USGS Scientific Investigations Map 3153
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alaska Division of Geological & Geophysical Surveys Geologic
Cretaceous to Tertiary magmatism and associated mineralization in the Lime Hills C-1 Quadrangle, Western Alaska Range Karri R. Sicard 1, Evan Twelker1, Larry K. Freeman1, Alicja Wypych1, Jeff A. Benowitz2 , and M. Andy Kass3 1Alaska Division of Geological & Geophysical Surveys, Fairbanks, Alaska 2Geophysical Institute, Department of Geology & Geophysics, University of Alaska Fairbanks 3Crustal Geophysics and Geochemistry Science Center, US Geological Survey, Denver, CO Alaska Miners Association Annual Convention 1 November 5, 2014 – Anchorage, Alaska Outline ► Location and geology ► Mineralization highlights ► New 40Ar/39Ar geochronology . With relevant geochemistry ► 3D voxel model of Copper Joe resistivity ► Relationship to Revelation Mountains uplift ► Acknowledgments 2 Photo by T.C. Wright Cretaceous-Tertiary Porphyry Trend ~70 Ma Select Northern Cordillera ~90 Ma porphyry copper deposits ~6 Ma 3 http://www.kiskametals.com Terrane Map YUKON-TANANA TERRANE McGrath WRANGELLIA Project Area Anchorage 4 Modified from Colpron and Nelson, 2011 Denali-Farewell Fault System Jurassic-Cretaceous Revelation flysch Mountains Lime Hills C-1 Cretaceous and Tertiary Quad plutonic rocks Tordrillo Mountains Tertiary volcanics 5 Map modified from Wilson and others, 1998 Airborne Geophysical Surveys Farewell (Burns and others, 2014) Middle Styx (Burns and others, 2013) East Styx More positive magnetic values (Released November 2014) Styx Lime Hills (Burns and More negative others 2008) 6 magnetic values C-1 Quad nT Anomalous Gold Occurrences Circles -
Geologic Maps of the Eastern Alaska Range, Alaska, (44 Quadrangles, 1:63360 Scale)
Report of Investigations 2015-6 GEOLOGIC MAPS OF THE EASTERN ALASKA RANGE, ALASKA, (44 quadrangles, 1:63,360 scale) descriptions and interpretations of map units by Warren J. Nokleberg, John N. Aleinikoff, Gerard C. Bond, Oscar J. Ferrians, Jr., Paige L. Herzon, Ian M. Lange, Ronny T. Miyaoka, Donald H. Richter, Carl E. Schwab, Steven R. Silva, Thomas E. Smith, and Richard E. Zehner Southeastern Tanana Basin Southern Yukon–Tanana Upland and Terrane Delta River Granite Jarvis Mountain Aurora Peak Creek Terrane Hines Creek Fault Black Rapids Glacier Jarvis Creek Glacier Subterrane - Southern Yukon–Tanana Terrane Windy Terrane Denali Denali Fault Fault East Susitna Canwell Batholith Glacier Maclaren Glacier McCallum Creek- Metamorhic Belt Meteor Peak Slate Creek Thrust Broxson Gulch Fault Thrust Rainbow Mountain Slana River Subterrane, Wrangellia Terrane Phelan Delta Creek River Highway Slana River Subterrane, Wrangellia Terrane Published by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS 2015 GEOLOGIC MAPS OF THE EASTERN ALASKA RANGE, ALASKA, (44 quadrangles, 1:63,360 scale) descriptions and interpretations of map units Warren J. Nokleberg, John N. Aleinikoff, Gerard C. Bond, Oscar J. Ferrians, Jr., Paige L. Herzon, Ian M. Lange, Ronny T. Miyaoka, Donald H. Richter, Carl E. Schwab, Steven R. Silva, Thomas E. Smith, and Richard E. Zehner COVER: View toward the north across the eastern Alaska Range and into the southern Yukon–Tanana Upland highlighting geologic, structural, and geomorphic features. View is across the central Mount Hayes Quadrangle and is centered on the Delta River, Richardson Highway, and Trans-Alaska Pipeline System (TAPS). Major geologic features, from south to north, are: (1) the Slana River Subterrane, Wrangellia Terrane; (2) the Maclaren Terrane containing the Maclaren Glacier Metamorphic Belt to the south and the East Susitna Batholith to the north; (3) the Windy Terrane; (4) the Aurora Peak Terrane; and (5) the Jarvis Creek Glacier Subterrane of the Yukon–Tanana Terrane. -
