DNA Methylation, Chromatin Inheritance, and Cancer

Total Page:16

File Type:pdf, Size:1020Kb

DNA Methylation, Chromatin Inheritance, and Cancer Oncogene (2001) 20, 3156 ± 3165 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc DNA methylation, chromatin inheritance, and cancer Michael R Rountree*,1, Kurtis E Bachman1, James G Herman1 and Stephen B Baylin1 1The Johns Hopkins Oncology Center, Tumor Biology Laboratory, The Johns Hopkins University School of Medicine, Baltimore, Maryland, MD 21231, USA Cancer is a process driven by the accumulation of sion capacity without DNA sequence alterations, are abnormalities in gene function. While many of these also central to tumor progression. The epigenetic changes are genetic, epigenetically mediated changes in control of gene function involves the formation of gene expression are being increasingly appreciated. This chromatin that modulates gene transcription. The latter process emphasizes the need to understand two key study of this level of gene control has blossomed over components of heritable, but reversible, modulation of the last decade and is a critical link to our under- gene promoter function that are closely tied to one standing of the neoplastic process. another ± formation of chromatin which modulates transcription and establishing patterns of DNA methyla- tion. The link lies ®rst in the recruitment to methylated Chromatin and transcription cytosines of a family of methyl-CpG binding domain proteins (MBDs), which are direct transcriptional Eukaryotic cells must accomplish the daunting task of repressors and can complex with transcriptional core- packaging an enormous amount of DNA into their pressors including histone deacetylases (HDACs). Ad- nucleus, while ensuring the proper expression of a ditionally, the proteins that catalyze DNA methylation, subset of genes and the silencing of other regions of the DNA methyltransferases (DNMTs), also directly repress genome. Higher eukaryotes are especially burdened in transcription and associate with HDACs. Regulation of this task due to the large amount of repetitive elements these above chromatin-DNA methylation interactions as (Alu, LINEs, SINEs, etc.) that are scattered through- a function of DNA replication timing is emerging as a out their genomes. In general, the genome is key event in the inheritance of transcriptionally repressed compartmentalized into transcriptionally competent domains of the genome. Importantly, synergy between euchromatin and transcriptionally incompetent hetero- HDAC activity and DNA methylation is operative for a chromatin. Cells accomplish this feat by packaging key epigenetic abnormality in cancer cells, transcrip- DNA into chromatin, whose basic unit is the tional silencing of tumor suppressor genes. This change nucleosome with *146 bp of DNA wrapped around has now been recognized for genes that are essential for it. The proper transcriptional status is then achieved normal regulation of virtually every major cell function through the interplay of protein complexes that including cell growth, dierentiation, apoptosis, DNA associate with, manipulate, and epigenetically modify repair, and cell ± cell, cell ± substratum interaction. this basic unit to either foster or inhibit transcription. Understanding the molecular determinants of both These epigenetic modi®cations, employing combina- normal and abnormal patterns of chromatin formation tions of factors, allow the cell to modulate the and DNA methylation thus holds great promise for our transcriptional activity of given gene promoters. In understanding of cancer and for means to better this manner, a rheostat of transcriptional activity diagnose, prevent, and treat this disease. Oncogene provides a range of gene function from high-level (2001) 20, 3156 ± 3165. expression to complete silencing, as well as setting up gene expression events to react quickly to environ- Keywords: DNA methylation; histone acetylation; mental stimuli. chromatin inheritance; cancer Two epigenetic modi®cations have emerged as critical layers of regulation that participate in this transcriptional rheostat (Figure 1). The ®rst, histone Introduction acetylation appears to be used by all eukaryotes as one layer of transcriptional control (Grunstein, 1997). The The hallmark of cancer is a progressive appearance of acetylation of the amino-terminal tails of histones H3 malignant cell behavior that is triggered by the and H4 by histone acetyltransferases (HATs) creates an evolution of altered