Lecture 13. Diophantus and Diophantine Equations

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 13. Diophantus and Diophantine Equations Lecture 13. Diophantus and Diophantine equations Diophantus Diophantus of Alexandria, (about 200 - 284), was a Greek mathematician. He was sometimes called “the father of algebra,” a title some claim should be shared by a Persian mathematician al-Khw¯arizm¯i (about 780 - 850).1 Figure 13.1 Fall of Rome Because of catastrophic events such as the fall of Rome and the rise of Islam, and the burning of the library on Alexandria in 640, almost all details of Diophantus’ life and mathematical works were burned. The only clue to Diophantus’ life is a conundrum in the Greek Anthology (around 600 ), which is an algebraic problem: 2 1See Lecture 17. 2Victor J. Katz, A History of Mathematics - an introduction, 3rd edition, Addison -Wesley, p.172; or 2nd edition, p.168. 81 This tomb holds Diophantus ... (and) tells scientifically the measure of his life. God granted him to be a boy for the sixth part of his life, and adding a twelfth part to this. He clothed his cheeks with down. He lit the light of wedlock after a seventh part, and five years after his marriage, he granted him a son. Alas! lateborn wretched child; after attaining the measure of half his father’s life, chill Fate look him. After consoling his grief by this science of numbers for four years, he ended his life. If this information is correct, by solving this algebraic problem, Diophantus married at 33 and had a son who died at 43, four years before Diophantus himself died at 84. Diophantus’ Arithmetica Diophantus was the author of three books, one is called the Arithmetica that deals with solving algebraic equations, while the other two books are now lost. For the Arithmetica, Diophantus tells us in his introduction that it is divided into thirteen books. The Arithmetica contains 189 problems. Only six have survived in Greek. Four were preserved by the Arabs and translated into Latin in the sixteenth century. Diophantus’ books had enormous influence on the development of number theory. Figure 13.2 Diophantus’ Arithmetica. 82 It is well-known that Pierre de Fermat studied Arithmetica and made a fateful note in the margin of his copy of the book that a certain equation similar to the Pythagorean equation xn + yn = zn, n ≥ 3 considered by Diophantus has no solutions and he found “a truly marvelous proof of this proposition. This is the celebrated Fermat’s Last Theorem (see Lecture 23). This led to tremendous advances in number theory, and the study of Diophantine equations (“Diophan- tine geometry”) and of Diophantine approximations remain important areas of mathematical research. Diophantus studied algebra, which was avoided by many Greek mathematicians at the time because of the discovery of irrational numbers and their inability to handle them. Diophantus was the first Greek mathematician who recognized fractions as numbers; thus he allowed positive rational numbers for the coefficients and solutions. In modern use, Diophantine equations are usually algebraic equations with integer coefficients, for which integer solutions are sought. Diophantus also made advances in mathematical notation. Figure 13.3 A map of Alexandria in 81 AD Some of Diophantus’ mathematical work • All of Diophantus’ symbols are abbreviations, which is one of his important achieve- ments. Before him, people used words. For example, he called “unknown” as the number of the problem, used ψ to denote “-”, and τ to denote “=”, and used algebraic symbols to denote “square” and “cube” of numbers. 83 • Diophantus did know how to solve quadratic equations of the form ax2 + c = bx. He only took positive roots. One example is: To find two numbers such that their sum and the sum of their squares are given numbers. In modern notation, given a, b, it asked to find x, y such that x + y = a, x2 + y2 = b. • He knew “negative times negative is positive.” • Most of Diophantus’ problems are indeterminants, i.e., the number of equations is more than the number of unknowns. For these problems, Diophantus generally gives only one solution, but one may extend the method to obtain other solutions. • He studied equations of higher degree. For example, in modern notation, to find x, y and z such that (x2)2 +(y3)2 = z2. Another example, to find x and y such that x + y = a, x3 + y3 = b. • Diophantus knew the expansion of (x + y)3. Let us take look at one problem quoted from Diophantus 3: Let it be required to divide 16 into two squares. And let the first square = x2; then the other will be 16 − x2; it shall be required therefore to make 16 − x2 =a square. I take a square of the form (ax − 4)2, a being any integer and 4 the root of 16; for example, let the side be 2x − 4, and the square itself 4x2 + 16 − 16x. Then 4x2 + 16 − 16x = 16 − x2. To add to both sides the negative terms and 2 16 take like from like, Then 5x = 16x, and x = 5 . One number will therefore be 256 144 400 25 , the other 25 , and their sum is 25 or 16, and each is a squre. In other words, it is in fact an indeterminant problem: To find rational solutions of the equation x2 +y2 = 16. Set y = ax−4. Substituting into the equation, we get x2 +(ax−4)2 = 8a 16, i.e., x = 1+a2 . 3Victor J. Katz, A History of Mathematics - an introduction, 3rd edition, Addison -Wesley, 2009, p.179; or 2nd edition, p.177. 84.
