tyrannosaurid skull anatomy show that the isolated, unserrated premaxillary teeth may be the result of ontogenetic or individual variation (Brochu 2003; Currie 2003; Holtz 2004; Carr and Williamson 2004), and do not support the validity of Aublysodon sp. Absent or reduced denticles on premaxillary carinae are listed as a feature common in the Coelophysoidea, and were used as a character in a phylogenetic analysis of halli (Carrano et al. 2005). Given Colbert's original de­ scription of C. bauripremaxillary teeth as unserrated (1989,1990), isolated pre­ maxillary teeth from C. bauri with serrations have the potential to be identified as a separate (though invalid) tooth taxon, as was once the case with Aublysodon.

6.2 Sexual variation and tooth morphology in C. bauri Results from the bivariate and multivariate analyses on C. bauri teeth corre­ spond with the multivariate analyses on C. bauri skulls of Smith and Merrill (2006) when they described a population composed of this single, but highly variable species. However, neither bivariate nor multivariate analyses on teeth reveal the two similarly sized "morphotypes" (gracile and robust) seen in the facial analysis of Smith and Merrill (2006), and previously documented by Colbert (1989,1990). Specimen AMNH 7227 was described by Smith and Merrill (2006) as being shorter and deeper than the other skulls in their sample, and it groups closer with kayantakatae than with other specimens of C. bauri. AMNH 7227 does not cluster distinctly in multivariate analyses based solely on tooth morphol­ ogy. The variables that separated the skull of AMNH 7227 from the rest of the C. bauri sample in Smith and Merrill (2006) would not cause any teeth shed from the

56 individual represented by AMNH 7227 to be misidentified as a distinct morphotaxon. This suggests that a highly variable theropod species may have teeth that are distinct for that taxon but also highly variable in morphology.

6.3 Variation and heterodonty in C. bauri The heterodont dentition seen in the C. bauri sample is characteristic of Coelophysoidea dentition (Tykowski and Rowe 2004), and is the source of much of the variation seen in the dataset. Anterior maxillary teeth are on average both larger in fore-aft basal length (FABL) and crown height (CH), and are more curved (Curv) than those of the premaxilla, posterior maxilla, and anterior dentary. The smaller tooth size seen in the anterior dentary is explained by the dorsal elevation of the anterior tip of the dentary above the rest of the dentary tooth row (Tykowski and Rowe 2004), giving dentary positions D1 - D4 less space for crown height. Posterior maxillary and dentary teeth have lower FABL/CH and FABL/Curv ratios, and anterior and posterior carinae are proportionally longer when compared to CH and Curv than for anterior maxilla and dentary teeth (excluding tooth positions D1 - D4). Variation in tooth morphology caused by heterodonty is ontogenetically inde­ pendent as seen by the low percentage of separation between tooth positions of juvenile- and adult-sized skulls in discriminant analysis. However, certain crown features are exaggerated by ontogeny (see "Ontogenetic change and C. bauri teeth" in this section).

6.4 Allometry and C. bauri teeth There is an overall trend of tooth dimensions growing with negative allom­ etry when compared to skull or dentigerous element dimensions, although an isometric relationship is observed in tyrannosaurids (Currie 2003). Premaxilla- quadrate skull lengths were plotted with available femur lengths, supplemented with 57 data presented by Colbert (1989), and resulted in the strongest correlation (r = 0. 83) seen in the C. bauri reduced major axes (RMA) results (Table 5). Skull length grows with negative allometry (k = 0.32) compared to femur length (Figure 3). The sample-size for this comparison is small (n = 8). As more specimens preserving both skulls and femora are prepared, sample size should increase and the results of this correlation will change. With so few femora associated with the study skulls, it was not practical to use femur length in any of the analyses. There is weak linear correlation among comparisons of tooth, individual element, and skull lengths in this sample. The highest coefficients of determination are in comparisons of fore-aft basal length to crown height, and fore-aft basal length to skull length: fore-aft basal length grows with negative allometry when compared to both crown height and skull length. Fore-aft basal length grows with positive allometry when compared to posterior carina length, but with strong negative allom­ etry when compared to crown angle. Changes in tooth and dentigerous element dimensions may be too interdependent to show informative trends in allometric change in C. bauri, though RMA takes this assumption of interdependences be­ tween "x" and "y" variables into account when calculating regressions (Hammer and Harper 2006).

6.5 Ontogenetic change, sexual variation, and C. bauri teeth Discriminant analysis shows that there is little difference in tooth morphology between the juvenile- and adult-sized skulls, with a less than 90% separation of tooth positions. Results from both principle component and canonical variant analy­ ses show that teeth from juvenile- and adult-sized specimens form distinct group­ ings. However, there is such a high degree of overlap between the two groups that only the data points at the extreme ends of the cluster along the x-axis are distinct. Tooth positions from the juvenile-sized skulls that fall into outlier positions of 58 positions, posterior maxillary teeth (M11-M26), and anterior dentary teeth (D1 - D10). These teeth have proportionally smaller fore-aft basal length (FABL) and crown curvature (Curv) measurements (lowx-axis values). In the adult-sized skulls, the outlying tooth positions are those of the anterior maxilla (M1 - M10), with proportionally larger FABL and Curv dimensions (high x-axis values). This can be interpreted as an ontogenetic exaggeration of the heterodonty in the Coelophysoidea. The outlying tooth positions in smaller (juvenile-sized) skulls (AMNH 7239, AMNH 7242, DMN 39022, MNAV-3315, and NMMNH P-42200), and the larger (adult-sized) skulls (AMNH 7240, NMMNH P-42579, NMMNH P- 44555, and NMMNH P-50530) represent the extreme examples of coelophysoid heterodonty in the study skulls. One possible explanation for the variation present in the Ghost Ranch C. bauri sample is sexual variation (Colbert 1989,1990; Smith and Merrill 2006). Colbert (1989) contrasts two C. bauri specimens (AMNH 7223 and AMNH 7224) that are approximately the same size but have different skull and neck proportions and different skeletal fusion patterns. It is unknown if the osteological differences described in AMNH 7223 and AMNH 7224 (Colbert 1989,1990) are reflected in their respective tooth morphologies as these skulls were on display and unavail­ able for data collection. Multivariate analyses on tooth morphology do not show the bimodal distributions expected from a population exhibiting sexual variation. A larger sample size of skulls at the extreme ends of the ontogenetic series may resolve the juvenile and adult categories more distinctly in multivariate analyses. At this time there is no evidence to support the expression of sexual variation in tooth morphology.

59 6.6 Longitudinally ridged crowns and ontogeny

6.6.1 Longitudinally ridged crowns and C. bauri Longitudinallyridged tooth crowns were noted by Colbert (1989) to be present in C. bauri only in the premaxillary teeth of small skulls (no quantifying information was given to define a "small skull"). This observation can be updated to include the maxillary tooth positions M1 - M4 for skulls whose premaxillae tooth rows are 15. Omm or smaller, although the presence of ridged premaxillary, maxil­ lary, and dentary tooth crowns is not consistent. All skulls that have ridged tooth crowns plotted in Groups 1 or 2 of the sample ontogenetic series (Figure 2). The smallest skull, AMNH 7242, has the most posterior ridged tooth position (M2) in a more anterior position than the next largest skull (MNA V-3318), which has a ridged fourth premaxillary tooth. The third, and next largest skull in the ontogenetic series (AMNH 7231), does not have ridged crowns, and AMNH 7230 only preserves alveoli and cross-sectional views of crown bases. TMP1984.63.1-1 plots closely in size to AMNH 7230 and has ridged crowns as far posteriorly as M5 and D3. The next largest skull to TMP 1984.63.1 -1 in the ontogenetic series (NMMNH P-42200) has only position M2 with a ridged crown while the rest of the crowns lack ridges, although the crown in position M3 is missing so it cannot be determined whether or not the crown has ridges. The remaining skulls in the ontogenetic series do not have ridged crowns. The results suggest a strong relationship between the presence of longitudi­ nally ridged premaxillary, anterior maxillary, and anterior dentary teeth. However, there are some exceptions. AMNH 7231 does not have ridged premaxillary teeth, contrary to what was expected in the ontogenetic series where skulls larger and smaller to AMNH 7231 have ridged teeth. Partial skulls that do not have ridged teeth are AMNH 7241 and TMP 1984.63.1-2. AMNH 7241 is only slightly smaller

60 than NMMNH P-42200, yet does not have ridged teeth. TMP 1984.63.1-2 is an incompletely exposed skull whose premaxillary tooth row length fails within the size range expected for the presence of ridged premaxillary teeth (> 15. Omm). The sample size for the ontogenetic series of C. bauri may be too small to thoroughly explain the three exceptions. As ridged teeth fall within the morphologic range of unridged teeth but are only present in the juvenile-sized skulls, there is no indication that Ghost Ranch specimens with longitudinally ridged teeth represent a novel taxon of coelophysoid. The presence of longitudinal ridges on the premaxillary, anterior maxillary and anterior dentary teeth appears to be an ontogenetically controlled characteristic for C. bauri.

6.6.2 Longitudinally ridged teeth in the Ceratosauria Longitudinallyridged teeth are present in the non-coelophysoid Ceratosauria. Ridging on the lingual surfaces of premaxillary and the anterior three dentary teeth is described as diagnostic for the genus Ceratosaurus (Madsen and Welles 2000, page 35, and Figure 11). However, figures of the type specimen of C. magnicomis (Madsen and Welles 2000) show that there are no teeth preserved in the premaxillae, so the presence of ridged premaxillary teeth cannot be confirmed. C. dentisulcatus is described as having longitudinal ridges on the anterior three dentary teeth, although tooth crowns are only preserved in positions D1 and D2 of the left dentary (Madsen and Welles 2000:65, Plate 13). The validity of C. magnicomis and C. dentisulcatus is uncertain as these specimens may represent later ontogenetic stages of C. nasicomis (Tykowski and Rowe 2004). If correct, it is possible that longitudinal ridged premaxillary and ante­ rior dentary teeth are ontogenetically controlled and are only expressed in the later ontogenetic stages for the genus Ceratosaums.

61 There are also reports of longitudinalridging o n the anterior teeth of the ceratosaur (Fowler 2007), though no mention was made of the ontogenetic stage of the specimen. There was no mention of ridged teeth in the description of teeth from the skull Zupaysaurus rougieri (Ezcurra 2007) or for the teeth oWilophosaurus wetherilli (Welles 1954,1970,1985). Only partial tooth crowns are preserved in ellioti (Smith etal. 2007), so informa­ tion on the presence of ridged tooth crowns was not available. Longitudinal ridging was also used as a diagnostic character to identify isolated large theropod teeth from Upper Jurassic - Lower Cretaceous deposits as Ceratosaurus sp. (Madsen and Welles 2000). Large theropod teeth that lack ridging but are morphologically similar to the ridged cf. Ceratosaurus sp. teeth from the same deposits were not identified as cf. Ceratosaurus sp. (Madsen and Welles 2000). This suggests that the presence of ridging was the primary feature used to classify these teeth, creating support for the diagnostic strength of tooth ridges that may not exist.

6.6.3 Longitudinal ridged teeth in other groups of Theropoda The presence of longitudinal ridging on teeth is not limited to taxa within the Ceratosauria. Longitudinalridging i s found on isolated teeth of multiple distantly related taxa within the Theropoda (Longrich 2008; Sankey etal. 2002, Sankey 2008a). There have been a few attempts to use longitudinal ridges for shed tooth identification. Fowler (2007) suggests that toothridges ma y support a close phylogenetic relationship of the Spinosauridae and the . Longrich (2008) suggests that isolated teeth from the Lance Formation (Upper Cretaceous: upper Maastrichtian) identified as cf. Richardoestesia gilmorei, cf. R. isosceles, and cf. Paronychodon sp. represent a single taxon based on the presence of "Paranyc/7odon-like" ridging in cf. R. gilmorei and R. isosceles teeth.

62 These taxonomic interpretations are speculative in the absence of more complete specimens. The presence of longitudinal ridging was not mentioned in dentition descriptions of Megapnosaurus (= Syntarsus) kayantakatae (Rowe 1989) or Zupaysaurus rougerei (Ezcurra 2007). A re-examination of other coelophysoid taxa is necessary to determine any patterns for ridging in the Coelophysoidea. That the presence of tooth ridges may be an ontogenetic factor (as suggested for C. bauri) suggests ridging alone should not be the basis for taxonomic designation or the identification of shed theropod teeth. Isolated tooth crowns with ridging should be identified by features of their overall shape and serration characteristics (if present).

6.6.4 Functionality of longitudinally ridged tooth crowns What are the potential functions of longitudinal ridged teeth in a juvenile C. bauri? Are there dietary niches that a juvenile C. oauriwith ridged teeth could more efficiently exploit that a large C. bauri with unridged teeth could not? A possible explanation is that younger, smaller C. bauri were exploiting different prey items than older, larger individuals. Tooth morphology and diet are closely related, and changes in tooth morphology can correspond with changes in diet. One example is the blunt, rounded teeth in fossil and extant varanoids used for crushing insects and mollusks (Molnar 2004). Ontogenetic changes in tooth mor­ phology correspond with a change in diet in some varanoids. Hatchling Varanus niloticus are mostly insectivorous (Lenz 2004) and possess slender slightly curved teeth (Lonnberg 1903, Mertens 1942a, 1942b), but their diet shifts to include mollusks, amphibians, and carrion as they age (Lenz 2004) with a corre­ sponding change in dentition from recurved to bulbous teeth (Mertens 1942a, 1942b).

Long, slender, and conical teeth are often used to infer a piscivorous diet 63 (Baszio 1997b, Sankey 2001, Brinkman 2008, Sankey 2008a). Conical teeth with ridges, such as those found in the spinosaurid Irritatorchallengeri, are described as being well suited for impaling and gripping prey (Sues etal. 2002). Sankey (2008b) suggests that this morphology may be convergent with that seen in the slender ridged teeth attributed to cf. R. isosceles. Small, young C. bauri with ridged teeth may have been able to exploit a diet high in arthropods and fish, with the loss of toothridging i n larger adults corresponding with a transition to an adult diet where holding and gripping prey with teeth is less important.

6.7 Implications of dental variation in C. bauri for shed tooth identifica­ tion Documentation of dental variation recently was completed for Tyrannosau- rus rex by Smith (2005) and Smith et al. (2005) and for crennatissimus by Smith (2007). Using the results of this study on C. bauri dental variation, combined with the results of previous analyses on shed and in situthero- pod teeth, preliminary comments on the potential range of variation in tooth mor­ phology for one taxon of theropod are presented to aid in the identification of shed theropod teeth.

Variable 1: Premaxillary carinae may or may not possess denticles. Two out of the 23 skulls of C. bauri that were examined (AMNH 7240 and DMNS 39022) have serrated posterior carinae on tooth positions P3 - P4 (contra Colbert 1989). The morphology of these denticulate premaxillary teeth does not differ from teeth with no visible denticles. It is possible that more specimens of C. bauri contain serrated premaxillary teeth but the mediolingual aspects of teeth on most of the examined specimens are not visible. Variation in the presence and absence of serrated premaxillary teeth is not a new observation for theropods: there are similar observations for the Tyrannosauridae in reference to the validity of the now nomina dubia genus Aublysodon sp. (Holtz 2004). A diagnostic character for this genus was premaxil- lary teeth with unserrated carinae, but this feature is suggested to be the result of tooth wear or post-mortem damage (Holtz 2004). However, isolated teeth identi­ fied as Aublysodon sp. do not appear to have worn carinae (pers. obs.). Brochu (2003) suggested that the lack of serrations on premaxillary teeth is a feature of early ontogenetic stages in tyrannosaurids. However, Currie (2003) showed that this is true in tyrannosaurines, but not albertosaurines. The presence of serrated premaxillary teeth in C. bauri does not appear to be ontogenetically controlled, as the two specimens with serrated premaxillary teeth represent adult (AMNH 7240) and juvenile sizes (DMNS 39022). It is uncertain whether the variable presence of premaxillary serrations is due to ontogenetic (as in tyrannosaurines) or individual variation (as in C. bauri). Regardless of the mechanism of variation, the presence of premaxillary serrations is a variable feature, and should be used with caution when identifying isolated small theropod teeth.