gene function. Many of the gene accessible chromatin con®guration that facilitates changes stem from genetic abnormalities that disrupt transcriptional activity. Removal of these acetyl groups coding regions. However, it is becoming clear that by histone deacetylases (HDACs) facilitates chromatin epigenetic events, or heritable changes in gene expres- compaction that is detrimental to transcription. The cell uses these HATs and HDACs as coactivators and corepressors respectively to modulate promoter activ- *Correspondence: MR Rountree ity. DNA methylation, chromatin inheritance and cancer MR Rountree et al 3157 Transcriptionally Transcriptionally Transcriptionally Incompetent Inducible Competent Heterochromatin Chromatin Euchromatin Histone Acetylation DNA Methylation Inactive X-chromosome Environmentally ActiveGenes Silenced Imprinted Genes Responsive Genes Alu, LINEs, SINEs Developmentally Pericentromeric Repeats Responsive Genes Figure 1 The transcriptional rheostat. DNA methylation and histone acetylation help to establish chromatin states that either foster or inhibit transcription. The shaded bars represent the inverse correlation between these two epigenetic modi®cations. While a cell will use histone acetylation status to modulate gene expression, DNA methylation primarily serves as a transcriptionally repressive `lock' The second epigenetic modi®cation, DNA methyla- recombination as well (Bird, 1995; Yoder et al., 1997a; tion, has a long-standing relationship with gene Walsh et al., 1998). The methylation of cytosines makes inactivity and has been implicated as a critical layer of them more susceptible to deamination, which has control for enhancing transcriptional silencing (Bird, reduced the overall frequency of CpGs in the bulk 1992; Eden and Cedar, 1994). However, the lack of such genome (Bird, 1980). Conversely, the promoter regions an epigenetic modi®cation in some favorite model of many genes generally remain free of methylation and organisms (e.g. S. cerevisiae, C. elegans) has long raised therefore less susceptible to deamination. Thus, these questions about the importance of DNA methylation promoters have retained the expected frequency of CpG for gene control in eukaryotes. Interestingly, while dinucleotides and are referred to as `CpG islands'. Drosophila was long thought not to have DNA Studies of the adenine phosphoribosyltransferase (Aprt) methylation, recent reports have identi®ed genes with locus have identi®ed a potential mechanism for how homology to the vertebrate DNA methylation machin- CpG islands remain free of methylation in embryonic ery (Tweedie et al., 1999; Hung et al., 1999; Roder et al., cells. Three groups demonstrated that the presence of 2000; Lyko et al., 2000a). In addition, trace amounts of Sp1 binding sites and presumably the trans-acting factor cytosine methylation have been detected in this that binds to these sites protects the CpG island of the organism (Gowher et al., 2000; Lyko et al., 2000b). Aprt gene from methylation (Macleod et al., 1994; In mammals, genomic methylation patterns are Brandeis et al., 1994; Mummaneni et al., 1995, 1998). established during embryogenesis through the interplay Importantly, while most CpG islands remain free of of at least three DNA methyltransferases (Dnmt1, methylation, those associated with transcriptionally Dnmt3a, and Dnmt3b; Figure 2) and presumably the silenced genes on the inactive X-chromosome and factors that associate with these enzymes to target and silenced alleles of imprinted genes are densely methylated regulate their enzymatic activity. All three enzymes are (Brandeis et al., 1993). essential for proper murine development (Li et al., 1992; Okano et al., 1999). It has been proposed that the newly identi®ed Dnmt3a and Dnmt3b enzymes act primarily as DNA methylation and histone deacetylation: partners in de novo methyltransferases to establish methylation transcriptional repression patterns during embryogenesis (Okano et al., 1999). In contrast, Dnmt1 is thought to maintain these methyla- DNA methylation appears capable of directly prevent- tion patterns during DNA replication. However, the ing the binding of some transcription factors to their strict designation of these enzymes as either de novo or DNA binding sites (Tate and Bird, 1993). However, the maintenance methyltransferases is not yet de®nitive. majority of inhibition of transcription in association The vast majority of CpG dinucleotides (*70%) in with DNA methylation appears to occur through mammalian genomes are methylated and reside within complex indirect mechanisms involving changes in repetitive elements (Yoder et al., 1997a). This methyla- chromatin formation. Initial experiments demonstrated tion is a candidate mechanism for helping to transcrip- that in vitro methylated genes transfected into cells tionally silence these elements and thus, has been were transcriptionally inactive and assumed a chroma- proposed to serve as a host defense mechanism to inhibit tin conformation devoid of nuclease sensitive sites transposition and perhaps to subdue homologous present in active genes (Keshet et al., 1986). However, Oncogene