Recommended publications
  • The Diophantine Equation X 2 + C = Y N : a Brief Overview
    Revista Colombiana de Matem¶aticas Volumen 40 (2006), p¶aginas31{37 The Diophantine equation x 2 + c = y n : a brief overview Fadwa S. Abu Muriefah Girls College Of Education, Saudi Arabia Yann Bugeaud Universit¶eLouis Pasteur, France Abstract. We give a survey on recent results on the Diophantine equation x2 + c = yn. Key words and phrases. Diophantine equations, Baker's method. 2000 Mathematics Subject Classi¯cation. Primary: 11D61. Resumen. Nosotros hacemos una revisi¶onacerca de resultados recientes sobre la ecuaci¶onDiof¶antica x2 + c = yn. 1. Who was Diophantus? The expression `Diophantine equation' comes from Diophantus of Alexandria (about A.D. 250), one of the greatest mathematicians of the Greek civilization. He was the ¯rst writer who initiated a systematic study of the solutions of equations in integers. He wrote three works, the most important of them being `Arithmetic', which is related to the theory of numbers as distinct from computation, and covers much that is now included in Algebra. Diophantus introduced a better algebraic symbolism than had been known before his time. Also in this book we ¯nd the ¯rst systematic use of mathematical notation, although the signs employed are of the nature of abbreviations for words rather than algebraic symbols in contemporary mathematics. Special symbols are introduced to present frequently occurring concepts such as the unknown up 31 32 F. S. ABU M. & Y. BUGEAUD to its sixth power. He stands out in the history of science as one of the great unexplained geniuses. A Diophantine equation or indeterminate equation is one which is to be solved in integral values of the unknowns.
    [Show full text]
  • Unaccountable Numbers
    Unaccountable Numbers Fabio Acerbi In memoriam Alessandro Lami, a tempi migliori HE AIM of this article is to discuss and amend one of the most intriguing loci corrupti of the Greek mathematical T corpus: the definition of the “unknown” in Diophantus’ Arithmetica. To do so, I first expound in detail the peculiar ter- minology that Diophantus employs in his treatise, as well as the notation associated with it (section 1). Sections 2 and 3 present the textual problem and discuss past attempts to deal with it; special attention will be paid to a paraphrase contained in a let- ter of Michael Psellus. The emendation I propose (section 4) is shown to be supported by a crucial, and hitherto unnoticed, piece of manuscript evidence and by the meaning and usage in non-mathematical writings of an adjective that in Greek math- ematical treatises other than the Arithmetica is a sharply-defined technical term: ἄλογος. Section 5 offers some complements on the Diophantine sign for the “unknown.” 1. Denominations, signs, and abbreviations of mathematical objects in the Arithmetica Diophantus’ Arithmetica is a collection of arithmetical prob- lems:1 to find numbers which satisfy the specific constraints that 1 “Arithmetic” is the ancient denomination of our “number theory.” The discipline explaining how to calculate with particular, possibly non-integer, numbers was called in Late Antiquity “logistic”; the first explicit statement of this separation is found in the sixth-century Neoplatonic philosopher and mathematical commentator Eutocius (In sph. cyl. 2.4, in Archimedis opera III 120.28–30 Heiberg): according to him, dividing the unit does not pertain to arithmetic but to logistic.
    [Show full text]
  • 15 Famous Greek Mathematicians and Their Contributions 1. Euclid
    15 Famous Greek Mathematicians and Their Contributions 1. Euclid He was also known as Euclid of Alexandria and referred as the father of geometry deduced the Euclidean geometry. The name has it all, which in Greek means “renowned, glorious”. He worked his entire life in the field of mathematics and made revolutionary contributions to geometry. 2. Pythagoras The famous ‘Pythagoras theorem’, yes the same one we have struggled through in our childhood during our challenging math classes. This genius achieved in his contributions in mathematics and become the father of the theorem of Pythagoras. Born is Samos, Greece and fled off to Egypt and maybe India. This great mathematician is most prominently known for, what else but, for his Pythagoras theorem. 3. Archimedes Archimedes is yet another great talent from the land of the Greek. He thrived for gaining knowledge in mathematical education and made various contributions. He is best known for antiquity and the invention of compound pulleys and screw pump. 4. Thales of Miletus He was the first individual to whom a mathematical discovery was attributed. He’s best known for his work in calculating the heights of pyramids and the distance of the ships from the shore using geometry. 5. Aristotle Aristotle had a diverse knowledge over various areas including mathematics, geology, physics, metaphysics, biology, medicine and psychology. He was a pupil of Plato therefore it’s not a surprise that he had a vast knowledge and made contributions towards Platonism. Tutored Alexander the Great and established a library which aided in the production of hundreds of books.