Variable 2: The presence of longitudinalridges on the lingual and/or labial suriaces of premaxillary, anterior maxillary and anterior dentary teeth is variable. Longitudinally ridged tooth crowns were observed on the anterior-most tooth positions in several juvenile-sized specimens in the C. bauri sample, but are conspicuously absent in adult-sized specimens. There are taxa for which ridged teeth have not yet been reported (i.e. tyrannosaurids), but ridges are reported for tooth morphologies attributed to small theropods such as troodontids, dromaeosaurines, velociraptorines, and theropods of uncertain taxonomic affinity (i.e. R. isosceles, P. lacustris). Teeth with longitudinal ridging are reported regu­ larly in spinosaurids (Fowler 2007), and to a lesser degree in the most anterior 65 tooth positions of ceratosaurids (Colbert 1989; Madsen and Welles 2000). Given that several phylogeneticaily distantly related theropod taxa possess or have the potential to possess longitudinally ridged crowns, it is possible that ridged teeth are the result of convergence in young individuals of the Theropoda exploiting different niches than do adults. Longitudinalridging appears to be ontogenetically controlled in C. bauri, and isolated coelophysoid teeth recovered from Ghost Ranch equivalent deposits should not be mistakenly identified as belonging to a taxon different from C. bauri. Longitudinal ridges seen on the iso­ lated teeth of multiple taxa recovered from the Upper Cretaceous may also be the product of ontogenetic variation. Multivariate analyses on ridged and non-ridged Upper Cretaceous theropod teeth may reveal what morphospace ridged teeth occupy compared to that of unridged teeth. The data from C. bauri suggest that longitudinal crown ridging can be ontogenetically controlled in other theropods, and should not be used as part of the criteria for identifying shed theropod teeth.

Variable 3: Tooth crowns become smaller and less recurved posteriorly along the tooth row. Variation in tooth size and crown curvature along the tooth row is not a new observation in the Theropoda, as it has been well documented in T. rex (Smith 2005) and M. crenatissimus (Smith 2006). In these and many other theropods with heterodont dentition, taller, more curved tooth crowns are found in the anterior parts of the maxilla and dentary. In contrast, shorter, straighter crowns occupy the most posterior tooth positions. C. bauri dentition is no exception (Figures 11-12). Despite visible differences between anterior and posterior teeth (the range of crown angles in C. bauri is between 97.3 - 26.6 degrees), they occupy a similar morphospace in multivariate analyses. 66 Variation in tooth curvature is a possible explanation for the co-occurrence of the Late Cretaceous tooth taxa R. gilmorei and R. isosceles (Longrich 2008). In the description of R. gilmorei, Currie et al. (1990) also suggest that the two morphotypes are due to positional variation. Conversely, the two tooth morphotypes are reported to have different abundance patterns (Baszio 1997a; Sankey 2008). Multivariate analyses were not conducted on cf. Richardoestesia sp. teeth in the aforementioned studies, so it is not yet documented whether the two tooth morphospecies occupy a similar morphospace. As many theropods show heterodont dentition, a large range of tooth shapes and curvatures should be expected from isolated teeth that have the same overall morphology. It is possible that teeth identified as cf. R. gilmorei and cf. R. isosceles belong to the same theropod. However, teeth identified as cf. R. gilmorei and cf. R. isosceles have different distribution and abundance patterns in Upper Cretaceous deposits (Baszio 1997a, 1997b). Tooth morphology alone may be inadequate to resolve this issue. If teeth from cf. R. gilmorei and cf. R. isosceles indeed represent dis­ creet taxa, multivariate analyses might identify the teeth as belonging to the same taxon if they are similar enough in morphology.

Variable 4: Teeth from small (juvenile) individuals occupy a similar morphospace with teeth from large (adult) individuals. Multivariate analyses show that while teeth from small (juvenile) and large (adult) skulls do form separate groups, there is enough overlap between the two groups (Figures 20 - 22) that they can be considered as representing the same morphology. Currie etal. (1990) observed differences between juvenile and adult teeth in their analysis of Dinosaur Provincial Park teeth, and reported that juvenile teeth are smaller versions of the adult morphologies. Based on tooth dimensions, it is unlikely that shed teeth from small (juvenile) and large (adult) theropods within the same species would be identified as belonging to different taxa. Teeth from juvenile individuals are similar in morphology to those of adults, and would not be mistaken as belonging to a taxon different from that of the existing C. bauri taxon.

Variable 5: Size, shape and density of denticles are similar between small (juve­ nile) and large (adult) individuals. Discriminant analysis shows that teeth from small and large skulls cannot be considered distinct morphotypes based on either denticle dimensions or denticle density. This is a similar result to observations made by Currie et al. (1990) that denticles of teeth from juveniles tended to be relatively larger (when compared to tooth size) than those on adult teeth, and have fewer denticles per unit measure­ ment. In C. bauri denticle density of small (juvenile) and large (adult) skulls is not different enough to confidently distinguish between the two groups. Teeth from small (juvenile) and large (adult) individuals of a theropod species would not be mistak­ enly identified as belonging to different taxa on the basis of denticle size or density.

6.8 Conclusions

6.8.1 Updated description of C. bauri dentition Redescription of C. bauri dentition described by Colbert (1989) shows the varied presence of serrations on the posterior carinae of premaxillary tooth posi­ tions P3 and P4. Premaxillary, anterior maxillary (up to M5), and anterior dentary (up to D6) teeth from skulls of juvenile individuals have longitudinal ridging on both labial and lingual surfaces. Individual and ontogenetic variation in tooth morphology ac counts for much of the variation seen in the C. bauri dataset Crown morphology, denticle morphology, and denticle density of teeth from juvenile and adult

68 specimens do not show significant differences in multivariate analyses.

6.8.2 Potential variation in shed theropod tooth morphology Quantitative and qualitative observations of in situ tooth crowns from the 23 C. bauri skulls suggests that ontogenetic and heterodont variation in tooth mor­ phology do not show morphologies that would be different enough to result in diagnosing new tooth taxa. Some C. bauri tooth morphologies, were they to be found as isolated teeth and identified by qualitative methods alone, may be mis­ taken for novel tooth taxa even though they occupy the same morphospace as other C. bauri teeth. When possible, novel-looking isolated teeth should be ana­ lyzed in multivariate analyses with temporally equivalent teeth to test if the new teeth occupy distinct morphospace. There are visual differences in C. bauri tooth crowns that may prompt the erection of new tooth taxa. Visual differences in the teeth of theropods with hetero­ dont dentition could be mistaken for new tooth morphotaxa if isolated teeth are analyzed as individual elements instead of as small parts of a larger, variable population. Longitudinal ridging on the anterior tooth crowns of C. bauri is an indicator of age rather than taxon. Ridging on crowns, restricted to the premaxillary, anterior maxillary, and anterior dentary teeth of juvenile C. bauri specimens, could result in these teeth being mistakenly identified as a different morphospecies from C. bauri, if they were to be recovered as isolated teeth. The variable occurrence of longitudinal ridging on the isolated teeth of several species known only from teeth of Late Cretaceous (late Campanian - late Maastrichtian) theropods most likely indicates the ontogenetic stages of these teeth rather than their identity. Large enough samples of isolated theropod teeth that have been collected from the Campanian-Maastrichtian stage to allow multivariate analysis of these teeth. Multivariate analyses may reveal that many of the enigmatic theropod teeth

69 fall within the same morphospaces of theropod teeth known from more complete material, and as such could be considered the same taxa as well known theropod taxa.

70 References

Abler, W. L. 1997. Tooth serrations in carnivorous , p. 740-743, In: K. Padian and P. J. Currie (eds.), Encyclopedia of dinosaurs. Academic Press, San Diego, California.

Atchley, W., C. Gaskins, and D.Anderson. 1976. Statistical properties of ratios. I. Empirical results. Systematic Zoology 25:137-148.

Bakker, R.T. 1998. Brontosaur killers: Late Jurassic allosaurids as saber-tooth cat analogues, p. 145-158, In: B. P. Perez-Moreno, T. Holtz, Jr., J. L. Sanz, and J. Moratalla (eds.), Theropod Paleobiology. Gaia 15. Museu Nacional de Historia Natural, Lisbon, Portugal.

Bakker, R. T., M. Williams, and P. J. Currie. 1988. Nanotyrannus, a new genus of pygmy tyrannosaur, from the latest Cretaceous of Montana. Hunteria 1:1 -30.

Bakker, R. T. and G Bir. 2004. Dinosaur crime scene investigations: theropod behavior at Como Bluff, Wyoming, and the evolution of birdness, p. 301- 342 In: P. J. Currie, E. B. Koppelhus, M. A. Shugar, and J. L. Wright (eds.), Feathered dragons: studies on the transition from dinosaurs to birds. Indiana University Press, Bloomington, Indiana.

Baszio, S. 1997a. Investigations of Canadian dinosaurs: palaeoecology of dino saur assemblages throughout the Late Cretaceous of south Alberta, Canada. Courier Forschungsinstitut Senckenberg 196:1-33.

71 Baszio, S. 1997b. Investigations of Canadian dinosaurs: systematic palaeontology of isolated dinosaur teeth from the Latest Cretaceous of south Alberta, Canada. Courier Forschungsinstitut Senckenberg 196:33-77.

Bolt, J.R., and R.E. DeMar. 1986. Computer simulation of tooth replacement with growth in lower tetrapods. Journal of Vertebrate Paleontology 6:233- 250.

Brinkman, D. B. 1990. Paleoecology of the Judith River Formation (Campanian) of Dinosaur Provincial Park, Alberta, Canada: evidence from vertebrate microfossil localities. Palaeogeography, Palaeoclimatology, Palaeoecology 78:37-54.

Brinkman, D. B. 2008. The structure of Late Cretaceous (late Campanian) nonmarine aquatic communities: a guild analysis of two vertebrate micro- fossil localities in Dinosaur Provincial Park, Alberta, Canada, p. 33-60, In: J. T. Sankey and S. Baszio (eds.), Vertebrate microfossil assemblages: their role in paleoecology and paleobiogeorgraphy. Indiana University Press, Bloomington, Indiana.

Brochu, C. A. 2003. Osteology of Tyrannosaurus rex: insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. Society of Vertebrate Paleontology Memoir 7:1 -138.

Brusatte, S. L, R. B. J.Benson, T. D. Carr, T. E. Williamson, and P. C. Sereno. 2007. The systematic utility of theropod enamel wrinkles. Journal of Vertebrate Paleontology 27:1052-1056. 72 Caldwell, M.W. 2007. Ontogeny, anatomy, and attachment of the dentition in mosasaurs (Mosasauridae: Squamata). Zoological Journal of the Linnean Society 150:687-700.

Carpenter, K. 1982. Baby dinosaurs from the Late Cretaceous Lance and Hell Creek formations and a redescription of a new species of theropod. University of Wyoming Contributions to Geology 20:123-134.

Carpenter, K. 1992. Tyrannosaurids (Dinosauria) of Asia and North America, p.250- 268, In: N. Mateer and P. J. Chen (eds.), Aspects of non-marine Cretaceous geology. Ocean Press, Beijing, China.

Carr, T. D. 1999. Craniofacial ontogeny in Tyrannosauridae (Dinosauria, ). Journal of Vertebrate Paleontology 19:497-520.

Carr, T. D. and T. E. Williamson. 2004. Diversity of late Maastrichtian Tyrannosauridae (Dinosauria: Theropoda) from western North America. Zoological Journal of the Linnean Society 142:479-523.

Carrano, M. T., J. R. Hutchinson, and S. D. Sampson. 2005. New information on Segisaurus halli, a small theropod dinosaur from the of Arizona. Journal of Vertebrate Paleontology 25:835-849.

Colbert, E. H. 1989. The Triassic dinosaur Coelophysis. Museum of Northern Arizona Bulletin 57:1-160

73 Colbert, E. H. 1990. Variation in Coelophysis bauri, p.81-90, In: K. Carpenter and P. J. Currie (eds.), Dinosaur Systematica: perspectives and approaches. Cambridge University Press, Cambridge, England.

Colbert, E. H., A. J. Charig, P. Dodson, D. D. Gillette, J. H. Ostrom, and D. Weishampel. 1992. Case 2840: Coelurus bauri Cope 1887 (currently Coelophysis bauri; Reptilia, ): proposed replacement of the lectotype by a neotype. Bulletin of Zoological Nomenclature 49:276-279.

Cope, E. D. 1876a. Descriptions of some vertebrate remains from the Fort Union beds of Montana. Academy of Natural Sciences of Philadelphia Proceedings 1876:248-261.

Cope E. D. 1887a. A contribution to the history of the Vertebrata of the Trias of North America. Proceedings of the American Philosophical Society 24:209-228.

Cope, E. D. 1887b. The dinosaur genus Coelurus. American Naturalist 21:367- 369.

Cope E. D. 1889. On a new genus of Triassic Dinosauria. American Naturalist 23:626.

Currie, P. J. 2003. Allometric growth in tyrannosaurids (Dinosauria: Theropoda) from the Upper Cretaceous of North America and Asia. Canadian Journal of Earth Sciences 40:651-665.

74 Currie, P. J., J. K. Rigby, Jr., and E. D. Sloan. 1990. Theropod teeth from the Judith River Formation of southern Alberta, Canada, p. 107-125, In: K. Carpenter and P. J. Currie (eds.), Dinosaur systematics: perspectives and approaches. Cambridge University Press, Cambridge, England.

Currie, P. J., J. H. Hurum, and K. Sabath. 2003. Skull structure and evolution in tyrannosaurid dinosaurs. Acta Palaeontologies Polonica 48:227-234.

Dodson, P. 1975. Taxonomic implications of relative growth in lambeosaurine hadrosaurs. Systematic Zoology 24:37-54.

Edmund, A.G1962. Sequence and rate of tooth replacement in the Crocodilia. Royal Ontario Museum Life Sciences Division Contribution 56:1-42.

Ezcurra, M. D. 2007. The cranial anatomy of the coelophysoid theropod Zupaysaurus rougieri from the Upper Triassic of Argentina. Historical Biology 19:185-202.

Fanti, F. and F. Therrien. 2007. Theropod tooth assemblages from the Late

Cretaceous Maevarano Formation and the possible presence of dromaeosaurids in Madagascar. Acta Palaeontologies Polonica 52:155- 166.

Fiorillo, A. R. 1999. Non-mammalian microvertebrate remains from the Robison Eggshell Site, Cedar Mountain Formation (Lower Cretaceous), Emery County, Utah, p 259-286, In: Gillette, D. D. (ed.), Vertebrate palaeontology in Utah. Utah Geological Survey Miscellaneous Publication 99(1), Salt Lake City, Utah.

75 Fiorillo, A. R., and P. J. Currie. 1994. Theropod teeth from the Judith River Formation (Upper Cretaceous) of south-central Montana. Journal of Vertebrate Paleontology 14:74-80.

Fiorillo, A. R. and R. A. Gangloff. 2000. Theropod teeth from the Prince Creek Formation (Upper Cretaceous) of Northern Alaska, with speculations on Arctic dinosaur paleoecology. Journal of Vertebrate Paleontology 20:675-682.

Fowler, D. 2007. Recently rediscovered baryonychine teeth (Dinosauria: Theropoda): new morphologica data, range extension and similarity to Ceratosaurus. Journal of Vertebrate Paleontology 27(3):76A.

Hammer, O., D. A. T. Harper, and P. D. Ryan. 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologica Electronica 4:1-9.

Hammer, O. and D. A. T. Harper. 2006. Paleontological data analysis. Blackwell Publishing, Ltd., Maiden, Massachusetts, USA, 351 p.