Recommended publications
  • Dna Methylation Post Transcriptional Modification
    Dna Methylation Post Transcriptional Modification Blistery Benny backbiting her tug-of-war so protectively that Scot barrel very weekends. Solanaceous and unpossessing Eric pubes her creatorships abrogating while Raymundo bereave some limitations demonstrably. Clair compresses his catchings getter epexegetically or epidemically after Bernie vitriols and piffling unchangeably, hypognathous and nourishing. To explore quantitative and dynamic properties of transcriptional regulation by. MeSH Cochrane Library. In revere last check of man series but left house with various gene expression profile of the effect of. Moreover interpretation of transcriptional changes during COVID-19 has been. In transcriptional modification by post transcriptional repression and posted by selective breeding industry: patterns of dna methylation during gc cells and the study of dna. DNA methylation regulates transcriptional homeostasis of. Be local in two ways Post Translational Modifications of amino acid residues of histone. International journal of cyclic gmp in a chromatin dynamics: unexpected results in alternative splicing of reusing and diagnosis of dmrs has been identified using whole process. Dam in dna methylation to violent outbursts that have originated anywhere in england and post transcriptional gene is regulated at the content in dna methylation post transcriptional modification of. A seven sample which customers post being the dtc company for analysis. Fei zhao y, methylation dynamics and modifications on lysine is an essential that. Tag-based our Generation Sequencing. DNA methylation and histone modifications as epigenetic. Thc content of. Lysine methylation has been involved in both transcriptional activation H3K4. For instance aberrance of DNA methylation andor demethylation has been. Chromosome conformation capture from 3C to 5C and will ChIP-based modification.
    [Show full text]
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • Euchromatin Histone Methyltransferase II (EHMT2) Regulates the Expression of Ras-Related GTP Binding C (RRAGC) Protein
    BMB Rep. 2020; 53(11): 576-581 BMB www.bmbreports.org Reports Euchromatin histone methyltransferase II (EHMT2) regulates the expression of ras-related GTP binding C (RRAGC) protein Supyong Hwang1, Soyoung Kim1, Kyungkon Kim1,2,3, Jeonghun Yeom2, Sojung Park1 & Inki Kim1,2,3,* 1Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, 2Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, Seoul 05505, 3Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea Dimethylation of the histone H3 protein at lysine residue 9 INTRODUCTION (H3K9) is mediated by euchromatin histone methyltransferase II (EHMT2) and results in transcriptional repression of target Epigenetic modifications are gene regulatory mechanisms that genes. Recently, chemical inhibition of EHMT2 was shown to are independent of changes in DNA sequences (1). This mode induce various physiological outcomes, including endoplasmic of gene regulation can be achieved by means of histone and reticulum stress-associated genes transcription in cancer cells. DNA modifications, such as methylation and acetylation (1). To identify genes that are transcriptionally repressed by EHMT2 Among these, methylation at lysine residues 4 (H3K4) and 36 during apoptosis, and cell stress responses, we screened genes (H3K36) of histone H3 are hallmarks of transcriptional acti- that are upregulated by BIX-01294, a chemical inhibitor of vation, whereas methylation of histone H3 residues at lysines EHMT2. RNA sequencing analyses revealed 77 genes that were 9 (H3K9) and 27 (H3K27) leads to repression (2). Methylation upregulated by BIX-01294 in all four hepatic cell carcinoma of histones is accomplished by histone methyltransferases (HMTs) (HCC) cell lines.
