International Journal of Environmental Research and Public Health Article Simulation-Based Solutions Reducing Soil and Groundwater Contamination from Fertilizers in Arid and Semi-Arid Regions: Case Study the Eastern Nile Delta, Egypt Ismail Abd-Elaty 1, Lorenzo Pugliese 2 , Martina Zelenakova 3,* , Peter Mesaros 4 and Abdelaziz El Shinawi 5 1 Department of Water and Water Structures Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt;
[email protected] 2 Department of Agroecology, Aarhus University, 8830 Tjele, Denmark;
[email protected] 3 Department of Environmental Engineering, Faculty of Civil Engineering, Technical University of Kosice, 04200 Kosice, Slovakia 4 Department of Construction Technology and Management, Faculty of Civil Engineering, Technical University of Kosice, 04200 Kosice, Slovakia;
[email protected] 5 Environmental Geophysics Lab (ZEGL), Geology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
[email protected] * Correspondence:
[email protected] Received: 7 November 2020; Accepted: 12 December 2020; Published: 15 December 2020 Abstract: Intensive agriculture requires increasing application of fertilizers in order to sustain food production. Improper use of these substances in combination with increasing seawater intrusion results in long-term and nonpoint soil and groundwater contamination. In this work, a 3-D groundwater and solute transport numerical model was created to simulate the effect of excessive fertilizers application along the Bahr El Baqar drain system, in the eastern Nile Delta, Egypt. The geotechnical properties of the soils, hydrologic parameters, and unconfined compressive strength were determined at different sites and used as input parameters for the model. Model results showed that silty clay soils are able to contain the contaminations and preserve the groundwater quality.