Henderson, D. M. 1998. Skull and tooth morphology as indicators of niche partitioning in sympatric Morrison Formation theropods, p. 219-226, In: B. P. Perez-Moreno, T. Holtz, Jr., J. L. Sanz, and J. Moratalla (eds.), Theropod Paleobiology. Gaia 15. Museu Nacional de Historia Natural, Lisbon, Portugal.

76 Holtz, T. R., Jr. 1998. Anew phytogeny of the carnivorous dinosaurs, p. 5-61, In: B. P. Perez-Moreno, T. Holtz, Jr., J. L. Sanz, and J. Moratalla (eds.), Theropod Paleobiology. Gaia 15. Museu Nacional de Historia Natural, Lisbon, Portugal.

Holtz, T. R., Jr. 2004. Tyrannosauroidea, p. 111-136, In: D. B. Weishampel, P. Dodson, and H. Osmolska (eds.), The Dinosauria, second edition. University of California Press, Berkeley, California.

Holtz, T. R., Jr., D. L. Brinkman, and C. L. Chandler. 1998. Denticle morphometries and a possible omnivorous feeding habit for the theropod dinosaur Troodon, p. 159-166, In: B. P. Perez-Moreno, T. Holtz, Jr., J. L. Sanz, and J. Moratalla (eds.), Theropod Paleobiology. Gaia 15, Museu Nacional de Historia Natural, Lisbon, Portugal.

Holtz, T. R., Jr., R. E. Molnar, and P. J. Currie. 2004. Basal , p. 71-110, In: D. B. Weishampel, P. Dodson, and H. Osmolska (eds.), The Dinosauria, second edition. University of California Press, Berkeley, California. von Huene, F. 1906. Uber die Dinosaurierderausser-europaischen Trias. Geologische und Palaeontologische Abhandlungen, Berlin, Jena 8:97- 156. von Huene, F. 1915. On reptiles of the New Mexican Trias in the Cope collection. Bulletin of the American Museum of Natural History 34:485-507.

77 Hunt, A. P., and S. G Lucas. 1991. Rioarribasaurus, a new name for a Late Triassic dinosaur from New Mexico (USA). Palaeontologies Zoologica 65:191-198.

International Commission on Zoological Nomenclature. 1996. Opinion 1842. Coelurus bauri Cope, 1887, (currently Coelophysis bauri; Reptilia, Saurischia): lectotype replaced by a neotype. Bulletin of Zoological Nomenclature 53:142-144.

Kardong, K. V. 1995. Chapter 13: The digestive system, p. 491-532, In: Vertebrates: comparative anatomy, function, evolution. Wm. C. Brown Communications, Inc., Dubuque, Iowa.

Lenz, S. 2004. Varanus niloticus, p. 133-138, In: E. R. Pianka, D. R. King, and R. A. King (eds.), Varanoid lizards of the world. Indiana University Press, Bloomington, Indiana.

Lonnberg, E. 1903. On the adaptations to a molluscivorous diet in Varanus niloticus. Arkiv for Zoologi 1:65-83.

Longrich, N. 2008. Small theropod teeth from the Lance Formation of Wyoming, USA, p. 135 -158, In: J. T. Sankey and S. Baszio (eds.), Vertebrate micro- fossil assemblages: their role in paleoecology and paleobiogeography. Indiana University Press, Bloomington, Indiana.

Madsen, J. 1976. Allosaurus fragilis: a revised osteology. Utah Geological and Mineralogical Survey Bulletin 109:1-163. 78 Madsen, J. H., Jr. and S. P. Welles. 2000. Ceratosaurus (Dinosauria, Theropoda): a revised osteology. Utah Geological Survey Miscellaneous Publications 2000:1-80.

Marsh, O. C. 1881. Principle characters of American Jurassic dinosaurs: PartV. American Journal of Science 21:417-423.

Marsh, O. C. 1884. Principal characters of American Jurassic dinosaurs, Part VIII: The Order Theropoda. American Journal of Science 27:329-340.

Mertens, R. 1942a. Die familie der Warane (Varanidae). Ester Teil:Allgemienes. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft Abhandlung 462:1-116.

Mertens, R. 1942b. Die familie der Warane (Varanidae). ZweiterTeil: DerSchadel. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft Abhandlung 465:117-234.

Molnar, R. E. 1990. Variation in theory and in theropods, p.71 -79, In: K. Carpenter and P. J. Currie (eds.), Dinosaur systematics: perspectives and approaches. Cambridge University Press, Cambridge, England.

Molnar, R. E. 2004. The long and honorable history of monitors and their kin, p. 10- 67, In: E. R. Pianka, D. R. King, and R. A. King (eds.), Varanoid lizards of the world. Indiana University Press, Bloomington, Indiana.

79 Molnar, R. E. and K. Carpenter. 1989. The Jordan theropod (Maastrichtian, Montana, U.S.A.) referred to the genus Aublysodon. Geobios 22:445-454.

Neill, W. T. 1971. The last of the ruling reptiles: alligators, crocodiles, and their kin. Columbia University Press, New York, New York, xvii+486pp.

Ostrom, J. H. 1969. Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Peabody Museum of Natural History Bulletin 30:1-165.

Rauhut, O. W. M. 2004. The interrelationships and evolution of basal theropod dinosaurs. Special Papers in Palaeontology 69:1-213.

Rowe, T. 1989. A new species of the theropod dinosaur Syntarsus from the Early Jurassic Kayenta Formation of Arizona. Journal of Vertebrate Paleontology 9:125-136

Sankey, J. T. 2001. Late Campanian southern dinosaurs, Aguja Formation, Big Bend, Texas. Journal of Paleontology 75:208-215.

Sankey, J. T. 2002. Theropod dinosaur diversity in the Latest Cretaceous (Maastrichtian) of North America. Journal of Vertebrate Paleontology 22(3): 103A.

Sankey, J. T. 2003. New theropod and teeth from the Late Cretaceous (Maastrichtian) Hell Creek and Lance Formations. Journal of Vertebrate Paleontology 23(3):93A. 80 Sankey, J. T., D. B. Brinkman, M. Guenther, and P. J. Currie. 2002. Small theropod and bird teeth fromtthe Late Cretaceous (late Campanian) Judith River Group, Alberta. Journal of Paleontology 76:751-763.

Sankey, J. T. 2008a. Vertebrate paleoecology from microsites, Talley Mountain, UpperAguja Formation, (Late Cretaceous), Big Bend National Park, Texas, USA, p. 61-77, In: J. T. Sankey and S. Baszio (eds.), Vertebrate microfossil assemblages: their role in paleoecology and paleobiogeography. Indiana University Press, Bloomington, Indiana.

Sankey, J. T. 2008b. Diversity of Latest Cretaceous (late Maastrichtian) small theropods and birds: teeth from the Lance and Hell Creek formations, USA, p. 117-134, In: J. T. Sankey and S. Baszio (eds.), Vertebrate microfossil assemblages: their role in paleoecology and paleobiogeography. Indiana University Press, Bloomington, Indiana.

Schwartz, H. L. and D. D. Gillette. 1994. Geology and taphonomy of the Coelophysis quarry, Upper Triassic Chinle Formation, Ghost Ranch, New Mexico. Journal of Paleontology 68:1118-1130.

Smith, D. K. 1998. A morphometric analysis of Allosaums. Journal of Vertebrate Paleontology 18:126-142.

Smith, D. K. and A. Merrill. 2006. Facial variation in Coelophysis bauri and the status of Megapnosaurus (Syntarsus), Harris et al. (eds.) The Triassic- Jurassic Terrestrial Transition, New Mexico Museum of Natural Historyand Science Bulletin 37:592-598.

81 Smith, J. B. 2002. Dental morphology and variation in Tyrannosaurus rex: implications for taxonomy, systematica, and the identification of shed teeth. Journal of Vertebrate Paleontology 22(3): 109A.

Smith, J. B. 2005. Heterodonty in Tyrannosaurus rex: implications for the taxonomic and systematic utility of theropod dentitions. Journal of Vertebrate Paleontology 25:865-887.

Smith, J. B. 2006. Dental morphology and variation in Majungasaurus crenatissimus (Theropoda: ) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology Memoir 8:103-126.

Smith, J. B. and P. Dodson. 2003. A proposal for a standard terminology of anatomical notation and orientation in fossil vertebrate dentitions. Journal of Vertebrate Paleontology 23:1 -12.

Smith, J. B., D. R. Vann, and P. Dodson. 2005. Dental morphology and variation in theropod dinosaurs: implications for the taxonomic identification of isolated teeth. The Anatomical Record 285A:699-736.

Smith, N. D., P. J. Makovicky, W. R. Hammer, and P. J. Currie. 2007. Osteology of Cryolophosaurus ellioti (Dinosauria: Theropoda) from the Early Jurassic of Antarctica and implications for early theropod evolution. Zoological Journal of the Linnean Society 151:377-421.

Sokal, R. R. and F. J. Rohlf. 1995. Biometry: the principles and practice of statistics in biological research, 3rd edition. W. H. Freeman and Company, New York, 82 New York, p.vii-xix, 1-887.

Sues, H.-D., E. Frey, D. M. Martial, and D. M. Scott. 2002. Initatorchallengeri, a spinosaurid (Dinosauria: Theropoda) from the Lower Cretaceous of Brazil. Journal of Vertebrate Paleontology 22:535-527.

Tykowski, R. S. and T. Rowe. 2004. Ceratosauria, p. 47-70, In: D. B. Weishampel, P. Dodson, and H. Osm6lska (eds.), The Dinosauria, second edition. University of California Press, Berkeley, California.

Vullo, R., D. Neraudeau, and T. Lenglet. 2007. Dinosaur teeth from the Cenomanian of Charentes, western France: evidence for a mixed Laurasian-Gondwanan assemblage. Journal of Vertebrate Paleontology 27:931-943.

Welles, S. P. 1954. New Jurassic dinosaur from the Kayenta Formation of Arizona. Bulletin of the Geological Society of America 65:591-598.

Welles, S. P. 1970. (Reptilia: Saurischia), a new name for a dinosaur. Journal of Paleontology 44:98.

Welles, S. P. 1984. Dilophosaurus wetherilli (Dinosauria, Theropoda) osteology and comparisons. PalaeontographicaAbt. A 185:87-180.

83 Appendix A: Tooth measurements from C. bauri skulls observed in this study. All continuous data are presented in millimeters.