    [Show full text]
  • DNMT1 Gene DNA Methyltransferase 1
    DNMT1 gene DNA methyltransferase 1 Normal Function The DNMT1 gene provides instructions for making an enzyme called DNA methyltransferase 1. This enzyme is involved in DNA methylation, which is the addition of methyl groups, consisting of one carbon atom and three hydrogen atoms, to DNA molecules. In particular, the enzyme helps add methyl groups to DNA building blocks ( nucleotides) called cytosines. DNA methylation is important in many cellular functions. These include determining whether the instructions in a particular segment of DNA are carried out or suppressed ( gene silencing), regulating reactions involving proteins and fats (lipids), and controlling the processing of chemicals that relay signals in the nervous system (neurotransmitters). DNA methyltransferase 1 is active in the adult nervous system. Although its specific function is not well understood, the enzyme may help regulate nerve cell (neuron) maturation and specialization (differentiation), the ability of neurons to move (migrate) and connect with each other, and neuron survival. Health Conditions Related to Genetic Changes Autosomal dominant cerebellar ataxia, deafness, and narcolepsy At least four DNMT1 gene mutations have been identified in people with a nervous system disorder called autosomal dominant cerebellar ataxia, deafness, and narcolepsy (ADCADN). Features of this disorder include difficulty coordinating movements (ataxia), hearing loss caused by abnormalities of the inner ear (sensorineural deafness), and excessive daytime sleepiness (narcolepsy). Cognitive decline occurs as the disorder progresses. Numbness, tingling, or pain in the arms and legs (sensory neuropathy) can also occur. Affected individuals usually survive into their forties or fifties. The DNMT1 gene mutations associated with this disorder affect a region of the DNA methyltransferase 1 enzyme, known as the targeting sequence, that helps direct the methylation process to the correct segments of DNA.
    [Show full text]
  • DNA Methylation, Imprinting and Cancer
    European Journal of Human Genetics (2002) 10, 6±16 ã 2002 Nature Publishing Group All rights reserved 1018-4813/02 $25.00 www.nature.com/ejhg REVIEW DNA methylation, imprinting and cancer Christoph Plass*,1 and Paul D Soloway*,2 1Division of Human Cancer Genetics and the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, OH 43210, USA; 2Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, NY 14263, USA It is well known that a variety of genetic changes influence the development and progression of cancer. These changes may result from inherited or spontaneous mutations that are not corrected by repair mechanisms prior to DNA replication. It is increasingly clear that so called epigenetic effects that do not affect the primary sequence of the genome also play an important role in tumorigenesis. This was supported initially by observations that cancer genomes undergo changes in their methylation state and that control of parental allele-specific methylation and expression of imprinted loci is lost in several cancers. Many loci acquiring aberrant methylation in cancers have since been identified and shown to be silenced by DNA methylation. In many cases, this mechanism of silencing inactivates tumour suppressors as effectively as frank mutation and is one of the cancer-predisposing hits described in Knudson's two hit hypothesis. In contrast to mutations which are essentially irreversible, methylation changes are reversible, raising the possibility of developing therapeutics based on restoring the normal methylation state to cancer-associated genes. Development of such therapeutics will require identifying loci undergoing methylation changes in cancer, understanding how their methylation influences tumorigenesis and identifying the mechanisms regulating the methylation state of the genome.