Alaska Range
Alaska Range Introduction The heavily glacierized Alaska Range consists of a number of adjacent and discrete mountain ranges that extend in an arc more than 750 km long (figs. 1, 381). From east to west, named ranges include the Nutzotin, Mentas- ta, Amphitheater, Clearwater, Tokosha, Kichatna, Teocalli, Tordrillo, Terra Cotta, and Revelation Mountains. This arcuate mountain massif spans the area from the White River, just east of the Canadian Border, to Merrill Pass on the western side of Cook Inlet southwest of Anchorage. Many of the indi- Figure 381.—Index map of vidual ranges support glaciers. The total glacier area of the Alaska Range is the Alaska Range showing 2 approximately 13,900 km (Post and Meier, 1980, p. 45). Its several thousand the glacierized areas. Index glaciers range in size from tiny unnamed cirque glaciers with areas of less map modified from Field than 1 km2 to very large valley glaciers with lengths up to 76 km (Denton (1975a). Figure 382.—Enlargement of NOAA Advanced Very High Resolution Radiometer (AVHRR) image mosaic of the Alaska Range in summer 1995. National Oceanic and Atmospheric Administration image mosaic from Mike Fleming, Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska. The numbers 1–5 indicate the seg- ments of the Alaska Range discussed in the text. K406 SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD and Field, 1975a, p. 575) and areas of greater than 500 km2. Alaska Range glaciers extend in elevation from above 6,000 m, near the summit of Mount McKinley, to slightly more than 100 m above sea level at Capps and Triumvi- rate Glaciers in the southwestern part of the range. -
Field-Trip Guide to Volcanic and Volcaniclastic Deposits of the Lower Jurassic Talkeetna Formation, Sheep Mountain, South-Central Alaska
Field-Trip Guide to Volcanic and Volcaniclastic Deposits of the Lower Jurassic Talkeetna Formation, Sheep Mountain, South-Central Alaska U.S. Department of the Interior U.S. Geological Survey Open-File Report 2006-1124 Field-Trip Guide to Volcanic and Volcaniclastic Deposits of the Lower Jurassic Talkeetna Formation, Sheep Mountain, South-Central Alaska Amy E. Draut U.S. Geological Survey, Pacific Science Center, Santa Cruz, CA 95060 Peter D. Clift School of Geosciences, University of Aberdeen, AB24 3UE, U.K. Robert B. Blodgett U.S. Geological Survey–Contractor, Anchorage, AK 99508 U.S. GEOLOGICAL SURVEY Open-File Report 2006-1124 2006 U.S. Department of the Interior P. Lynn Scarlett, Acting Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2006 Revised and reprinted: 2006 Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government To download a copy of this report from the World Wide Web: http://pubs.usgs.gov/of/2006/1124/ For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. LIST OF FIGURES FIGURE 1. Regional map of the field-trip area. FIGURE 2. Geologic cross section through Sheep Mountain. FIGURE 3. Stratigraphic sections on the south side of Sheep Mountain. -
Steve Mccutcheon Collection, B1990.014
REFERENCE CODE: AkAMH REPOSITORY NAME: Anchorage Museum at Rasmuson Center Bob and Evangeline Atwood Alaska Resource Center 625 C Street Anchorage, AK 99501 Phone: 907-929-9235 Fax: 907-929-9233 Email: [email protected] Guide prepared by: Sara Piasecki, Archivist TITLE: Steve McCutcheon Collection COLLECTION NUMBER: B1990.014 OVERVIEW OF THE COLLECTION Dates: circa 1890-1990 Extent: approximately 180 linear feet Language and Scripts: The collection is in English. Name of creator(s): Steve McCutcheon, P.S. Hunt, Sydney Laurence, Lomen Brothers, Don C. Knudsen, Dolores Roguszka, Phyllis Mithassel, Alyeska Pipeline Services Co., Frank Flavin, Jim Cacia, Randy Smith, Don Horter