3£ Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.Smm AMD/.Smm ABD/.5mm PAD/.Smm PMD/.5mm PBD/.5mm AMNH 7242rm1 2.07 7 4.71 5.41 ? 7 ? 2.99 2.99 ? 0.07 ? ? 0.11 ? ? ? 7 ? ? 7 AMNH 7242rm2 2.45 ? 4.1 4.09 ? ? ? ? 7 ? ? ? ? ? ? 3.3 ? ? 5 4 7 AMNH 7242rm3 2.57 ? 2.94 ? ? ? 0.91 ? ? ? ? ? ? ? ? ? ? 7 ? ? ? AMNH 7242rm4 2.54 ? 3.97 4.04 ? ? ? ? ? ? ? ? ? ? ? 4.5 ? ? 6 5 5.5 AMNH 7242rm5 2.29 7 3.95 3.89 ? ? ? 3.04 3.04 ? ? ? ? ? ? 5 7 3 6 5 5.5 AMNH 7242rm6 2.95 0.91 7 ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? 7 ? ? AMNH 7242rm7 2.36 0.37 4.05 4.03 ? 2.22 2.22 2.91 7 ? 7 ? ? ? ? 5 7 7 5 5 6 AMNH 7242rm8 2.26 0.63 7 7 7 ? ? ? ? ? ? ? ? ? ? 6 ? 7 ? ? 7 AMNH 7242rm9 1.88 0.37 3.26 3.19 7 1.32 ? 2.09 ? ? ? ? ? ? 7 5 ? 5 5 5.5 7 AMNH7242rm10 1.77 0.84 2.9 ? ? 1.84 0.92 ? ? ? ? 7 ? ? 7 4.5 ? 7 4.5 ? 7 AMNH7242rm11 1.41 0.31 2.32 2.54 ? 1.88 1.06 1.53 ? ? ? 7 ? ? ? 5 7 6 4.5 ? 6 AMNH 7242rm12 1.15 0.56 2.24 2.09 ? ? 7 1.68 ? ? ? ? ? 0.1 ? 5.5 ? 7 5.5 7 5.5 AMNH7242rm13 1.43 0.61 0.96 ? ? ? ? ? ? ? ? ? ? ? ? 5 7 ? 5 ? 7 AMNH 7242rm14 1.1 0.95 1.29 1.12 ? 0.92 0.78 1.24 ? ? ? ? ? ? ? 5 7 7 5.5 ? 7 AMNH7242rm15 1.31 1.08 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 AMNH 7242rm16 7 ? ? ? ? ? ? ? 7 ? ? ? ? ? ? ? 7 ? ? ? 6 AMNH 7242rm17 7 7 7 ? ? ? ? 7 ? ? ? ? ? ? ? ? ? 7 ? 6 7 AMNH 7242lm1 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 AMNH 7242lm2 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? ? ? ? AMNH 7242lm3 7 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? 9 ? AMNH 7242lm4 7 ? ? ? ? ? 7 ? 7 ? ? ? ? ? ? 7 ? 7 ? 9 7 AMNH 7242lm5 2 ? ? ? 1.47 ? ? 7 ? ? ? ? ? ? ? ? 7 ? ? 7 7 AMNH 7242lm6 2.32 7 ? ? 1.63 ? ? ? ? ? ? ? ? ? ? ? ? 7 ? ? 7 AMNH 7242lm7 2.35 ? ? ? 1.4 7 ? ? ? ? ? ? ? ? ? 7 ? ? ? ? ? AMNH 7242lm8 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? ? ? 9 7 AMNH 7242lm9 2.3 ? ? ? 1.08 7 ? ? 7 ? ? ? ? ? ? ? ? ? ? 9 ? AMNH7242lm10 1.83 ? ? ? 0.78 ? ? ? ? ? ? ? ? 9 ? ? ? 7 ? 9 ? AMNH7242lm11 2.09 ? ? ? 1.14 ? ? ? ? ? ? ? ? ? ? ? ? 7 ? 9 7 AMNH7242lm12 2.13 ? ? ? 1.03 ? ? ? ? ? 9 ? ? ? ? ? ? ? ? 7 ? AMNH7242lm13 7 ? ? ? ? ? ? ? 7 ? 9 ? ? ? ? ? ? ? ? 7 ? AMNH 7242lm14 ? ? ? ? ? 7 7 ? 7 ? ? ? ? ? ? ? ? ? ? 9 ? AMNH7242lm15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7242lm16 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 00 Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown. Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.5mm AMD/.5mm ABD/.Smm PAD/.5mm PMD/.5mm PBD/.5mm AMNH7242lm17 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7239lm1 1.84 ? 4.08 4.06 ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? AMNH7239lm2 2.24 ? 1.79 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7239lm3 2.86 ? 2.39 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 5 5 AMNH7239lm4 ? 2.67 1.47 ? ? ? ? ? ? ? ? ? ? ? ? 5 ? ? 5 ? ? AMNH7239lm5 3.36 2.75 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 6 AMNH 7239lm6 2.54 1.51 4.1 4.3 ? ? ? ? ? ? 0.05 ? 0.1 ? ? 5 ? ? ? ? 5 AMNH7239lm7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7239lm8 ? ? ? ? ? ? ? ? ? ? ? ? ? 0.067 ? ? ? ? ? ? 5 AMNH 7239lm9 ? 2.42 0.83 ? ? ? ? ? ? ? ? ? ? ? ? 7 7 ? ? ? ? AMNH7239lm10 3.55 ? 2.35 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 5 AMNH7239lm11 ? 1.58 3.25 ? ? ? ? ? ? ? 0.05 ? ? 0.067 ? 5 4 ? 4 ? ? AMNH7239lm12 2.98 2 ? ? ? ? ? ? ? ? 0.05 ? ? 0.067 ? ? 5 ? ? 4 ? AMNH 7239lm13 4.41 2.12 ? ? ? ? ? 3.15 ? ? 0.25 ? ? 0.25 ? 5 ? ? 5 ? 4 AMNH7239lm14 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7239lm15 2.17 ? 3.82 3.51 ? ? ? ? ? ? ? ? ? 0.1 ? ? 5 ? ? 4 ? AMNH7239lm16 2.3 1.05 2.36 ? ? ? ? ? ? ? 0.05 ? ? 0.067 ? ? 5 ? ? 4 ? AMNH7239lm17 2.37 1.69 1.79 ? ? ? ? ? ? ? ? ? 1.5/.1 ? ? ? ? ? ? ? 5 AMNH7239lm18 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7239lm19 ? ? ? ? 0.95 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7239lm20 2.09 ? 2.68 3.9 ? ? ? ? ? ? 0.067 ? ? ? ? 5 ? 4 ? ? ? AMNH 7239lm21 2.11 0.86 1.87 ? ? ? ? ? ? ? ? ? ? 0.05 ? ? ? ? ? ? 5 AMNH7239lm22 1.72 0.82 2.01 2.37 ? 1.91 ? ? ? ? 0.25 ? ? 0.067 ? 6 5 4 5 5 ? AMNH7239lm23 1.97 ? 1.66 2.01 ? 1.84 ? 1.72 ? ? 0.05 0.05 ? 0.067 0.1 6 5 6 7 5 5 AMNH 7239lm24 1.5 ? ? ? 0.65 ? ? ? ? ? 0.5 0.1 ? ? ? ? ? 5 ? ? ? AMNH7239lm25 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7239lm26 1.84 1.16 1.61 2.17 ? 2.02 ? 1.41 ? ? 0.067 0.1 ? 0.05 0.1 6 ? ? 5 ? ? AMNH7239rm1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 AMNH7239rm2 2.56 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7239rm3 ? 1.98 1.47 ? ? ? ? ? ? ? 0.05 ? ? 0.04 ? 5 ? ? 6 ? ? AMNH 7239rm4 3.14 1.92 ? ? 1.52 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7239rm5 ? 1.62 ? ? ? ? ? ? ? ? 0.1 0.4 ? ? ? 5 ? ? ? ? ? AMNH 7239rm6 4.2 1.18 2.09 ? 1.49 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown. Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.5mm AMD/.5mm ABD/.5mm PAD/.5mm PMD/.5mm PBD/.5mm AMNH7239rm7 3.35 1.45 3.75 ? 2.01 ? 0.08 ? ? 0.1 0.067 0.8 ? 0.1 0.1 5 5 5 ? 7 4.5 AMNH7239rm8 3.9 ? ? ? 1.43 ? ? ? ? ? ? ? ? ? ? ? ? ? 7 7 7 AMNH7239rm9 2.97 1.07 7 ? 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? AMNH7239rm10 3.63 1.61 ? ? 1.45 ? ? 7 ? ? ? ? ? ? ? ? ? ? ? 7 ? AMNH7239rm11 3.42 1.4 2.19 ? 1.48 ? ? ? ? 0.1 0.067 0.07 0.15 0.1 0.1 ? ? 5 ? ? 4 AMNH7239rm12 3.27 0.76 ? ? 1.17 ? ? ? ? ? 0.067 ? ? ? ? ? ? ? ? ? 7 AMNH7239rm13 3.36 1.03 ? ? 0.7 ? ? ? ? ? ? ? ? ? ? ? ? ? 7 7 ? AMNH7239rm14 ? 0.68 4.29 ? ? 3.99 ? ? ? ? 0.05 0.1 ? ? ? 5 5 4 ? 7 ? AMNH7239rm15 3.14 1.27 2.87 ? ? ? ? ? ? ? ? ? ? 0.67 0.1 ? ? ? 7 7 5 AMNH7239rm16 ? 7 ? ? 7 ? ? ? 7 ? ? ? ? ? ? ? ? ? ? 7 ? AMNH7239rm17 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? 7 AMNH7239rm18 2.14 ? ? ? 0.87 ? ? ? ? ? ? ? ? ? ? ? ? ? 7 7 7 AMNH7239rm19 2.22 0.95 1.81 ? 0.94 ? ? ? ? ? 0.1 0.1 ? 0.1 0.1 ? ? 5 ? 7 5 AMNH7239rm20 1.91 0.46 2.71 2.62 1.07 ? ? 2.15 ? ? 0.1 0.1 ? 0.1 0.1 6 5 ? 6 5 5 AMNH7239rm21 2.29 0.95 1.9 ? 1.11 ? ? ? 7 ? ? ? ? 0.1 0.07 ? ? ? ? 5 5 AMNH7239rm22 2 ? ? ? 0.75 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7239rm23 ? ? ? ? ? ? ? ? ? ? ? ? ? 0.1 0.15 ? ? ? ? 5 7 AMNH7239rm24 1.95 0.6 ? ? 0.43 ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? 7 AMNH7239rm25 2.06 0.54 2.54 2.61 ? ? ? ? ? ? ? ? ? 0.1 0.1 ? ? 7 5 5 5 AMNH7239rm26 1.5 0.63 1.91 1.81 ? ? ? ? ? ? 0.07 0.1 ? 0.1 1.02 ? ? ? 7 7 5 AMNH7228rp1 1.73 ? 4.58 4.67 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 7 7 AMNH7228lp1 1.58 ? 3.78 3.24 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 7 7 AMNH7228lp2 2.16 0.26 1.64 ? ? 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lp3 1.54 0.73 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 7 7 AMNH7228lp4 3.03 0.76 5.18 5.15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 7 AMNH7228lm1 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? ? ? ? AMNH7228lm2 2.03 7 1.57 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 7 ? AMNH7228lm3 2.75 1.52 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? 7 AMNH 7228lm4 3.96 1.97 5.27 6.06 ? ? ? ? ? ? ? ? ? ? ? 7 ? ? 7 7 ? AMNH7228lm5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm6 2.69 ? 2.89 3.5 ? ? 7 ? ? ? ? ? ? ? ? ? ? 7 ? ? ? AMNH7228lm7 3.5 0.91 2.71 3.19 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? ? AMNH7228lm8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm9 7 ? ? ? ? ? ? ? ? ? ? ? ? 7 ? ? ? ? ? ? ? 00 ^ Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown. Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.5mm AMD/.5mm ABD/.5mm PAD/.5mm PMD/.5mm PBD/.5mm AMNH7228lm10 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm11 3.99 ? 6.98 7.24 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm12 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm13 2.36 ? 3.06 3.24 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm14 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm15 3.68 ? 4.92 5.55 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm16 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm17 3.96 ? 5.29 6.12 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm18 2.18 1.5 2.43 2.86 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm19 3.52 1.13 2.69 3.15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7228lm20 2.78 1.28 1.97 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm21 2.44 1.2 ? ? 1.15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7228lm22 2.66 0.54 1.43 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm23 2.23 0.89 ? ? 0.92 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm24 2.78 0.93 ? ? 1.09 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm25 2.42 0.92 ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm26 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm27 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228lm28 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228ld1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228W2 2.45 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228ld3 2.09 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228ld4 2.41 1.03 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7228ld5 2.18 0.66 4.49 4.83 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7228ld6 2.73 0.84 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228ld7 1.8 0.73 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228ld8 1.95 1.2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228ld9 2.84 1.17 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228ld10 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228W11 2.18 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228ld12 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228ld13 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228ld14 2.48 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7228W15 2.7 0.78 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown. Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.5mm AMD/.5mm ABD/.5mm PAD/.5mm PMD/.5mm PBD/.5mm AMNH7228ld16 2.04 0.66 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? AMNH7228ld17 2.84 0.95 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? AMNH7241rp1 ? ? ? ? ? ? 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7241rp2 1.18 ? 3.34 3.47 7 ? ? ? ? 7 ? ? ? ? ? ? ? ? ? ? ? AMNH 7241rp3 1.3 ? 4.3 4.3 ? ? ? ? ? ? ? ? 7 ? ? ? ? ? ? ? ? AMNH7241rp4 1.65 0.54 4.29 4.1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7241rm1 1.83 ? 4.53 4.64 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7241 rm2 1.72 0.79 3.57 3.25 ? ? ? 2.91 ? ? ? ? ? ? ? 7 ? ? ? ? 5 AMNH 7241 rm3 2.66 0.95 5.51 5.62 ? ? 3.48 4.74 ? ? ? ? ? ? ? 6 5 5 5 5 5 AMNH 7241 m* 2.5 1.51 4.86 4.89 ? 4.63 ? 4.48 ? ? ? ? ? ? ? 7 5 5 6 5 4 AMNH 7241 rm5 3.18 1.09 8.09 7.78 ? 5.92 ? 6.6 ? ? ? ? ? ? ? 6 5 4 6 5 5 AMNH 7241 rm6 3.25 1.71 5.67 5.73 ? 5.69 ? 4.87 ? 7 ? ? ? ? ? 6 5 5 6 5 4.5 AMNH 7241 rm7 3.4 0.92 7.9 7.95 ? 5.48 7 6.11 ? ? ? ? ? ? ? 6 5 4.5 6 4 4 AMNH 7241 rm8 3.25 1.99 6.04 6.2 ? 5.82 ? 5.47 ? ? ? ? 7 ? ? 7 5 4 6 4 4 AMNH 7241 rm9 3.38 1.31 6.99 7.02 ? 6.04 ? 6.55 ? ? ? ? ? ? ? 6 5 4 5 4 4 AMNH 7241 rm10 3.44 1.48 6.17 5.86 ? 5.13 ? 5.34 7 ? ? ? ? ? ? 6 5 4 5 4 4 AMNH 7241 rm11 3.42 0.91 0.74 ? 1.36 7 ? ? ? ? ? ? ? ? ? 6 ? 7 ? ? ? AMNH 7241 rm12 3.34 1.25 4.83 4.62 ? ? ? 4.4 ? ? ? ? ? ? ? ? 5 4 ? 4 4 AMNH 7241 rm13 2.96 1.98 ? ? 0.91 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7241rd1 2.21 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7241rd2 1.41 0.66 2.53 ? ? 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7241rd3 1.98 1.01 4.03 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7241rd4 1.43 0.93 1.43 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7241rd5 ? ? 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7241rd6 1.84 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7241 rd7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7241 rd8 ? ? ? ? ? ? ? ? ? 7 ? ? ? ? ? ? ? ? ? ? ? AMNH 7241 rd9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7227lm1 1.94 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7227lm2 3.48 1.48 7 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7227lm3 2.94 0.77 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7227lm4 4.21 1.31 7.18 7.27 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7227lm5 3.15 0.84 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7227lm6 4.2 1.2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 00 Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown. OL 1 AMN H 1 AMN H > > > > > > > > > > > > > > > > > > > > > s s s s s s s 2 5 2 2 s s X X 2 2 Xz XXIz z zX z Xz Xz Xz Xz Xz Xz Xz Xz li X I X -sj -*j iiiiii -J -J 1-^1 ~-J "*J "**4 —J -^1 --J —g -^J -~l -*l -4 -J II -N| -•J ro to -g --i ro to ro ro rororofororirsr? ro ro to to ro ro ro ro K fO ro ->i -J ->i ~J -J -~J -J --I aaaN^-^^a. a. a. a. QL sO - Q. O. o" S S 3 |3| 3 3 3 3 3 3 3 CO to iiiillil <*> N> -* O ~^J o> en -fc- co rSo H-* O CO oo -NI o> ui

ro co J». ro ro ro to ro ro co co ro ro co co 4*. O) -^ U b) b) O) cno^Kaco^^Ki^^J^cnw^^^co^OTio^^a&co^-*-*0 -o-oo>-^il-»-a>rob> (O OO Nl J 0> CO CO 4*. —». 4^ -f»- -si Oi ^ -* -* co oo K OO OO o p p f3?3 r* ° °- o?3 p p -* o -* o oo oo ro oo ro rococo -si 4*. CD CD O -NI 4*. CO 4k CO -v S tO tO -o -o -o -o -o -o -o ; Q

-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O^O-O-O-O-O-O-O-O-k CO

•O-O-O-O-O-O-O-O-O-O-O-0-0-O-0-0-0-O--0-O-O-0-0-0-0-0-0-0--0-0-O-0-0-0

•O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O^J-O-O-O-O -O -O -O -O -O -O -O

•O-O"0-0-0-O-O-O-O-O-0-O-O-O-0-0-0-0->>-O-O-O-O-0-0-O-O-0-0-0-0-O-O-0

.oo-oo-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o

-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o

-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O^>-O-O-O-O-O-O-O-O-O*N>-O-O-O-O-O-O

•o-o-o-o-o-o-o-o-o->>-o-o-s>-o--ot-o-o-o-o-o-o-o-o-o-o-o--o-o-o-o--o->>-o->>

•o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o

•O-O"0'O-O-0-O-O-O-O«0-O-O-O-O-O-O-O-0^J-O-O-O->>-0-O-O-O-O-O~0-0-O-0

•0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0--0-0-0-0-0-0-0-0-0-0-0-0-0-0-0

-O -O -O -O -O -O -O "O "O -O -O -O -O -O -O -O -O -O -O -O -O -O -O -O -O -O ~o -o, -o -o -o

•0-0-0-0-0--0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0

•O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O^J-O-O-O-O-O

•o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o

•O -O -O O -O -O -O -O -O "O -O -O -O -O -O -O -O -O -O -O -O -O -O -O -O -O -O -O -O -O -O "O -O -O

•o-o-o-o-o-o-o-o-o-o-o-o-o-o-^-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o

"O -O -O -O -O -O -O -O -O -O -O -O -O "O -O -O -O -O -O -O -O -O -O -O -O -O -O -O -O -O -O "O "O "O lb > > > £ > > > > zzzzzzzz > > z S 2 S S zzz zzz 2 S z z z z z z z iliii X X I -*• X X X X ~4 -~i -J ~4 --J ^ -~l -*l -J -~l r IO IO IO K> llll 10 10 -- -- OJ jo IO IO K> IO O O O — — =± ^ :± _ _ — _*-*_* u u u ~J -M ->l -4 ^=-^0.0.0.0.0-0.0.0- SS3SS •iT-frHF7Q-Q-CLp.Q.tttt&Q. -vl O 01 -U OJ IO SSaaa o. o. a. 51? IO N O) Cft -^

_k-^_k_kIOIOIOIOIO ro -»• io wroiofowN)ro •o a> c*> t,* -^ *^> tn ;. 1*. b> -o ^ M

O CD O O O O O O O CD -* O O ^ a> -o •sbj^^^^^w^^^m^wwsNwi o S U M *° *• ->l CO * S N) o> to -»• o> oi -»• o> jw N> 0> CO -O --O -O -O -O -O -O -O -O -O -O -O -O -O

•o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o g •O-O-O-O-O-O-O^J-O-O

-«sj 0> "^ "^ ™*5 "^ "^ "^ "^ "^ "^ "^ ""** -o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o CO OO

-0^^-0^^^-0^^^^^^^-0-0--0--0-0-0*"0-0-0-0-0-0-0-"0-0-0-0-0-'0

•O-^5-O"0*O»0"0-O-O^0-O-O-S>-O->>-O-O-0--0-O-O"0-O->3-O-0-N>-O->>-O-O-O-O--0

•o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o^j-o-o-o-o-o-o-o

•O-O-O-O-O-O-O-O-O-O^J-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O o

^^^•0^^^^^-0^-0-0-0-0-0-0-0-0-0-0-0-0-0->>-0-0-0-0-0-0-0-0-0

•0-0^-0-0-0->3-0-0--0-0--0-0-0--0-0-0-0-0-0-0-S>-0->>-0-0^3-0--0->>-0-0--0-0 > -o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-%>-o-o-a-o-o-o«*>-o--o-o-o-o^3 o X

-0^^-0^^^^^^0^^-0--0-0--0--0-0~0--0-0--0--0-0-0-0-0-0-0-0--0--0-0

-O-O^^^^^^^^^^^^-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O

•0-0-0-0-NJ->5-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0--0-0-0->>-0-0-0-0-0-0-0-0 o