    [Show full text]
  • Loss of DIP2C in RKO Cells Stimulates Changes in DNA
    Larsson et al. BMC Cancer (2017) 17:487 DOI 10.1186/s12885-017-3472-5 RESEARCH ARTICLE Open Access Loss of DIP2C in RKO cells stimulates changes in DNA methylation and epithelial- mesenchymal transition Chatarina Larsson1, Muhammad Akhtar Ali1,2, Tatjana Pandzic1, Anders M. Lindroth3, Liqun He1,4 and Tobias Sjöblom1* Abstract Background: The disco-interacting protein 2 homolog C (DIP2C) gene is an uncharacterized gene found mutated in a subset of breast and lung cancers. To understand the role of DIP2C in tumour development we studied the gene in human cancer cells. Methods: We engineered human DIP2C knockout cells by genome editing in cancer cells. The growth properties of the engineered cells were characterised and transcriptome and methylation analyses were carried out to identify pathways deregulated by inactivation of DIP2C. Effects on cell death pathways and epithelial-mesenchymal transition traits were studied based on the results from expression profiling. Results: Knockout of DIP2C in RKO cells resulted in cell enlargement and growth retardation. Expression profiling revealed 780 genes for which the expression level was affected by the loss of DIP2C, including the tumour-suppressor encoding CDKN2A gene, the epithelial-mesenchymal transition (EMT) regulator-encoding ZEB1,andCD44 and CD24 that encode breast cancer stem cell markers. Analysis of DNA methylation showed more than 30,000 sites affected by differential methylation, the majority of which were hypomethylated following loss of DIP2C. Changes in DNA methylation at promoter regions were strongly correlated to changes in gene expression, and genes involved with EMT and cell death were enriched among the differentially regulated genes.
    [Show full text]
  • Functional Implications of DNA Methylation in Adipose Biology
    Diabetes Volume 68, May 2019 871 Functional Implications of DNA Methylation in Adipose Biology Xiang Ma and Sona Kang Diabetes 2019;68:871–878 | https://doi.org/10.2337/dbi18-0057 The twin epidemics of obesity and type 2 diabetes (T2D) variants have not been tested for causality, and even if are a serious health, social, and economic issue. The proven causal, they cannot fully explain many clinical dysregulation of adipose tissue biology is central to the features such as high heritability, high discordance in adult development of these two metabolic disorders, as adi- monozygotic twins, and the close relationship with envi- pose tissue plays a pivotal role in regulating whole-body ronmental factors (2–5). Therefore, it has long been metabolism and energy homeostasis (1). Accumulating speculated that nongenetic variation, such as epigenetic evidence indicates that multiple aspects of adipose bi- alterations, plays a role in pathogenesis. This notion has PERSPECTIVES IN DIABETES ology are regulated, in part, by epigenetic mechanisms. been borne out by a recent epigenome-wide association The precise and comprehensive understanding of the study that linked alterations in DNA methylation to whole- epigenetic control of adipose tissue biology is crucial to body insulin sensitivity (6). identifying novel therapeutic interventions that target DNA methylation is a reversible epigenetic mark in- epigenetic issues. Here, we review the recent findings volving the covalent transfer of a methyl group to the C-5 on DNA methylation events and machinery in regulating the developmental processes and metabolic function of position of a cytosine residue by DNA methyltransferases adipocytes. We highlight the following points: 1) DNA (DNMTs), usually in the context of a cytosine-guanine methylation is a key epigenetic regulator of adipose dinucleotide (CpG) doublet.
    [Show full text]
  • Transcriptome-Wide Association Study of Attention Deficit Hyperactivity Disorder Identifies Associated Genes and Phenotypes
    bioRxiv preprint doi: https://doi.org/10.1101/642231; this version posted May 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Transcriptome-wide association study of attention deficit hyperactivity disorder identifies associated genes and phenotypes Calwing Liao1,2, Alexandre D. Laporte2, Dan Spiegelman2, Fulya Akçimen1,2, Ridha Joober3, Patrick A. Dion2,4, Guy A. Rouleau1,2,4 1Department of Human Genetics, McGill University, Montréal, Quebec, Canada 2Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada 3Department of Psychiatry, McGill University, Montréal, Quebec, Canada 4Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada Word count: 2,619 excluding abstract and references Figures: 2 Tables: 3 Keywords: ADHD, transcriptome-wide association study, KAT2B, TMEM161B, amygdala, prefrontal cortex *Correspondence: Dr. Guy A. Rouleau Montreal Neurological Institute and Hospital Department of Neurology and Neurosurgery 3801 University Street, Montreal, QC Canada H3A 2B4. Tel: +1 514 398 2690 Fax: +1 514 398 8248 E-mail: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/642231; this version posted May 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental psychiatric disorders.