Administrative/Biographical History: Stephen Douglas McCutcheon was born in the small town of Cordova, AK, in 1911, just three years after the first city lots were sold at auction. In 1915, the family relocated to Anchorage, which was then just a tent city thrown up to house workers on the Alaska Railroad. McCutcheon began taking photographs as a young boy, but it wasn’t until he found himself in the small town of Curry, AK, working as a night roundhouse foreman for the railroad that he set out to teach himself the art and science of photography. As a Deputy U.S. Marshall in Valdez in 1940-1941, McCutcheon honed his skills as an evidential photographer; as assistant commissioner in the state’s new Dept. of Labor, McCutcheon documented the cannery industry in Unalaska. From 1942 to 1944, he worked as district manager for the federal Office of Price Administration in Fairbanks, taking photographs of trading stations, communities and residents of northern Alaska; he sent an album of these photos to Washington, D.C., “to show them,” he said, “that things that applied in the South 48 didn’t necessarily apply to Alaska.” 1 1 Emanuel, Richard P. -
P1616 Text-Only PDF File
A Geologic Guide to Wrangell–Saint Elias National Park and Preserve, Alaska A Tectonic Collage of Northbound Terranes By Gary R. Winkler1 With contributions by Edward M. MacKevett, Jr.,2 George Plafker,3 Donald H. Richter,4 Danny S. Rosenkrans,5 and Henry R. Schmoll1 Introduction region—his explorations of Malaspina Glacier and Mt. St. Elias—characterized the vast mountains and glaciers whose realms he invaded with a sense of astonishment. His descrip Wrangell–Saint Elias National Park and Preserve (fig. tions are filled with superlatives. In the ensuing 100+ years, 6), the largest unit in the U.S. National Park System, earth scientists have learned much more about the geologic encompasses nearly 13.2 million acres of geological won evolution of the parklands, but the possibility of astonishment derments. Furthermore, its geologic makeup is shared with still is with us as we unravel the results of continuing tectonic contiguous Tetlin National Wildlife Refuge in Alaska, Kluane processes along the south-central Alaska continental margin. National Park and Game Sanctuary in the Yukon Territory, the Russell’s superlatives are justified: Wrangell–Saint Elias Alsek-Tatshenshini Provincial Park in British Columbia, the is, indeed, an awesome collage of geologic terranes. Most Cordova district of Chugach National Forest and the Yakutat wonderful has been the continuing discovery that the disparate district of Tongass National Forest, and Glacier Bay National terranes are, like us, invaders of a sort with unique trajectories Park and Preserve at the north end of Alaska’s panhan and timelines marking their northward journeys to arrive in dle—shared landscapes of awesome dimensions and classic today’s parklands. -
Languages of the World--Native America
REPOR TRESUMES ED 010 352 46 LANGUAGES OF THE WORLD-NATIVE AMERICA FASCICLE ONE. BY- VOEGELIN, C. F. VOEGELIN, FLORENCE N. INDIANA UNIV., BLOOMINGTON REPORT NUMBER NDEA-VI-63-5 PUB DATE JUN64 CONTRACT MC-SAE-9486 EDRS PRICENF-$0.27 HC-C6.20 155P. ANTHROPOLOGICAL LINGUISTICS, 6(6)/1-149, JUNE 1964 DESCRIPTORS- *AMERICAN INDIAN LANGUAGES, *LANGUAGES, BLOOMINGTON, INDIANA, ARCHIVES OF LANGUAGES OF THE WORLD THE NATIVE LANGUAGES AND DIALECTS OF THE NEW WORLD"ARE DISCUSSED.PROVIDED ARE COMPREHENSIVE LISTINGS AND DESCRIPTIONS OF THE LANGUAGES OF AMERICAN INDIANSNORTH OF MEXICO ANDOF THOSE ABORIGINAL TO LATIN AMERICA..(THIS REPOR4 IS PART OF A SEkIES, ED 010 350 TO ED 010 367.)