•0-0-0'0->3-0-\>-0^-0-0-0-0-0-0-0-0-0--0-0-0-0"0--0-0-0--0-0-0-0-0--0-0-0

•0-0-0--0-0"0-0--0--0-0-0--0--0-0--0-0-0--0--0--0-0--0-^i-0-0-0~0-0-0-0-0-0--0 3 3 > I 00 •o-o-o-o->>-o-o-o-o-o^-o-o^-o-o-o™o--o-o-o--o-o™o-o--o*o-o-o-o-o-o-o-o 5 I in 3 3 > ••0-0-0"0"0-0~0"0"0-0>-0-0-0-0-0--0-0-0-0-0-0-0"0"0-0-0-0-0-0-0-0-0-0-0 3 3

-•O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O

a .^3 -O -O -O -O "O -O -O -O "O -O -O -O -O -O -O -O -O "O -O -O "O "O -O "O -O -O -O -O -O -O -O -O "O 5 I in 3 3 Vk iiiiiililiiiiiiiliiiiiiiiiiiiiiiii 0> CO C*3 0000~>I->I-NI--4^I->I-*I CO CO CD IvJ |v> | en jk

-^OJT-'fOIOIOIOIOIOCOIOIOM. s •o -o -o • "* °""* ir*mU1 '.- ^v Ui»»l S-^ I O«••i» *^* **OiOlOlOOMSOOO• i»» i»* <••» fc.-» -^1 rvt *vOt ""jl 00 en -fc o> pop «o -o -o ~o -o -o en 4* en -0-0-0*0-0- -o -o -o -o -o -o

o> J*. «n M«2' *° °° -o-o-o-o-o-o-o-o-o-o-o-o-o-o-o 0;~-oi-j^~-o-o-o-o-o-o-o-1 5£ -,,J o

c^o>...... s^™.g -

o p p ^.o^.o.^^.o.o.o.o^.o^.o^.o.o^^.o.o^cj. (0(0(0 •o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o

-o-o-o-o^-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o^-o-o-o-o-o

•o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o

•O -O -O -O -O -O -O -O -O •o-o-o-o-o-o-o-o •O-O-O-O-O^^J-O-O-O-O-O-O

^•0^O^^O-oO~0^^-O-O-O-O-0^0-o9:_».-0-O-O-O^3-0^J-O-O-O-O-0-O CO OD OO Q> _. CM OO GO O O P P P P __». OO OO OO OO OO OO OO OO

•o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o

•0-0-0_».-0-0 0_k.0"0-0"0-0-0-0-0-0-0-0-0_». -o-o-o-o-o-o-o-o-o-o-o -* oo -*•

P O O CD •o-o-or^-o-oLk^-o-o-o-o-o-o-o-o-o-o-o-ol*. 8 -o-o-o-o-o-o-o-o-o-o

^•OOOO^Ol^(»0-0"0"0-0>)"0-0"0"OCnS-0-^-0-0-0-0-0-0-0-0"0-0-0

•0-0-OOi"0-0-0-0*0 0-0"0"0-0-0-0-0"0~0-0-0-0-0->)->)->J->)-0»0^)->)-0-0

-o-o-o*o-o-o--o-o-o-o-o-o--o--o-o-o-o-o-o-o-o-o-o--o--o-o-o-o-o-o~o--o-o-o

•oooo^^(n(n^^-o-o-o-o-o-o-o-0"0->)o>"0-o-o-»)-o-o-o-o-o-o-o-o-o

•O-O-O-O-O-O-O-O-O-O-O -O-O-O-O-O-O-O-O-O-O -O-O-O-O-O-O-O-O-O-O-O-O-O

•0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0--I-0-0-0-0-0-0-0-0-0-0-0 &> o g g O o a O O O O o o a ooogoooo 5 2 iiiiliilii (A 39022 r Z39022 r 39022 r 39022 r 39022 r Z ZZZZZZZZZz D

i i i i 3902 2 s s s s s s s z z z z Z Z Z Z z z z CO CO CO CO CO CO <0 CO CO CO CO CO CO CO CO CO CO CD CO CO Ua aM £ -* a a a a cooo-sjooon-ucoio

io IO 10 N IO N N IO k< M M N :•* io !° •o -o -o GO CO 1,0 CT> ho cn ^ en j* co ^ co OO IO O O CD p O o o pop o o _». _* o ifc. cn ^ CO j*.b o co co en co -o -o -o -o -o 5

CD CO -ocn-o4^-oo>^.«o -OO^^^-O-^OJ -o -o -o -o co cn

•O CT1 -O "° ^ •*** ™° "° K^»3 -o -o -o -o -o

•o -** -o -o -o *o "° "si -*.-O-O-0-O-0-O-O-0-O;...-O^0-O-0-»-

-O -O -O -O -O -O -%>-0-0-O-O-0«0~0-O-O-0-0-Oi~-O-O-0-0-O-0-O^5-O-O-0

-O -O -O -O -O -O -O -O O -O -O -O •O-O-O-O-O-O-O^-O-O-O-O-O-^'O-O-O^-J-O-O

4*.-oco-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o •o-o-o-o-o-o-o-o-o-o-o-o

-o-^-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o -o-o-o-o-o-o-o-o-o-o-o-o

•O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O

o o o o o o o 04 4 06 6 06 6 06 6 -o •o •o -o o -o -o -o -o LA -O -O g -o •o-o-o-o-o I§ -o -o -o -o

99 0 cn 99 0 0.06 6 0.08 8 0.08 8 0.08 8 0.1 1 p 0.1 1 0.1 1 p S3 ->» •o •o o -o -o -o -O -O -O -O -± _A GO •° w -° "° w "° CO IO IO s = -

-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o -o-o-o-o-o-o-o-o-o-o-o-o

o o o o o o o o o o •o -* •O •s3 O -O -O -O -O -O -O -O -O l_i. -O -O -O Li -O -O -O -O GO OO OO — o> -o -o -o -o CO GO GO cn IO cn 28 0.08 8 o O o O -O 1* •o 1». •O O -o -o -o ~o -o -o -o -o rt "O -o -o -o -o -o -o 00 CO L». -o -o -o -o GO IO

o>-o-o-^.cn-oo>-ocn-0"0-o-Ni-o-o-o-ooi-o-oo>-o-o*o-o-o-o-^.-oo>-o-o-o-o

•O"0"0'0-O0)"0-0-0-OS"0S"0"0-0"00l"0"\)(Jl'O"0"0"0-0-0^t^-0-O-O-0

•O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O0l-O-O-O-O-0-O-O4».4^-0-O-0-O

-00>-0 01-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OOl-0-0-0-0-0-00>-0-0-0-0

-o-0'Ocn-o-o-o-o-o-o-o-o-o-o-o-o-ocn-o-o-o-i^-^-o-o-o-o^.^^.-o-o-o-o

-o-0-o-o-o-ocn-ocn-o-o-o-o-o-o-o-o-o-o-o-o.^-o-o-o-o-o.^-o-o-o-o-o-o hb o o o o a o o o § § O O o o o o o o s s s CO z z z z z S S S S 2 S D z z z co co CO CO iiiiiiii a CO CO CO CO CO liiiiiii O) O) O) U O) m m o_ CD CO CO o o zz zz zz. CD CD O CO CO CO CO CO o O CD O CD CD O K K CO CO CO CO CO CO 3 W M W O O O O O K} KJ sSssssSM 5 M M NJ K SK CO CO CO CO CO CO M K) N fcj IO io io k> E? E? <0 KB oooooo a. Q- a. o- a. a. a. o. 3 3 3 3 3 -5" -a -a -o ft ft M IO M IO IO M OS O) Ul * CO U -i t « IO IO N) IO IO IO 3. 3. 3. 3. 3. 3. CD CO GO -J 0> Cn

-ft. . -ft CO O) . CO CO CO -ft -ft -ft. O •O • -O M M -o -o -o -o

O -ft -» P -ft o o o o •^D-O-O-O-O-^^-O-O-O-O-O-ft-O-O-O-^l^- I K^coSo^co-if-^^^-o^Jj-o-JcnJ" CD OO IO IO CO CO

--J ro -O-O-O-O-OOl-O-O -o -o ~o > v ••*> GO —*• (O ^. —k CD -^ Ol k> io

•O "O -O -O -O -O -O -O -0-»--0-0-0-0™0-0-0-0-0-0

-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o -o-o-o-o-o^-o-o-o

-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-^-o

•O-O-O^-O-O-0-O-O-O--s>--0-O-O-O-O-0--0-^>-O-O->>-O-0-O'O-0-0--0-0IO-0-O-0

•o-o-o2">i->>-^^^">i*^-^-0-^-^-^-^-^*^'^'>>->>-^-^-^-^-^->>**»>^^>-^-»>-<>

-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-a-o^^-o-o-o-o

o •o *o -o o -o •O-O-O-O-O-Og-Ol^-O-O-O-O-O-O-O-O-O -0-O^J-0-0-00-00-° CO -1 p -O -O -O O -o o^oo.^g^^^^^ -0-0-O^D->D-0-».-0

•0-0-0-0-0-0~0-0-0-*0-0-0-0-0-0-0~0->D-0-0-0-0->>-0-0-0-0-0-0-0-0-0-0-0

o o o ooy !-> "-> •o-o-oLft-o-oLftLftS.oo-o-052-0-0-^52 0 ° § ° s -° —ft —ft _A CO O O GO O) GO C3> 0> CD O p p -O i_ft. -O 1^ O -ort-o-ort^L^-o-o-o-oS-o-o-oS^—ft ~o -O -* D ^> ^D -O -O -O -O CO £*CO^ —ft —ft S& IO IO

^^^0)-0-0^TJ^^)-0*-0*-0-0-0-0^-0-0^-0^)-0-0-0-0-0-OCB-00)-0

-O-O-O-O-O-O-O-O-O-O-O-ft^-O-O-O-O-O-O-O-O'-O-'O-O-O-O-O-O-O-O-O-O-O-l^-O

•0-0-0-0-0-0-0-0-0-0-0-^-0~0-0-0-0-^>-0-0-0-^»-0-0-0-0-0-0-0-0-0-0-l».->>

•0-0-0-0-0->>-0-0-0-0-0-0-0.t».-0-0-0-OCO-0-0-0-0-0-0-0-0-0-0-0-OCJ1-0-0

"0-|ft>-0-0-0-0-0-0-^--0-0-|ft.«0^.-0-0-0-04*.-0^i-0-0-0-0->D-0-0-0-001Cn-0-l».

•-0-0"0-^"0-0-0-0-^-0-0.l^.*^-^-0-0-0-0-'0-0~0"0-0-0-0-0-0-0-0-OCJI-0-"0-0 Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.5mm AMO/.5mm ABD/.Smm PAD/.5mm PMD/,5mm PBD/.Smm DMN39022ld9 2.1 ? 4.5 4.8 ? ? ? 3.7 2.6 ? ? ? ? 0.088 0.11 ? ? ? ? 5 4 DMN39022ld10 2.3 ? 4.6 5 ? 4.5 4.5 ? ? ? 0.066 0.066 ? 0.066 0.088 6 5 ? ? 5 5 DMN 39022ld11 3.2 0.8 ? ? 0.9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? DMN39022ld12 2.3 ? 4.2 4.7 ? 2.8 2.8 ? ? ? 0.066 0.11 ? 0.088 0.132 5 4.5 4 5 ? 4 DMN39022ld13 2 0.6 3.2 3.8 ? 2.9 2.9 ? ? ? 0.066 0.11 ? 0.088 0.11 ? 5 4.5 ? 5 ? DMN 39022ld14 2.5 0.6 ? ? ? ? ? ? ? ? ? ? 0.088 0.088 ? ? ? 9 ? ? ? DMN39022ld15 ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42353rmt1 2 ? 1.2 ? ? ? ? ? ? ? 0.022 0.066 ? ? ? 8 ? ? ? ? ? NMMNH P-42353rmt2 3 ? ? ? ? ? ? 7 ? ? 0.088 0.132 ? ? ? ? ? 4.5 ? ? ? NMMNH P-42353rmt3 3.3 1.65 1.65 2.5 ? ? ? ? ? ? ? ? ? ? ? ? ? 9 ? ? ? NMMNH P42353rmt4 2 ? 4 5.9 ? ? ? 4.5 4.5 ? 0.088 0.132 ? 0.088 0.154 ? ? 4.5 4 4 4 NMMNH P-42353rmt5 4 1.2 1.65 9 ? ? ? 5 5 ? ? ? ? 0.11 0.154 ? ? 9 4 ? 4 NMMNH P42353rmt6 4 1 ? 8.4 ? 5.4 ? ? ? ? 0.11 0.132 ? 0.088 0.132 ? ? ? ? 4 4 NMMNH P-42353rmt7 3.5 1 ? ? 2.38 ? ? ? ? ? ? ? ? ? ? ? ? 9 ? ? ? NMMNH P-42353rmt8 3.5 1.2 ? ? 2.27 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42353rmt9 3 1.5 ? ? ? ? ? ? ? ? 0.088 0.132 ? 0.11 0.132 5 ? ? 4 ? ? NMMNH P42353rmt10 3.5 1.8 ? ? ? ? ? ? ? ? 0.088 0.132 ? 0.11 0.132 ? 4 ? ? ? 4 NMMNH P-42353rmt11 3.1 1.5 ? 4.6 ? ? ? ? ? ? 0.055 0.11 ? 0.11 0.132 ? 5 ? ? ? 4 NMMNHP-42353rmt12 1.5 1.5 ? ? ? ? ? ? ? ? 0.022 0.044 ? 0.044 0.088 ? 9 ? ? ? ? NMMNH P-42200lp1 1.1 ? 3.5 3.3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P42200lp2 1 0.5 1.1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200lp3 1.6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 9 ? ? ? ? NMMNH P-42200lp4 1.4 1 2.8 2.6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P42200lm1 1.3 ? 2.2 2.4 ? ? ? ? ? ? ? ? ? ? ? ? 9 ? 9 ? ? NMMNH P-42200lm2 2 0.4 3 3.1 ? ? ? ? 9 ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200lm3 ? ? ? ? 9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 9 ? NMMNH P-42200lm4 2.4 ? 4.1 3.6 ? ? 1.5 ? 9 ? 0.044 0.132 ? ? ? 5 ? ? ? 9 9 NMMNH P-42200lm5 2.2 1.1 3.4 3.5 9 ? ? ? 3.2 ? ? ? ? 0.044 0.11 ? ? ? ? 5 6 NMMNH P-42200lm6 2.3 1.5 4.3 4.6 ? ? ? ? 3.7 ? 0.066 0.088 ? 0.066 0.088 ? 4 9 9 9 5 NMMNH P-42200lm7 2.9 1.1 3.1 3.7 9 ? 1.97 3 3 ? 0.066 0.088 ? 0.088 0.088 4 4 4 ? 4 5 NMMNH P-42200lm8 ? ? ? ? 9 ? ? ? ? ? ? ? ? ? ? ? ? 9 9 ? ? NMMNH P-42200lm9 1.9 ? 3 3.6 ? ? 1.5 2.5 2.5 9 0.088 0.11 ? 0.11 0.11 4 ? 9 ? 4 5 NMMNH P42200lm10 1.9 1.2 2.5 3.1 ? ? 2.4 2.3 2.3 ? 0.088 0.11 ? 0.088 0.11 4 4 5 5 5 5 NMMNH P42200lm11 2 0.7 ? 2.6 ? ? ? ? ? ? 0.088 0.11 ? 0.066 0.088 ? 4 ? 4 5 5

7° Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown. Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.5mm AMD/.5mm ABD/.5mm PAD/.5mm PMD/.5mm PBD/.Smm NMMNH P-42200lm12 1.7 1.1 2.6 3 ? 1.8 1.8 2.4 2.4 9 0.066 0.088 ? 0.088 0.11 5 4 ? 5 5 6 NMMNHP-42200lm13 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200lm14 1.3 ? 1.8 1.9 ? 1.21 1.21 1.69 1.69 ? 0.088 0.088 ? 0.066 0.088 5 ? ? 5 5 5 NMMNHP42200lm15 0.704 0.95 1.1 1.056 ? ? ? 0.88 0.88 ? ? ? ? 0.066 0.066 ? ? ? 6 6 6 NMMNHP-42200tm16 1.3 1.1 1.6 1.7 ? ? ? 1.3 1.3 ? ? ? ? 0.066 0.088 ? ? ? 5 5 5 NMMNHP-42200lm17 1 0.8 1.1 1.1 ? ? ? 1 1 ? ? ? ? 0.066 0.088 ? ? ? 5 5 5 NMMNHP-42200lm18 1.2 0.8 1.2 1.3 ? 0.88 0.88 1.19 1.19 ? 0.066 0.066 ? 0.088 0.066 5 5 5 5.5 5.5 5.5 NMMNH P-42200lm19 0.8 0.5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200lm20 0.6 0.7 0.9 1 ? ? ? ? ? ? 0.088 0.088 ? 0.088 0.088 6 6 6 6 6 6 NMMNH P-42200lm21 1.1 0.3 0.9 1 ? ? ? ? ? ? ? ? ? 0.044 0.066 ? ? ? ? ? ? NMMNH P-42200rd1 1.2 ? 1.9 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200rd2 ? ? 1.2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200rd3 1.2 ? 2.5 2.7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200rd4 1.2 0.8 3.2 3.6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200rd5 1.6 1 3 3.3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200rd6 1.5 1.2 3.9 4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200rd7 1.5 0.9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200rd8 1 0.3 2.4 2.4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200rd9 1.2 0.6 2.4 2.7 ? ? ? ? ? ? ? ? ? 0.088 0.11 ? ? ? ? ? ? NMMNH P-42200rd10 1.2 0.1 2.3 2.4 ? ? ? 1.024 1.024 ? ? ? ? 0.088 0.088 ? ? ? 7 7 7 NMMNH P-42200rd11 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200rd12 1.5 0.4 2.6 3.1 ? ? ? 1.28 1.28 ? ? ? ? 0.066 0.088 ? ? ? 5 5 5 NMMNH P42200rd13 1.4 0.4 3.3 3.4 ? ? ? 1.92 1.92 ? ? ? ? 0.066 0.11 ? ? ? 5 5 5 NMMNH P-42200rd14 1.6 ? 3 ? ? ? ? ? ? ? 0.088 0.11 ? 0.088 0.11 ? ? ? ? ? ? NMMNH P-42200rd15 1.6 0.4 2.6 3.1 ? ? ? 1.88 1.88 ? ? ? ? 0.11 0.11 ? ? ? 5 6 6 NMMNH P-42200rd16 1.7 0.5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200rd17 1.7 0.5 2.1 2.8 ? ? ? 4.8 4.8 ? ? ? ? 0.066 0.088 ? ? ? 5 5 5 NMMNH P-42200rd18 1.5 0.4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200rd19 0.9 0.4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200rd20 1.7 0.4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200rd21 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42200rd22 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50530lp1 2.7 ? ? ? 1.9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50530lp2 2.5 1 7.7 9.4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown. Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.5mm AMD/.5mm ABD/.5mm PAD/.5mm PMD/.5mm PBD/.5mm NMMNH P-50530lp3 3.3 0.5 ? ? 3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50530lp4 1.8 1 6.3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50530lm1 2.3 ? 4 4.6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50530lm2 2.2 1.8 3.6 4.6 ? ? ? ? ? ? 0.044 0.066 ? 0.066 0.088 ? 6 ? ? 5 ? NMMNH P-50530lm3 4.3 2.6 9.3 12.3 ? ? 5.01 ? ? ? 0.088 0.088 ? 0.088 0.11 5 5 ? 5 4 ? NMMNH P-50530lm4 ? ? 2.7 ? ? ? ? ? ? ? 0.088 0.11 ? 0.088 0.11 6 5 ? 4 ? ? NMMNH P-50530lm5 5.5 1.3 11.35 12.4 ? ? ? 9.9 9.9 ? 0.088 0.088 ? 0.132 0.132 5 4 ? 5 4 4 NMMNH P-50530lm6 ? ? 5.1 ? ? ? ? ? ? ? 0.088 0.11 ? 0.088 0.11 4 4 ? 4 ? ? NMMNH P-50530lm7 4.7 ? 9.4 11.24 ? ? 4.5 9 9 ? 0.088 0.11 ? 0.11 0.11 5 4 4 4 4 4 NMMNH P-50530lm8 5,81 1.5 9.24 13.74 ? ? 7.56 8.22 8.22 ? 0.066 0.132 ? 0.11 0.132 4 ? ? 4 4 4 NMMNH P-50530lm9 5.68 0.57 ? ? 1.56 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50530lm10 5.9 0.56 ? ? 1.3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50530lm11 ? ? ? ? ? ? ? ? ? ? 0.088 0.099 ? 0.11 ? 5 ? ? 5 ? ? NMMNH P-50530lm12 3.12 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50530lm13 4.8 ? 5 ? ? ? ? ? ? ? 0.088 0.11 ? 0.11 0.088 5 4 ? 5 4 ? NMMNH P-50530rp1 2.3 ? 8.6 8.6 ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50530rp2 2 0.6 ? ? 1.2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50530rp3 3.13 ? 9.72 9.9 2.8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? NMMNH P-50530rp4 ? ? ? ? ? 5.02 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50530rm1 2.87 ? 6.32 ? ? 4.32 ? ? ? ? 0.044 0.044 ? 0.088 0.11 ? 7 ? ? ? 5 NMMNH P-50530rm2 4.07 0.6 7 8.78 ? 6.08 3.63 ? ? ? 0.044 0.088 ? ? ? 5 5 5 ? ? ? NMMNH P-50530rm3 4.3 1.79 7.9 9.63 ? 6.32 2.81 ? ? ? 0.11 0.11 ? ? ? 5 4.5 4.5 ? ? ? NMMNH P-50530rm4 4.16 1 ? ? ? ? ? ? ? ? 0.066 0.088 ? ? ? ? ? ? ? ? ? NMMNH P-50530rm5 5.54 1 6.87 9.79 ? 6.37 6.37 8.5 8.5 ? 0.11 0.11 ? 0.132 0.11 5 4 4 ? ? 4 NMMNH P-50530rm6 4.9 0.75 ? ? 1.86 ? ? ? ? ? 0.11 0.11 ? ? 0.11 5 ? ? 5 ? ? NMMNH P-50530rm7 5.47 1.29 8.84 10.2 ? ? ? ? ? ? 0.132 0.11 ? ? ? 5 4 4 ? ? ? NMMNH P-50530rm8 5.06 0.92 5.5 ? ? ? ? ? ? ? 0.088 0.11 ? 0.11 0.11 ? ? 4 4 4 4 NMMNH P-50530rm9 4 1.51 ? 8.5 ? 8.6 8.6 ? ? ? 0.088 0.088 ? 0.132 0.11 5 4 4 ? ? 4 NMMNH P-50530rm10 4.57 0.71 9.74 11.39 ? 7.18 7.18 8.53 8.53 ? 0.11 0.11 ? 0.154 0.11 4 4 5 4 4 4 NMMNH P-50530rm11 4.26 0.75 ? ? ? ? ? ? ? ? 0.088 0.088 ? ? ? ? ? 5 ? ? ? NMMNH P-50530rm12 6.36 1 ? ? 1.7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50530rm13 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50530rm14 4.2 0.95 ? ? ? ? ? ? ? ? ? ? ? 0.088 0.11 ? ? ? ? ? 4 NMMNH P-50529rd1 1.7 ? ? ? 1.08 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown. Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.5mm AMD/.5mm ABD/.5mm PAD/.5mm PMD/.5mm PBD/.5mm NMMNH P-50529rd2 1.4 0.3 3.5 4.1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50529rd3 2.2 0.8 6.5 7.1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50529rd4 2.4 0.7 4.2 4.9 ? ? ? ? ? ? ? ? ? 0.066 0.088 ? ? ? ? ? 5 NMMNH P-50529rd5 3 0.3 8.2 8.3 ? ? 2.45 5.84 5.84 ? 0.066 0.066 ? 0.088 0.088 7 6 6 5 4 4.5 NMMNH P-50529rd6 2.9 0.3 5.4 5.9 ? ? 2.85 5.03 5.03 ? 0.066 0.066 ? 0.11 0.11 7 6 6 6 4 4 NMMNH P-50529rd7 2.56 0.5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50529rd8 2.7 0.4 6.31 6.31 ? 2.34 2.34 4.36 4.36 ? 0.066 0.088 ? 0.088 0.11 7 6 5 6 5 5 NMMNH P-50529rd9 2.24 0.99 0.6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50529rd10 2.8 0.57 5.34 6.03 ? 2.64 2.64 4.69 4.69 ? 0.066 0.088 ? 0.088 0.11 6 6 6 5 4.5 5 NMMNH P-50529rd11 3.1 0.38 0.9 ? ? ? ? ? ? ? 0.066 0.088 ? 0.066 0.088 6 ? ? 6 ? ? NMMNH P-50529rd12 2.97 0.57 5.51 6.31 ? 3.06 3.06 4.93 4.93 ? 0.088 0.088 ? 0.11 0.11 5 5 5 5 4 5 NMMNH P-50529rd13 3.17 0.8 2.1 ? ? ? ? ? ? ? 0.066 0.066 ? 0.088 0.11 6 ? ? 5 ? ? NMMNH P-50529nJ14 3.27 0.47 5.96 6.67 ? ? ? ? ? ? ? ? ? 0.11 0.11 ? ? ? ? 4 4 NMMNH P-50529rd15 3.51 0.41 2 ? ? ? ? ? ? ? 0.088 0.088 ? ? 0.088 6 ? ? 6 ? ? NMMNH P-50529rd16 3.35 0.66 5.35 5.4 ? ? ? ? ? ? ? ? ? 0.11 0.11 ? ? ? 4 4 ? NMMNH P-50529rd17 3.45 0.61 2.5 ? ? ? ? ? ? ? 0.088 0.088 ? 0.088 0.11 5 5 5 4 ? ? NMMNH P-50529rd18 3.32 0.64 ? ? ? ? ? ? ? ? 0.044 0.088 ? 0.11 0.11 ? 5 5 ? 4 4 NMMNH P-50529rd19 3.64 0.8 ? ? ? ? ? ? ? ? 0.088 0.088 ? 0.11 0.11 6 5 5 5 4 ? NMMNH P-50529rd20 3.39 0.84 4.79 5.49 ? 3.55 3.55 4.39 4.39 ? 0.088 0.088 ? 0.11 0.11 5 5 5 4 4 4 NMMNH P-50529rd21 2.89 0.68 ? 5.2 ? ? ? ? ? ? 0.088 0.066 ? 0.088 0.11 5 5 5 ? 4 4 NMMNH P-50529rd22 3.29 1.09 ? ? ? ? ? ? ? ? 0.088 0.088 ? 0.132 0.132 ? ? 5 ? ? 4 NMMNH P-50529rd23 3.15 0.72 4.28 4.63 ? 3.3 3.3 3.29 3.29 ? 0.088 0.088 ? 0.088 0.11 5 ? 5 4 4 4 NMMNH P-50529rd24 2.4 0.83 0.9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-50529rd25 2.8 0.74 3.15 3.19 ? 2.88 2.69 ? ? ? 0.088 0.088 ? 0.11 0.11 5 5 5 ? 4 4 NMMNH P-50529rd26 2.18 0.34 2.35 2.28 ? 2.18 2.18 2.02 2.02 ? 0.088 0.088 ? 0.132 0.11 5 5 5 4 4 4 NMMNH P-44551U ? 7 3.66 ? 6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-44551rm1 0.9 ? 2 2.4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-44551rm2 2.28 0.8 4.66 5.6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-44551rm3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-44551rm4 2.8 0.96 6.31 6.8 ? ? ? 5.58 4.3 ? ? ? ? 0.11 0.11 ? ? ? 5 5 5 NMMNH P-44551rm5 2.88 0.87 6.26 6.92 ? ? ? 5.31 5.31 ? ? ? ? 0.11 0.11 ? ? ? 5 5 5 NMMNH P-44551rm6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-44551rm7 3.06 ? 5.38 6.23 ? 3.3 3.3 4.54 4.54 ? ? 0.088 ? 0.11 0.11 5 4.5 5 5 4 4 NMMNH P-44551rm8 3.41 1.16 2 ? ? ? ? ? ? ? 0.484 0.088 ? 0.066 0.066 5 ? ? 5 ? ?

00 Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown. Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.5mm AMD/.Smm ABD/.5mm PAD/.5mm PMD/.5mm PBD/.5mm NMMNH P44551rm9 3.05 1.16 5.07 6.91 ? 3.54 3.54 4.89 4.89 ? 0.088 ? ? 0.11 0.11 5 5 5 5 4 4 NMMNH P-44551rm10 3.66 ? ? ? ? 3.55 3.55 ? ? ? ? 0.088 ? 0.11 0.132 5 5 5 5 4 ? NMMNH P-44551rm11 3.14 ? 5.49 5.82 ? 4.94 4.94 5.09 5.09 ? ? 0.088 ? 0.11 0.11 5 4.5 5 4 4 4 NMMNH P-44551rm12 3.25 ? 4.17 ? ? ? ? 3.54 3.54 ? 0.066 0.088 ? 0.11 0.132 7 5 5 4 4 4 NMMNHP-44551rm13 2.86 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-44551rm14 2.7 ? ? ? ? ? ? ? ? ? ? ? ? 0.11 0.11 ? ? ? ? ? ? NMMNHP-44551rm15 ? ? 3.7 ? ? ? ? ? 3.74 ? ? ? ? 0.132 0.11 ? ? ? 4 4 5 NMMNH P-42579rp1 2 0 4.8 5 ? ? ? 4.7 0 ? ? ? ? ? ? ? ? ? 0 0 0 NMMNH P-42579rp2 3.22 ? 8.04 ? 1.58 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 NMMNH P-42579rp3 3.7 7 ? ? ? ? ? ? ? ? ? ? ? ? 7 ? ? ? ? ? ? NMMNH P-42579rp4 2.4 ? ? ? 1.9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42579rm1 2.5 ? 5.31 2.8 ? ? 0 3.97 3.97 0 0 0 ? 5 3 0 0 0 ? ? 5 NMMNH P-42579rm2 3.3 ? ? ? ? ? ? 3.7 3.7 ? ? ? ? 5 5 ? ? ? 5 5 6 NMMNH P-42579rm3 3 ? ? ? ? 5.7 5.7 ? ? ? 4 3 ? ? ? 6 4.5 5 ? ? ? NMMNH P-42579rm4 4.7 ? ? ? 1.82 ? ? ? ? ? ? ? ? 4 4 ? ? ? ? 4 4.5 NMMNH P-42579rm5 4 1.7 ? ? ? ? ? ? ? ? 5 3 7 ? ? ? 4 4.5 ? ? ? NMMNH P-42579rm6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42579rm7 ? ? 9.68 9.9 ? 7.5 7.5 ? ? ? 5 5 ? ? ? 5 4 4 ? ? ? NMMNH P-42579rm8 ? 6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42579rm9 4.5 5 7.02 9.8 ? 8 7.4 ? ? ? 5 4 ? ? ? 4.5 4 4 ? ? ? NMMNH P-42579rm10 ? ? ? ? ? ? ? ? ? ? 4 3 ? ? ? ? ? ? ? ? ? NMMNH P-42579rd1 5 ? 1.5 1.5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42579rd2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42579rd3 2.3 ? 4.6 5.5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42579rd4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42579rd5 3 5 4.5 5.8 ? ? ? ? ? ? ? ? ? 4 4 ? ? ? ? 4 5 NMMNH P-42579rd6 ? ? ? ? ? ? ? ? ? ? ? ? ? 5 3 ? ? ? ? 4? ? NMMNH P-42579rd1? 2.2 ? ? ? ? ? ? ? ? ? ? ? ? 5 4 ? ? ? ? ? 4.5? NMMNH P-42579rd2? 2.3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? ? ? ? ? NMMNH P-42579lp1? 1.5 ? 6.7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42579lm?1 ? ? ? ? ? ? ? ? ? ? 4 3 ? ? ? 6 5 ? ? ? ? NMMNH P-42579lm?2 ? ? ? ? ? ? ? ? ? ? 5 4 ? ? ? ? 4 4 ? ? ? NMMNH P42579lm?3 3.7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-42579lm?4 1.5 ? ? ? ? ? ? ? ? ? 5 4 ? ? ? ? 4 ? ? ? ?

Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown. Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.5mm AMO/.Smm ABD/.Smm PAD/.5mm PMD/.5mm PBD/.5mm NMMNH P-42579lm?5 ? ? 7 ? 7 ? ? 7 ? ? ? ? ? ? ? ? ? ? 7 7 ? NMMNH P-42579lm?6 7 ? ? ? 7 ? ? 7 ? ? 5 4 ? ? ? 5 4 ? ? ? ? NMMNH P-42579lm?7 7 7 ? ? ? 7 ? ? 7 5 5 4 ? ? ? ? 4 4 ? 7 ? NMMNH P-42579lm?8 7 7 ? 7 ? ? ? 7 ? ? ? ? ? ? ? 7 ? ? ? ? ? NMMNH P42579lm?9 ? 7 ? ? ? ? ? ? ? ? 5 5 ? ? ? 4 4 4 ? ? 7 NMMNH P-42579lm?10 7 7 ? ? ? ? ? ? ? ? 5 4 ? ? ? 4.5 4 ? ? ? ? NMMNH P-44555lp1 1.4 7 ? ? 7 ? ? ? 7 ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-44555lp2 ? ? ? ? ? 7 ? ? ? 7 ? ? ? ? ? ? ? ? ? ? ? NMMNH P-44555lmt1 3.31 7 7 7 ? ? ? 7 ? 7 ? ? ? ? ? 5 ? ? ? ? ? NMMNH P-44555lmt2 4.8 7 ? ? 17 ? ? ? ? ? 7 ? ? ? ? ? 7 ? ? ? ? NMMNH P-44555lmt3 4.8 7 7.93 ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? ? ? ? NMMNH P-44555lmt4 3.2 7 ? ? 7 ? ? ? 7 ? ? ? ? ? ? ? ? ? ? ? ? NMMNH P-44555lmt5 2.6 7 ? ? 1.15 ? ? ? ? 7 ? ? ? ? ? ? ? 7 ? ? ? NMMNH P-44555lmt6 3 7 7 ? ? ? ? ? ? ? ? ? ? ? ? ? 9 ? 7 7 ? NMMNH P-44555lmt7 3.2 ? ? ? ? ? ? ? ? ? 4 3 ? 5 4 5 ? ? ? 4 4.5 NMMNH P-4455Slmt8 3.1 ? 2.4 5 ? 3.87 3.87 ? ? ? 4 3 ? ? ? 5 5 5 7 ? ? NMMNH P-44555lmt9 2.6 0.5 4 5 ? ? ? ? 7 ? ? ? ? ? ? ? ? ? ? 7 ? NMMNH P-44555lmt10 2 0.7 3 4.3 ? 3 3 3 3 ? 3 4 ? 4 4 6 5.5 5.5 5 5 5 NMMNH P-44555lmt11 1.9 0.5 ? ? ? 7 ? 7 ? ? 4 3 ? ? ? ? 6 7 ? 7 ? NMMNH P-44555lmt12 3.2 7 ? ? ? ? ? ? ? ? ? ? ? ? ? 7 ? 7 7 ? ? NMMNHP-44555lmt13 3 ? ? ? ? ? ? ? ? ? 7 ? ? ? ? ? ? ? ? ? ? NMMNH P-44555lmt14 3.5 ? ? ? ? ? ? ? 7 ? ? ? ? ? ? ? ? ? ? ? 7 NMMNHP-44555lmt15 2.1 0.7 1.9 2.7 ? 2.7 2.7 1.9 1.9 ? 3 3 ? 4 3 7 7 6 ? 7 ? NMMNH P-44555lmt16 2.3 0.5 3.5 3.5 ? 3.5 3.5 3.5 3.5 ? 4 4 ? 4 5 ? 5.5 ? ? 5 7 NMMNH P-44555rp?1 15 7 50 55 ? 7 7 7 ? ? ? ? ? ? ? ? 7 ? ? ? ? NMMNH P-44555rm?1 43 ? 7 ? ? ? ? ? ? ? ? ? ? 5 5 ? ? ? 7 5 4.5 NMMNH P-44555rm?2 7 ? ? ? ? ? ? ? 7 ? ? ? ? ? 9 ? ? ? ? ? ? NMMNH P-44555rm?3 ? ? ? ? ? 7 ? ? ? ? 7 ? ? 5 3 ? ? ? 5 9 5 NMMNH P-44555rm?4 4.11 ? 6.87 7 ? ? 7 7 ? ? 4 3 ? 5 4 5 4.5 ? 6 4 4 NMMNH P-44555rm?5 32 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 9 ? NMMNH P-44555rm?6 3.82 ? 6.47 7.94 ? 6.03 6.03 6.47 6.47 ? 4 3 ? 4 5 5 4.5 4 5 4 4 NMMNH P-44555rm?7 ? ? ? ? ? ? ? ? ? ? 9 ? ? ? ? ? ? ? ? ? 9 NMMNH P-44555rm?8 3.92 ? 6.71 9.05 ? 6.46 5.64 6.71 6.71 ? 4 ? ? 5 4 5 ? 5 5 4 4 NMMNH P-44555rm?9 3.15 0.65 4.24 5.54 ? 4.77 4.77 4.24 4.24 7 4 3 ? 5 4 7 5 5 5 9 4

Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown. Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.5mm AMO/.5mm ABD/.5mm PAD/.Smm PMD/.5mm PBD/.5mm NMMNH P-44555rm?10 2.22 ? 1.98 ? ? ? ? ? ? ? ? ? ? 4 5 ? ? ? ? 5 ? NMMNH P-44555rm?11 2.07 0.3 1.98 2.04 ? 2.04 ? 1.98 1.98 ? ? ? ? 4 5 ? ? ? 5 5 5 AMNH 7240lp1 ? ? 3.82 ? 1.34 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240lp2 2.46 6 ? ? 1.71 ? ? ? ? ? ? ? ? ? ? ? ? 1 ? ? ? AMNH 7240lp3 2.18 0.42 ? ? 1.61 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240lp4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7240lm1 2.65 ? ? ? 1.6 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240lm2 2.87 1.39 ? 6.21 1.37 3.73 3.73 5.27 5.27 ? 4 3 ? 5 4 6 5 5 5 4 ? AMNH 7240lm3 3.85 18 8.39 8.58 1.83 0 ? 60 60 ? ? ? ? 4 4 ? ? ? 4.5 4 4 AMNH7240lm4 42 22 60 97 ? 78 56 68 68 ? 6 4 ? 6 6 4 3.5 ? 4 3.5 3.5 AMNH 7240lm5 4.14 ? ? ? ? ? 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7240!m6 4.15 ? ? ? ? ? ? ? ? ? ? ? ? 6 5 ? ? ? ? ? 3 AMNH 7240lm7 4.92 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7240lm8 4.34 1.36 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240lm9 5.05 1.27 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240lm10 3.89 0.99 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240lm11 5.18 1.54 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240lm12 ? 1.31 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240ld1 1.55 ? ? ? 1.52 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 9 ? AMNH7240ld2 1.57 ? ? ? 1.55 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240W3 1.87 ? ? ? 1.57 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240W4 2.73 5 ? ? 16 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240W5 28 3 ? ? 16 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7240W6 29 1 ? ? 17 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7240W7 24 3 2.97 ? ? ? ? ? ? ? ? ? ? 4 5 ? ? ? ? ? 4 AMNH 7240ld8 ? 4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH 7240W9 27 ? ? ? ? ? ? ? ? ? 3 4 ? 5 5 ? 5 ? ? 4 4 AMNH7240ld10 ? 4 ? ? 15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240W11 30 3 60 65 ? ? ? ? ? ? ? ? ? 4 5 4 ? ? 4 4 4 AMNH7240ld12 ? 0 ? ? 14 ? ? ? ? ? ? ? ? 5 5 ? ? ? ? ? 4 AMNH7240ld13 35 3 ? ? 15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240ld14 33 7 ? ? 13 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240W15 41 3 ? ? 13 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? AMNH7240W16 35 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown. *eoi

> > > > > > > > > > > > > > >>>>>>>>>>> >>>>>>>>> Spe c zsssssmssssssss z z z z z z z z z z z z z ZZZZZZZZZ^Z ZZZZZZZZssssssssZs X X X X X X X X X X X X X X xxxxxxxxx -J -vl ->l •>! ~*l ^1 -N| ->l -»l ^1 •^4 -N| ^1 ^1 -S|-NI-N!-VI-*I->4-*I->I->I IO IO ro N> IO ro to IO to IO ro ro to ro xxxxxxxxx^^ .u .u .U-tv.b.-b..b..b..b..b.-t>torororprototororo. Ul | o* . .&O . o* . O* . *O . o* . O* . *O . o* . o* . o* . o*» o o tororororororororo^^? OOOOOOOOO 35 a. a. a. a. a. oooooooooss 0.0.0.0.0.0.0.0.0. r5.o 3IO. r3o. 3ho. 3. 3. 3. 3. 3. rorororororo-^-^-* c*> N] o CO as -^i o> ai -T*. c*> ro —^o 3.3.agadcl3.clg& Cn^UM^OtDmS > a- cr W^.WWQ.WUW-^QMMWMWIO, <

1 £*• •0 0"0-0 0-v3-0-0'>)-0->)M*>NWN3^-0-*N^-0-0-OM'0-OWIOMW >)W-0 o' O -O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O o Q. CD -O-O -O-O-O-O-O-O-O' -o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o II (5° •O-O-O-O-O-O-O-O-O-O^^OJig^y^^^^gj^^MCOQ-Oojo^-O^-Ou

-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O -o-o-o-o-o-o-o-o-o-o-o-o-o

% •O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O- •O-O-O-O-O-O-O-O-O-O-O-O-O TO II -O -O -O -O -O -O -O -O -O -O -O -O -O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O' | -o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o

i-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O —o-o-o-o-o-o-o-o-o-o-o-o-o-o-o 3 n -O-O-O-O-O-O-O-O-O- -o -o -o -o -o-o-o-o-o-o-o-o-o- 1 "O-O-O-O-O-O-O-O-O-O' •o-o-o-o-o-o-o-o-o -o -o -o -o -o -o • a. -O -O -O -O -O -O -O -O -O -O -O -O -0-0-0-0-0-0^>-0-0^-0-0-0-0-0-0-0-0 II

-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o -O-O-O-O-OOl-O-O-O-O-O-O

I -O -O -O -O -O -O -O-O-O-O-O-O-O-O-O-O-O-O-O-O-O -O -O -O • -o *. -o -o -o -o

8 -o-o-o-o-o-o-o-o •o-o-o-o-o-o-o-o-o-o-o-o-o-o-o -o -o -o -o -o -o -o 9J. < CD O. -O -O -O -O -O -O -O -O -O-O-O-O-O-O-O-O-O -O "O-O-O-O-O-O-O-O-O-O-O-O-O- c CO 3 C 3 •o *o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o O" (D 3 3 -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o •o-o-o-o-o-o-o-o -o-o-o-o-o-o-o-o i 3

•O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-OJv-O-O-O-O-O-O

-o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o -o ~o -o -o -o -o -o -o -o -o £01 lilillllllllllllllllllllllllllllll

-OC03M-^-0-^^-OW-^"0-0--0-N>-0--0-0"0--0-0-0--0-0-0-OCOIO-OrOO>-0-0-0

3 ^-O-O^-O-O-O-O-O-O'O^-O^-Ofvj-O$;-O-0g5-O-O-0-Ojik--0--0--0-0-0^s|00->

•O^OS*^-^"0-^"0-0"0*0"^^!-^-^ -0-Ojr.O~0-0.0--0-p-0-0.0-0-0-0

-•0-0--0-0"0-0~0-0-0->l-*l-0-0-0-0-0-0-0-0-0-0-0-0' CO "^ ->| ->• O Oi o -o -o -o ^^^^^.^S.^g..^^.^.....^

•oo-o^^o^-oo-o-o^^S-J^-Jio-J^ip-o^^^^^-o^^-o-o^

-O -O -O -O -O -O -O -O -O -O "O -O •^•o-o-o-o-oS-o ^io-o-o-o-o-o-o^j-o

OOOO-OO-O^OO-O-O-OS^^-O^^^S^-'^^CD-O^^^^^O

••o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o^a-o-o-o-o-o-o

-O-O-O^-O-tk-OA-'O-O-O-^-JUl-OUl-OOl-OUlOlUl'O-O-OUI-O-O^'O-O-O-O

-o-o-o--o-o^-oc*>-o-o-oco-o^.-o-^-oc»>-o^.-^.o>-o-o-o^-o-o--o--o-o-o-o-o

-0-0-0-0-0-0-0-0-0-0-0--0-0-0-0-0 -o-o-o-o-o-o-o-o-o-o~o-o-o-o-o-o

-O-O-O-O-O-O-OOlOl-O-OOl-OOl-OOl-OOl-O-OWOl-O-O-OOl-O-O-O-O^-O-O-O

-0-0->)"0>)-0-OOlA-0-0-^-00«"OOl-OOl"0"00)*-0-0-0(»"0-0-0-0*k-0-0-0

-O-O-O-O-O-O-O-O-NJ-O-O-O-O-O-O^-O^-O. -O-O-O-U-O-O-O-O-O-O

CO CO "O -O -O -O -O -O -O -O -O -O -O -U «0 -tk -O *• "J. >l.. CwO>l." - ,J"0">,w"0"0~0"0"0"d"0"0 en en

"O -O "O -O -O -I*. -O • -0^-0^-0*».-0™0~0"0"0-0--0-0-0-0-0-0-0-0--0"0

•o-o-v3-oo*o---oo^4»..oo.^a.^i-<.-o*.o>-o^-o*.-o-o-o^,-o

oooo^>o-o*.o-o-oco-o*.^,*.^*.-o^><»--^>-o^>--^>^>^>^-o^^^

O O O O O -O O O *. -o O -O -O *. -o *. -o -o -o -o « -o -o o -o J~ -o o o -O J* CO W O- ^

loiop-ioio^^^-^p-p-^t'tc*" ^- C*- O- O" ^- ^- C- C- O- O" O" O- C~ C- C- O- IO O"

C^^CDC^C^C^C^O--iOIOC^C^C^I^tOCDlO^C^C^<^-C^-C^C^C^-C^C^Cs-C'-C"

o-- co e-- 10 e*- o- o~ o- -*r c^- c-- e*- c^- o» O- O" O- O- •* ^J" O- C*» O" C- O- C>-- O- C- C-- O-- C- **