    [Show full text]
  • Regulation of DNMT1 Stability Through SET7-Mediated Lysine Methylation in Mammalian Cells
    Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells Pierre-Olivier Este` vea,1, Hang Gyeong China,1, Jack Bennera, George R. Feeherya, Mala Samaranayakea, Gregory A. Horwitzb, Steven E. Jacobsenb, and Sriharsa Pradhana,2 aNew England Biolabs Incorporated, 240 County Road, Ipswich, MA 01938; and bHoward Hughes Medical Institute and Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095-1606 Edited by Jasper Rine, University of California, Berkeley, CA, and approved February 10, 2009 (received for review October 15, 2008) Inheritance of epigenetic information encoded by cytosine DNA A D methylation patterns is crucial for mammalian cell survival, in large ET7 S part through the activity of the maintenance DNA methyltrans- : IP: IgG IP IP: DNMT1 449 kDa ferase (DNMT1). Here, we show that SET7, a known histone 159 kDa Anti- methyltransferase, is involved in the regulation of protein stability DNMT1 Anti- of DNMT1. SET7 colocalizes and directly interacts with DNMT1 and DNMT1 Anti- specifically monomethylates Lys-142 of DNMT1. Methylated SET7 DNMT1 peaks during the S and G2 phases of the cell cycle and is DsRed- Merged/ prone to proteasome-mediated degradation. Overexpression of B C Time Nucleus DNMT1 SET7 Merged Nucleus SET7 leads to decreased DNMT1 levels, and siRNA-mediated knock- (hrs) down of SET7 stabilizes DNMT1. These results demonstrate that 2-4 SET7 PRMT1 signaling through SET7 represents a means of DNMT1 enzyme G9a DNMT1 turnover. [3H] 4-8 DNA methyltransferase ͉ methylated lysine ͉ proteasome ͉ protein degradation 8-12 H3 H4 ammalian DNA methylation is essential for development Mand is controlled by a variety of factors including 3 active >15 DNA cytosine methyltransferases (DNMT1, DNMT3A, and DNMT3B) and a methyltransferase-like protein, DNMT3L (1– 4).
    [Show full text]
  • The Rb/Chromatin Connection and Epigenetic Control: Opinion
    Oncogene (2001) 20, 3128 ± 3133 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc The Rb/chromatin connection and epigenetic control: opinion Roger Ferreira1, Irina Naguibneva1, Linda L Pritchard1, Slimane Ait-Si-Ali1 and Annick Harel-Bellan*,1 1Laboratoire `OncogeneÁse, DieÂrenciation et Transduction du Signal', CNRS UPR 9079, Institut Andre Lwo, 7 rue Guy Moquet, Villejuif, France The balance between cell dierentiation and proliferation proteins' family that also includes p130 and p107 (for is regulated at the transcriptional level. In the cell cycle, reviews see Grana et al., 1998; Mulligan and Jacks, the transition from G1 to S phase (G1/S transition) is of 1998). Rb exerts its anti-proliferative activity, at least paramount importance in this regard. Indeed, it is only in part, by inhibiting the E2F transcription factor. Rb before this point that cells can be oriented toward the is regulated by phosphorylation: in non-cycling cells, or dierentiation pathway: beyond, cells progress into the in early G1, Rb is hypophosphorylated and inhibits cycle in an autonomous manner. The G1/S transition is E2F activity; during G1, Rb is progressively phos- orchestrated by the transcription factor E2F. E2F controls phorylated by cyclin-CDK complexes (for review see the expression of a group of checkpoint genes whose Harbour and Dean, 2000) and, as a consequence, loses products are required either for the G1-to-S transition its anity for E2F. The release of Rb triggers the itself or for DNA replication (e.g. DNA polymerase a). activation of E2F target genes, which allows the cells E2F activity is repressed in growth-arrested cells and in to proceed through the G1/S transition.