(JK) $. DEPARTMENT OF HEALTH,EDUCATION nib Office ofEduc.442n MD WELNicitt weenment Lasbeenreproduced a l l e a l O exactly r o n o odianeting es receivromed f the Sabi donot rfrocestarity it. Pondsof viewor position raimentofficial opinions or pritcy. Offkce ofEducation rithrppologicalLinguistics Volume 6 Number 6 ,Tune 1964 LANGUAGES OF TEM'WORLD: NATIVE AMER/CAFASCICLEN. A Publication of this ARC IVES OF LANGUAGESor 111-E w oRLD Anthropology Doparignont Indiana, University ANTHROPOLOGICAL LINGUISTICS is designed primarily, butnot exclusively, for the immediate publication of data-oriented papers for which attestation is available in the form oftape recordings on deposit in the Archives of Languages of the World. This does not imply that contributors will bere- stricted to scholars working in the Archives at Indiana University; in fact,one motivation for the publication -
An Inventory of Belemnites Documented in Six Us National Parks in Alaska
Lucas, S. G., Hunt, A. P. & Lichtig, A. J., 2021, Fossil Record 7. New Mexico Museum of Natural History and Science Bulletin 82. 357 AN INVENTORY OF BELEMNITES DOCUMENTED IN SIX US NATIONAL PARKS IN ALASKA CYNTHIA D. SCHRAER1, DAVID J. SCHRAER2, JUSTIN S. TWEET3, ROBERT B. BLODGETT4, and VINCENT L. SANTUCCI5 15001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 25001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 3National Park Service, Geologic Resources Division, 1201 Eye Street, Washington, D.C. 20005; -email: justin_tweet@ nps.gov; 42821 Kingfisher Drive, Anchorage, AK 99502; -email: [email protected];5 National Park Service, Geologic Resources Division, 1849 “C” Street, Washington, D.C. 20240; -email: [email protected] Abstract—Belemnites (order Belemnitida) are an extinct group of coleoid cephalopods, known from the Jurassic and Cretaceous periods. We compiled detailed information on 252 occurrences of belemnites in six National Park Service (NPS) areas in Alaska. This information was based on published literature and maps, unpublished U.S. Geological Survey internal fossil reports (“Examination and Report on Referred Fossils” or E&Rs), the U.S. Geological Survey Mesozoic locality register, the Alaska Paleontological Database, the NPS Paleontology Archives and our own records of belemnites found in museum collections. Few specimens have been identified and many consist of fragments. However, even these suboptimal specimens provide evidence that belemnites are present in given formations and provide direction for future research. Two especially interesting avenues for research concern the time range of belemnites in Alaska. Belemnites are known to have originated in what is now Europe in the Early Jurassic Hettangian and to have a well-documented world-wide distribution in the Early Jurassic Toarcian. -
Description and Interpretation of Geologic Materials from Shotholes Drilled for the Trans-Alaska Crustal Transect Project, Copper River Basin, Alaska, May 1985
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY Description and Interpretation of Geologic Materials from Shotholes Drilled for the Trans-Alaska Crustal Transect Project, Copper River Basin, Alaska, May 1985 By Jack K. Odum 1 , Lynn A. Yehle 1 , Henry R. Schmoll 1 , and Chuck Gilbert 2 Open-File Report 86-408 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS. U.S. Geological Survey HJ.S. Geological Survey Denver, Colorado Menlo Park, California 1986 CONTENTS Page Introduction....................................................... 1 Drilling operations and sampling................................... 1 Interpretation of materials........................................ 4 Description of drill sites and geologic materials from drill holes................................................. 4 CRB 85-23a and b............................................... 4 CRB 85-24...................................................... 6 CRB 85-25...................................................... 10 CRB 85-26...................................................... 12 CRB 85-27...................................................... 14 CRB 85-28...................................................... 14 References cited................................................... 17 ILLUSTRATIONS Figure 1. Location map showing the U.S. Geological Survey shotholes CRB -