    [Show full text]
  • Fiboquadratic Sequences and Extensions of the Cassini Identity Raised from the Study of Rithmomachia
    Fiboquadratic sequences and extensions of the Cassini identity raised from the study of rithmomachia Tom´asGuardia∗ Douglas Jim´enezy October 17, 2018 To David Eugene Smith, in memoriam. Mathematics Subject Classification: 01A20, 01A35, 11B39 and 97A20. Keywords: pythagoreanism, golden ratio, Boethius, Nicomachus, De Arithmetica, fiboquadratic sequences, Cassini's identity and rithmomachia. Abstract In this paper, we introduce fiboquadratic sequences as a consequence of an extension to infinity of the board of rithmomachia. Fiboquadratic sequences approach the golden ratio and provide extensions of Cassini's Identity. 1 Introduction Pythagoreanism was a philosophical tradition, that left a deep influence over the Greek mathematical thought. Its path can be traced until the Middle Ages, and even to present. Among medieval scholars, which expanded the practice of the pythagoreanism, we find Anicius Manlius Severinus Boethius (480-524 A.D.) whom by a free translation of De Institutione Arithmetica by Nicomachus of Gerasa, preserved the pythagorean teaching inside the first universities. In fact, Boethius' book became the guide of study for excellence during quadriv- ium teaching, almost for 1000 years. The learning of arithmetic during the arXiv:1509.03177v3 [math.HO] 22 Nov 2016 quadrivium, made necessary the practice of calculation and handling of basic mathematical operations. Surely, with the mixing of leisure with this exercise, Boethius' followers thought up a strategy game in which, besides the training of mind calculation, it was used to preserve pythagorean traditions coming from the Greeks and medieval philosophers. Maybe this was the origin of the philoso- phers' game or rithmomachia. Rithmomachia (RM, henceforward) became the ∗Department of Mathematics.
    [Show full text]
  • Hypatia of Alexandria A. W. Richeson National Mathematics Magazine
    Hypatia of Alexandria A. W. Richeson National Mathematics Magazine, Vol. 15, No. 2. (Nov., 1940), pp. 74-82. Stable URL: http://links.jstor.org/sici?sici=1539-5588%28194011%2915%3A2%3C74%3AHOA%3E2.0.CO%3B2-I National Mathematics Magazine is currently published by Mathematical Association of America. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/maa.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Sun Nov 18 09:31:52 2007 Hgmdnism &,d History of Mdtbenzdtics Edited by G.
    [Show full text]
  • 94 Erkka Maula
    ORGANON 15 PROBLÊMES GENERAUX Erkka Maula (Finland) FROM TIME TO PLACE: THE PARADIGM CASE The world-order in philosophical cosmology can be founded upon time as well as .space. Perhaps the most fundamental question pertaining to any articulated world- view concerns, accordingly, their ontological and epistemological priority. Is the basic layer of notions characterized by temporal or by spatial concepts? Does a world-view in its development show tendencies toward the predominance of one set of concepts rather than the other? At the stage of its relative maturity, when the qualitative and comparative phases have paved the way for the formation of quantitative concepts: Which are considered more fundamental, measurements of time or measurements of space? In the comparative phase: Is the geometry of the world a geometry of motion or a geometry of timeless order? In the history of our own scientific world-view, there seems to be discernible an oscillation between time-oriented and space-oriented concept formation.1 In the dawn, when the first mathematical systems of astronomy and geography appear, shortly before Euclid's synthesis of the axiomatic thought, there were attempts at a geometry of motion. They are due to Archytas of Tarentum and Eudoxus of Cnidus, foreshadowed by Hippias of Elis and the Pythagoreans, who tend to intro- duce temporal concepts into geometry. Their most eloquent adversary is Plato, and after him the two alternative streams are often called the Heraclitean and the Parmenidean world-views. But also such later and far more articulated distinctions as those between the statical and dynamic cosmologies, or between the formalist and intuitionist philosophies of mathematics, can be traced down to the original Greek dichotomy, although additional concepts entangle the picture.
    [Show full text]
  • Did Hypatia Know About Negative Numbers?