    [Show full text]
  • Cpg Islands and the Regulation of Transcription
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW CpG islands and the regulation of transcription Aime´e M. Deaton and Adrian Bird1 The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom Vertebrate CpG islands (CGIs) are short interspersed DNA In spite of their link with transcription, the functional sequences that deviate significantly from the average significance of CGIs is only just beginning to emerge. CGI genomic pattern by being GC-rich, CpG-rich, and pre- promoters turn out to have distinctive patterns of tran- dominantly nonmethylated. Most, perhaps all, CGIs are scription initiation and chromatin configuration. Their sites of transcription initiation, including thousands that regulation involves proteins (some of which specifically are remote from currently annotated promoters. Shared bind nonmethylated CpG) that influence the modifica- DNA sequence features adapt CGIs for promoter function tion status of CGI chromatin. In addition, the CpG moieties by destabilizing nucleosomes and attracting proteins that themselves are sometimes subject to cytosine methylation, create a transcriptionally permissive chromatin state. which correlates with stable shutdown of the associated Silencing of CGI promoters is achieved through dense promoter. Here we examine the properties shared by ver- CpG methylation or polycomb recruitment, again using tebrate CGIs and how transcription is regulated at these their distinctive DNA sequence composition. CGIs are sites. Recent related reviews include Illingworth and Bird therefore generically equipped to influence local chroma- (2009), Mohn and Schubeler (2009), and Blackledge and tin structure and simplify regulation of gene activity. Klose (2011). Vertebrate genomes are methylated predominantly at the Evolutionary conservation of CGIs dinucleotide CpG, and consequently are CpG-deficient owing to the mutagenic properties of methylcytosine CGIs are distinct in vertebrates due to their lack of DNA (Coulondre et al.
    [Show full text]
  • Definition of the Landscape of Promoter DNA Hypomethylation in Liver Cancer
    Published OnlineFirst July 11, 2011; DOI: 10.1158/0008-5472.CAN-10-3823 Cancer Therapeutics, Targets, and Chemical Biology Research Definition of the Landscape of Promoter DNA Hypomethylation in Liver Cancer Barbara Stefanska1, Jian Huang4, Bishnu Bhattacharyya1, Matthew Suderman1,2, Michael Hallett3, Ze-Guang Han4, and Moshe Szyf1,2 Abstract We use hepatic cellular carcinoma (HCC), one of the most common human cancers, as a model to delineate the landscape of promoter hypomethylation in cancer. Using a combination of methylated DNA immunopre- cipitation and hybridization with comprehensive promoter arrays, we have identified approximately 3,700 promoters that are hypomethylated in tumor samples. The hypomethylated promoters appeared in clusters across the genome suggesting that a high-level organization underlies the epigenomic changes in cancer. In normal liver, most hypomethylated promoters showed an intermediate level of methylation and expression, however, high-CpG dense promoters showed the most profound increase in gene expression. The demethylated genes are mainly involved in cell growth, cell adhesion and communication, signal transduction, mobility, and invasion; functions that are essential for cancer progression and metastasis. The DNA methylation inhibitor, 5- aza-20-deoxycytidine, activated several of the genes that are demethylated and induced in tumors, supporting a causal role for demethylation in activation of these genes. Previous studies suggested that MBD2 was involved in demethylation of specific human breast and prostate cancer genes. Whereas MBD2 depletion in normal liver cells had little or no effect, we found that its depletion in human HCC and adenocarcinoma cells resulted in suppression of cell growth, anchorage-independent growth and invasiveness as well as an increase in promoter methylation and silencing of several of the genes that are hypomethylated in tumors.
    [Show full text]