O

c^o-c^cocou^toc^c^c^c^c^coior^c^c^r^c^coc^^-c^c-c^-c^-c^c^c^c^c^-o-c^-in

C0COC^^C*^lO^^C^C^lOCOlOC^C^IOC^^C^^C^C^C>-C^-C^C^C^O-C^C*-0~^0-

^•o-io^-^-iotwc-p-^-mioc-c-ioc-^-c-io^-c-c-p-c-o-o-c-c^c-p-^-C'-

e- c- o- o- c- e~ C^C^O-C^C^C^C^C^C^C^C--C>-C--C-C-0-C^-C^-C^-C--C,'-C^C^C^-C--C--

c^cNi^nw^Tr^coc-o-ncoo-np-c-o-c-c-^^o-c-c^c^c^c^c^p-o-^c-N

c-coc-co^io^-o-ioc-^^^-^^-c-c-c-c^c^^^c-c-^-c-c^o-^-e^^^c-n

C- C- c~ O" c- c- 0-C^O-C^C^C^C^C^C^C^C^C^C^C^C^C^C^C"O~CN--0-0-0~0-0--C-^-T- LAD- W

O- 1^- c- c*- coc^c^c^c^c^c^c^c^c^c^c-c^-c^fcc--c--c^c-c^-oc^-c^c--c^-c^ 6. 2

in 7.0 9 PCD L

o o- c^- ! o~ c- c- o- c- o- CN-C-C-C^OJ^CVC-C--C^C»^C^-C^

in 6. 2 PC L IO 7.0 7

o- IO c- e~ O- c-^c-o-c-c-c-^c-c-o-c-c-c-c-c-c-c-c-c-; 5.1 2 ACD L

o- •n c- c~ c- o> c^- o c- c- c^- c- i c-c-c-o-SJo-c-c-c-c-c-c-o-c-c-c-cv. 5.1 2

o- c- c- C-

in in c- c- O- C- C«- O- C- C-

in 7. 6

CO 7.3 6 Cur v

n CO o* o- fc ! c- c- S- o- o- o- c~ o~ in 6. 2 .o~

« 7.0 9

o- C-- o- C- ^r O r^c^c^cr)c^c^c^co^c^c^c^c^r^r^ooc^c^c^c^-c^c--c^c^cfc-ck-o--C" IA D

IO CO co IO c- IO o> cv- J2 : CM CM CO AB L CO CO

CM CO ^•incor*-coa>o*-cMco^- .. . - _ . oo o> r: I. 2S32222232SS iiiiiifiiiEEEEElEii111??il2222 F F iotoiomioioioif5if2 5 mmioinioinmin^^ ik in CO CO ggggggggn sn illllllllllli filing > > I ^§ iiiiiiiifi ?? ffiiiiiiiifii iiifili if

901

S s ss ss s s s s s s >Z -illillii illll<£55 < < <^ £5 Illll o> o3 o3 CO CO CO CO < < 5 55^1 CO CO CO CO CO CO < < II Is «w«wwcowwCO CO GO &„„sSS££S£££S£S£wS£222CO CO 2 g en en en en woioioioioionnoiyn^y< < < < < gggg, g 9? a OO OD CO CO CO CO CO ?* aM aIO aIO a-* CO CO CO CO l^i Hill ro -»• o co aaaaaaaaa^^m = r > III o- 0 0 0 -O K "O -O "O -"O 3 •°0>~ "£ "° oo £> ^ ™ < 21 -o -o -o -o -o "O -o -o -o "O -o "O --o -o ~o -o "O -o "O "O "O en to en *> -o -o -o --o ~o o> -o -o -o o' IO (O CO 3 CO (3) M ^^-o-o-o-o-o-o^-oK^-'^^^S^^^ O -». io en o Q. .o^So..™^^^^^^^^^^.,^ (D

CQ .o^.o^o^^^.o.o^^^«g^^^^.o^^^^^^^^^.o^^^^^ 3" -o^o^^q^o^^^^^-o-o-o-o-o^^^^^^K •o -o -o -o -o -o -o

^-oo^^^-o^-oo-o-o-o-o-o-o-^^^-o^^^-o^-o-o^^-oo-o^-o •o II -O-O-O-O^J-O-O-O-O-O-O-O-O- •o-o-o-o-o-o-o-o^K^-o-o-o-o-o-o^-o

3 -o o -o -o -o -o -o "O o -o -o -o -o -o -o o -o -o -o -o -o «o ~o o K >> -o o -o -o o -o -o -o X. 5T -O -O "O -O -O -^3 -O -O -O -O -O -O -^> -O -O -O -O -O -o~o-o-o-o-o-o-*o-o-o-o 3 n "O^-OW-OW-O-O^-J-O-O-O-O-O-O-O-O-O-O-O-O-O-OW-ON-O-O-O-O-O-O-O 3

x. •oco^eo-oeo-o-^-o^-o^-o-o^-o-o-o-o-^-^-o-o^eo^-^-o^-^-^-o-o-o

Q. -O -O -O "O -O -O -O -O -O --O -O -O -O -O -O -O -O -O -O -o-o-o-o-o-o-o-o-o-o-o-o-o II Q. (D 3 -o-0-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o^.-u^.^^^-o-o-o-o-o-o-o-o sr •2 ^^O0^00 0-O0-0-0-0-0^-0-O0-0-O0.0l*.0.^«^-0^^)-0^^^ o o -0^-OCn-0-s)»0"0"0-0->3-0->3»0-0-0-0"0-0"0"0-0-0-0-0-0-0-0-0-0-0-0-0-0 in 3 9L 3 < (D >l o. "J -fc. "O "O -O -O -O -O -O "O -O ~0 -O -O -O -O -O -O -O -O -O -O --O "O <3> -O -O -O -O -O -O -O -O "O I c 3 W 3 3 > a c 3 --O •>• "O -O -O -O "O -O "O -O "O -O -O -O -O "O -O "O -O -O -O "O -O -O -O "O -O -O -O -O -O -O "O -O in cr 3 (D 3 c ;*3 - 2 3 "0-0«0"0-0-0-0™0-0-N3-0"0-0-0-0-0"0-0-0-0-0-0«0-0-0-0-0*0-0-0-0-0-0-0 in 3 i 3 3 s"O I 5 I -o -o "O -o "O «o "O "O -o "O «o "O -o ~o -o -o -o "O -o "O ^ 4^ -th- -I* en en -o -o -o -o -o -o -o -o in 3 3 •" I 00 ••O -O "O -O "O -O "O "O -O -O -O "O ->3 -O -O -O -O -O -O -O A -O -^ ^ -O Ol -O -O -O -O "O -O "O ' 5 I en 3 3 Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.5mm AMD/.5mm ABD/.5mm PAD/.5mm PMD/.5mm PBD/.5mm MNAV3318rm11 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? MNAV3318rm12 ? ? ? ? ? ? ? ? ? ? 3 2 ? ? ? 5 ? ? ? ? ? MNAV3318rd?1 1.66 ? 2.61 3.5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? MNAV3318rd?2 2.08 ? 2.8 3.06 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? MNAV3318rd?3 1.79 ? 2.85 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? MNAV3318rd?4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? MNAV3318lp1 ? ? ? ? 10 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? MNAV3318lp2 11 ? 36 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Ip1 1.77 ? 4.40 4.49 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Ip2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Ip3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Ip4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Im1 1.50 ? 2.40 2.90 ? ? ? 2.40 0.00 ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Im2 2.40 1.10 4.00 4.30 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Im3 3.30 0.00 3.50 3.90 ? ? ? 3.40 3.40 ? ? ? ? 0.088 ? ? ? ? ? ? ? RTMP84.63.1-1lm4 2.40 0.60 4.60 4.80 ? ? ? 3.30 ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP84.63.1-1lm5 3.10 0.60 2.60 3.00 ? 2.10 2.10 2.60 2.60 ? 0.088 0.044 ? 0.088 0.066 5.00 ? ? ? 5.00 5.00 RTMP 84.63.1-1 Im6 2.30 0.70 ? ? ? ? ? ? ? ? 0.088 0.066 ? 0.088 0.066 ? ? ? ? ? ? RTMP 84.63.1-1lm7 2.60 0.40 3.70 3.90 ? 2.50 2.50 3.70 3.70 ? 0.110 0.066 ? 0.110 0.066 4.00 4.00 ? 4.00 4.00 5.00 RTMP84.63.1-1lm8 2.10 0.10 ? ? ? ? ? ? ? ? ? ? ? 0.088 0.066 ? ? ? ? ? 5.00 RTMP84.63.1-1lm9 2.50 0.50 3.30 3.40 ? 2.00 2.00 3.30 3.30 ? 0.088 0.066 ? 0.132 0.066 4.00 4.00 ? ? 4.00 5.00 RTMP84.63.1-1lm10 2.20 0.10 ? ? ? ? ? ? ? ? 0.110 0.066 ? 0.110 0.066 ? ? 4.00 ? ? 4.00 RTMP84.63.1-1lm11 2.10 0.40 ? ? ? ? ? ? ? ? ? ? ? 0.088 0.044 ? ? ? ? ? 5.00 RTMP84.63.1-1lm12 2.10 ? ? ? 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Im13 2.00 0.50 ? ? ? ? ? ? ? ? ? ? ? 0.088 ? ? ? ? ? ? ? RTMP 84.63.1-1lm14 2.20 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Im15 1.50 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Im16 1.50 ? ? ? ? 1.50 1.50 ? ? ? 0.099 0.044 ? ? ? 5.00 5.00 5.00 ? ? ? RTMP 84.63.1-1 Im17 1.50 0.50 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Im18 1.40 0.50 ? ? 0.40 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Im19 1.50 ? ? ? 0.50 ? ? ? ? ? ? ? ? 9 ? ? ? ? ? ? ? RTMP 84.63.1-1lm20 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1lm21 1.10 ? ? ? 0.50 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1lm22 0.90 ? ? ? 0.40 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown. Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.Smm AMD/.5mm ABD/.5mm PAD/,5mm PMD/.Smm PBD/.Smm RTMP84.63.1-1ld1 1.40 ? 2.80 ? ? ? ? ? ? ? ? ? ? ? ? ? 9 ? ? 7 RTMP84.63.1-1ld2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 9 ? ? ? RTMP 84.63.1-1ld3 1.70 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 9 ? ? ? RTMP 84.63.1-1 Id4 1.40 0.50 2.50 2.80 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Id5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Id6 ? 0.50 ? ? ? ? ? ? ? ? 0.088 0.066 ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Id7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 9 ? ? ? RTMP84.63.1-1ld8 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1ld9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP84.63.1-1ld10 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Id11 ? ? 2.60 ? ? ? ? 2.60 2.60 ? ? ? ? 0.110 0.066 ? ? 4.00 4.00 4.00 RTMP84.63.1-1ld12 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP84.63.1-1ld13 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP84.63.1-1ld14 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-1 Id15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-2rp1 1.50 ? 4.90 5.00 ? ? ? ? ? ? ? ? ? ? ? ? 9 ? ? ? RTMP 84.63.1-2rp2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-2rp3 0.70 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 9 ? ? ? RTMP84.63.1-2rp4 1.60 0.60 4.00 4.50 ? ? ? ? ? 9 ? ? ? 0.088 0.044 ? 9 ? ? ? RTMP 84.63.1-2rm1 1.00 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-2rm2 1.60 ? 4.00 4.20 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-2rm3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-2rm4 2.10 ? 6.40 7.00 ? ? ? 6.00 6.00 ? ? ? ? 0.110 0.066 ? ? 5.00 ? 5.00 RTMP 84.63.1-2rm5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-2rd1 0.50 ? 1.30 1.30 ? ? ? ? ? ? ? ? ? ? ? ? 9 ? ? ? RTMP 84.63.1-2rd2 1.20 0.30 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-2rd3 ? ? ? ? ? ? ? ? ? 9 ? ? ? ? ? ? 9 ? ? ? RTMP 84.63.1-2rd4 1.50 ? ? ? ? ? ? ? ? 9 ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3ldt1 2.40 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3ldt2 3.47 1.34 ? ? ? ? 7 ? ? ? ? ? ? 0.110 0.066 ? ? ? ? 4.00 RTMP 84.63.1-3ldt3 2.50 0.60 5.00 5.50 ? ? ? 4.90 4.90 ? ? ? ? 0.132 0.088 ? ? 5.00 4.00 4.00 RTMP 84.63.1-3ldt4 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 9 ? ? ? RTMP 84.63.1-3ldt5 3.00 ? ? ? ? ? ? ? ? ? ? ? ? 0.132 0.088 ? ? ? ? 4.00 RTMP 84.63.1-3ldt6 3.00 0.70 ? ? ? ? ? ? ? ? 0.088 0.066 ? ? ? 4.0

Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown. Specimen FABL IAD CH Curv CBW ACL ACDL PCL PCDL LAD-W LAD-L LAD-H LPD-W LPD-L LPD-H AAD/.5mm AMD/.Smm ABD/.Smm PAD/.5mm PMD/.5mm PBD/.5mm RTMP 84.63.1-3ldt7 3.00 0.70 5.70 6.60 ? 4.00 4.00 5.70 5.70 ? 0.110 0.066 ? 0.110 0.088 ? 4.00 4.00 ? 4.00 4.00 RTMP 84.63.1-3ldt8 2.80 0.70 ? ? ? ? ? ? ? ? 0.110 0.066 ? 0.110 0.088 4.00 4.00 ? 4.00 4.00 ? RTMP 84.63.1-3ldt9 3.40 0.30 ? ? ? ? ? ? ? ? ? ? ? 0.110 0.088 ? ? ? ? 4.00 5.00 RTMP 84.63.1-3ldt10 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3ldt11 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3ldt12 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3ldt13 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP84.63.1-3ldt14 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP84.63.1-3ldt15 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3W116 ? ? 6.00 ? ? ? ? 6.00 6.00 ? ? ? ? 0.132 0.132 ? ? ? 3.50 3.50 4.00 RTMP 84.63.1-3ldt17 3.40 0.50 ? ? ? ? ? ? ? ? 0.110 0.110 ? 0.132 0.110 4.00 4.00 ? 4.00 ? ? RTMP 84.63.1-3ldt18 4.00 0.70 5.50 7.10 ? 3.60 3.60 5.20 5.20 ? 0.132 0.088 ? 0.132 ? 4.00 4.00 5.00 4.00 4.00 4.00 RTMP84.63.1-3ldt19 3.20 0.70 ? ? ? ? ? ? ? ? 0.110 0.066 ? 0.154 0.110 5.00 3.00 ? 4.00 3.00 ? RTMP 84.63.1-3ldt20 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3ldt21 ? ? ? ? ? ? ? ? ? ? ? ? ? 0.110 0.110 ? ? ? ? ? ? RTMP 84.63.1-3ldt22 ? ? ? ? ? ? ? ? ? ? 0.110 0.088 ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3lmt1 ? ? 6.00 ? ? 2.80 2.80 4.20 4.20 ? 0.088 0.044 ? 0.110 0.066 5.00 4.00 4.00 4.00 4.00 4.00 RTMP84.63.1-3lmt2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3lmt3 5.20 ? 8.70 ? ? ? ? 8.70 8.70 ? ? ? ? 0.132 0.110 ? ? ? 4.00 ? 3.50 RTMP 84.63.1-3lmt4 3.60 ? ? ? ? ? ? ? ? ? 0.110 0.088 ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3lmt5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3lmt6 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3lmt7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3lmt8 ? ? 6.60 ? ? ? ? 6.60 6.60 ? 0.110 0.088 ? 0.176 0.110 ? ? ? 4.00 3.00 3.00 RTMP 84.63.1-3lmt9 5.10 0.30 7.50 9.50 ? 6.00 6.00 7.50 7.50 ? 0.132 0.088 ? 0.132 0.132 4.00 3.00 3.00 3.00 3.00 3.00 RTMP 84.63.1-3lmt10 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP84.63.1-3lmt11 6.00 ? 8.60 11.55 ? 7.10 7.10 8.60 8.60 ? 0.154 0.088 ? 0.176 0.132 3.50 3.00 3.00 3.00 2.50 2.50 RTMP84.63.1-3lmt12 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3lmt13 ? ? 8.20 10.80 ? ? ? ? ? ? 0.154 0.088 ? 0.154 0.110 4.00 3.00 3.00 3.50 3.00 ? RTMP84.63.1-3lmt14 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP 84.63.1-3lmt15 ? ? ? ? ? ? ? ? ? ? 0.110 0.088 ? ? ? 3.50 3.00 3.00 ? ? ? RTMP 84.63.1-3lmt16 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? RTMP84.63.1-3lmt17 4.00 ? ? ? ? ? ? ? ? ? 0.132 0.110 ? 0.154 0.132 ? ? ? 3.00 3.00 3.00 RTMP 84.63.1-3lmt18 3.80 0.60 4.80 5.80 ? 4.70 4.70 4.80 4.80 ? 0.132 0.088 ? 0.132 0.154 3.50 3.00 ? 3.50 3.00 3.50

Abbreviation code: r = right, I = left; p = premaxilla, m = maxilla, d = dentary; t = tooth, alveolus number unknown.