    Did Hypatia Know about Negative Numbers? Hypatia lived in Alexandria in the 4th-5th century AD. She was one of the most remarkable women in history. Her father Theon, presumably the last member of the Museum, instructed her in mathematics, philosophy and clas- sical Greek literature. With time she herself became a brilliant teacher of Neoplatonic philosophy and mathematics. Numerous young aspirants from wealthy Christian and pagan families came to Alexandria with the sole pur- pose of joining the sophisticated inner circle of her students. Theon and Hyptia edited several of the major mathematical treatises avail- able in their time: Arithmetica by Diophantus, Almagest by Ptolemy, Conics by Appolonius of Perga, and Elements by Euclid. A significant part of this work, in particular on the most difficult and demanding Arithmetica, she did alone. To some of these treatises she added commentaries and exemplary exercises. A charismatic figure in the city’s intellectual life and a close friend to many important officials, Hypatia had a significant influence on the Alexandrian elite and politics. She was admired for her knowledge, wisdom, righteousness and personal charm. Her public lectures for the Alexandrian intelligentsia attracted a great deal of interest. However, her elevated social position and popularity did not prevent her from becoming the victim of a brutal murder in 415 AD by the fanatic mob who accused her of conducting forbidden magical practices. Groundless rumors about Hypatia’s dealings with witchcraft were most likely inspired by her political enemies. Bishop Cyril was certainly one of them, but the allegations concerning his direct involvement have never been proven.
    [Show full text]
  • The Meaning of ''Plasmatikon'' in Diophantus' ''Arithmetica''
    The meaning of ”plasmatikon” in Diophantus’ ”Arithmetica”. Fabio Acerbi To cite this version: Fabio Acerbi. The meaning of ”plasmatikon” in Diophantus’ ”Arithmetica”.. Archive for History of Exact Sciences, Springer Verlag, 2009, 63, pp. 5-31. 10.1007/s00407-008-0028-8. halshs-00346121 HAL Id: halshs-00346121 https://halshs.archives-ouvertes.fr/halshs-00346121 Submitted on 29 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Archive for History of Exact Sciences 63 (2009), 5-31 The Meaning of plasmatikovn in Diophantus’ Arithmetica FABIO ACERBI 1 Introduction Diophantus’ Arithmetica is an idiosyncratic treatise: it almost calls for interpretations that force conceptions into the text that are extraneous to the by-and-large ineffable aims of its author. A case in point is constituted by a short clause found in three problems of book I.1 It is not a harmless clause: it contains the elusive adjective plasmatikovn as the crucial word, the translation and meaning of which sparked a long-lasting controversy that has become a non- negligible aspect of the debate about the possibility of interpreting Diophantus’ approach and, more generally, Greek mathematics in algebraic terms.2 The whole interpretative controversy is in fact entangled.
    [Show full text]
  • The Problem: the Theory of Ideas in Ancient Atomism and Gilles Deleuze
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations 2013 The rP oblem: The Theory of Ideas in Ancient Atomism and Gilles Deleuze Ryan J. Johnson Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Johnson, R. (2013). The rP oblem: The Theory of Ideas in Ancient Atomism and Gilles Deleuze (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/706 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. THE PROBLEM: THE THEORY OF IDEAS IN ANCIENT ATOMISM AND GILLES DELEUZE A Dissertation Submitted to the McAnulty College & Graduate School of Liberal Arts Duquesne University In partial fulfillment of the requirements for the degree of Doctor of Philosophy By Ryan J. Johnson May 2014 Copyright by Ryan J. Johnson 2014 ii THE PROBLEM: THE THEORY OF IDEAS IN ANCIENT ATOMISM AND GILLES DELEUZE By Ryan J. Johnson Approved December 6, 2013 _______________________________ ______________________________ Daniel Selcer, Ph.D Kelly Arenson, Ph.D Associate Professor of Philosophy Assistant Professor of Philosophy (Committee Chair) (Committee Member) ______________________________ John Protevi, Ph.D Professor of Philosophy (Committee Member) ______________________________ ______________________________ James Swindal, Ph.D. Ronald Polansky, Ph.D. Dean, McAnulty College & Graduate Chair, Department of Philosophy School of Liberal Arts Professor of Philosophy Professor of Philosophy iii ABSTRACT THE PROBLEM: THE THEORY OF IDEAS IN ANCIENT ATOMISM AND GILLES DELEUZE By Ryan J. Johnson May 2014 Dissertation supervised by Dr.
    [Show full text]
  • The Generalized Principle of the Golden Section and Its Applications in Mathematics, Science, and Engineering
    Chaos, Solitons and Fractals 26 (2005) 263–289 www.elsevier.com/locate/chaos The Generalized Principle of the Golden Section and its applications in mathematics, science, and engineering A.P. Stakhov International Club of the Golden Section, 6 McCreary Trail, Bolton, ON, Canada L7E 2C8 Accepted 14 January 2005 Abstract The ‘‘Dichotomy Principle’’ and the classical ‘‘Golden Section Principle’’ are two of the most important principles of Nature, Science and also Art. The Generalized Principle of the Golden Section that follows from studying the diagonal sums of the Pascal triangle is a sweeping generalization of these important principles. This underlies the foundation of ‘‘Harmony Mathematics’’, a new proposed mathematical direction. Harmony Mathematics includes a number of new mathematical theories: an algorithmic measurement theory, a new number theory, a new theory of hyperbolic functions based on Fibonacci and Lucas numbers, and a theory of the Fibonacci and ‘‘Golden’’ matrices. These mathematical theories are the source of many new ideas in mathematics, philosophy, botanic and biology, electrical and computer science and engineering, communication systems, mathematical education as well as theoretical physics and physics of high energy particles. Ó 2005 Elsevier Ltd. All rights reserved. Algebra and Geometry have one and the same fate. The rather slow successes followed after the fast ones at the beginning. They left science at such step where it was still far from perfect. It happened,probably,because Mathematicians paid attention to the higher parts of the Analysis. They neglected the beginnings and did not wish to work on such field,which they finished with one time and left it behind.
    [Show full text]
  • Hypatia of Alexandria Anne Serban
    Hypatia of Alexandria Anne Serban Hypatia's Life Hypatia of Alexandria was born sometime between the years 350 to 370 AD in Alexandria of Egypt. She was the only daughter of Theon of Alexandria; no information exists about her mother. "Hypatia may have had a brother, Epiphanius, though he may have been only Theon's favorite pupil." Theon did not want to force his daughter to become the typical woman described by historian Slatkin when he wrote "Greek women of all classes were occupied with the same type of work, mostly centered around the domestic needs of the family. Women cared for young children, nursed the sick, and prepared food." Instead he educated her in math, astronomy and philosophy, as well as in different religions. Theons desire that his daughter be different from the mold that society created for women influenced the rest of Hypatias life. Eventually Hypatia became a teacher herself. She instructed her pupils, who were both pagans and Christians, in math, astronomy, and philosophy, focusing mostly on Neoplatonism. She also held lectures on various topics, often drawing many eager listeners. Her greatest contributions benefitted the fields of mathematics and astronomy. By 400 AD, she became the head of the Platonist school in Alexandria. "Hypatia, on the other hand, led the life of a respected academic at Alexandria's university; a position to which, as far as the evidence suggests, only males were entitled previously." Hypatia took many of Platos ideas as personal applications, choosing even to live a life of celibacy. Furthermore, Hypatia wrote three commentaries and worked with Theon on several books.
    [Show full text]
  • On the Shoulders of Hipparchus a Reappraisal of Ancient Greek Combinatorics
    Arch. Hist. Exact Sci. 57 (2003) 465–502 Digital Object Identifier (DOI) 10.1007/s00407-003-0067-0 On the Shoulders of Hipparchus A Reappraisal of Ancient Greek Combinatorics F. Acerbi Communicated by A. Jones 1. Introduction To write about combinatorics in ancient Greek mathematics is to write about an empty subject. The surviving evidence is so scanty that even the possibility that “the Greeks took [any] interest in these matters” has been denied by some historians of mathe- matics.1 Tranchant judgments of this sort reveal, if not a cursory scrutiny of the extant sources, at least a defective acquaintance with the strong selectivity of the process of textual transmission the ancient mathematical corpus has been exposed to–afactthat should induce, about a sparingly attested field of research, a cautious attitude rather than a priori negative assessments.2 (Should not the onus probandi be required also when the existence in the past of a certain domain of research is being denied?) I suspect that, behind such a strongly negative historiographic position, two different motives could have conspired: the prejudice of “ancient Greek mathematicians” as geometri- cally-minded and the attempt to revalue certain aspects of non-western mathematics by tendentiously maintaining that such aspects could not have been even conceived by “the Greeks”. Combinatorics is the ideal field in this respect, since many interesting instances of combinatorial calculations come from other cultures,3 whereas combina- torial examples in the ancient Greek mathematical corpus have been considered, as we have seen, worse than disappointing, and in any event such as to justify a very negative attitude.
    [Show full text]