Belemnite Extinction and the Origin of Modern Cephalopods 35 M.Y. Prior to the Cretaceous−Paleogene Event
Belemnite extinction and the origin of modern cephalopods 35 m.y. prior to the Cretaceous−Paleogene event Yasuhiro Iba1,2*, Jörg Mutterlose1, Kazushige Tanabe3, Shin-ichi Sano4, Akihiro Misaki5, and Kazunobu Terabe6 1Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, 44801, Germany 2Department of Geology and Paleontology, National Museum of Nature and Science, Tokyo 169-0073, Japan 3Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033, Japan 4Fukui Prefectural Dinosaur Museum, Fukui 911-8601, Japan 5Kitakyushu Museum of Natural History and Human History, Fukuoka 805-0071, Japan 6Arabian Oil Company, Ltd., Tokyo 140-0002, Japan ABSTRACT determination of the strata studied is based on Belemnites, a very successful group of Mesozoic cephalopods, fl ourished in Cretaceous diagnostic ammonite species. Evaluations of oceans until the Cretaceous−Paleogene event, when they became globally extinct. Following museum collections (Mikasa City Museum, and this event the modern types of cephalopods (squids, cuttlefi sh, octopus) radiated in the Ceno- Kyushu University, Japan; California Academy zoic in all oceans. In the North Pacifi c, however, a turnover from belemnites to the modern of Science, USA) have also been done. Details types of cephalopods about 35 m.y. before the Cretaceous−Paleogene event documents a more of the localities, horizons, and the precise strati- complex evolutionary history of cephalopods than previously thought. Here we show that the graphic ages of Albian belemnites are shown in modern types of cephalopods originated and prospered throughout the Late Cretaceous in Table DR1 in the Data Repository.1 the North Pacifi c. The mid-Cretaceous cephalopod turnover was caused by cooling and the closure of the Bering Strait, which led to a subsequent faunal isolation of this area. -
Deep Sea Drilling Project Initial Reports Volume 27
46. LEG 27 CEPHALOPODA Graeme R. Stevens, New Zealand Geological Survey, Department of Scientific and Industrial Research, Lower Hutt, New Zealand COLEOIDEA frequently develop lines of weakness and hence often BELEMNITIDA break at about the position of the protoconch (Stevens, Family Belemnopsidae 1965b), it is possible that very little of the anterior part cf. Parahibolites, sp. indet. of the stem region has been lost. There is a strong (Plate 1, Figures 1-3) possibility, therefore, that if specimen WM 11629 was a Dimitobelus, the cross-sections would show some sign of Material: One guard (Plate 1, Figure 1). Sample 263- the presence of ventrolateral grooves, or at least the 26-2, 108-110 cm. Cuvier Abyssal Plain, 23°20'S, strongly developed lateral lines that are their con- 1 JO°58'E. Water depth 5065 meters. Sample from 698.5 tinuations posteriorly (Stevens, 1965b, figs. 26 and 29). to 708 meters below the sea floor. Specimen deposited in The cross-sections of specimen WM 11629—circular the World Mollusca Collection, New Zealand in both apical and stem regions—and centrally placed Geological Survey, Lower Hutt, New Zealand. apical line, together tend to deny identification with Specimen WM 11629. Dimitobelidae, as both Peratobelus and Dimitobelus Dimensions: Length of guard: 36 mm; diameter of usually show depressed stem and apical cross-sections guard at anterior end: 7 mm. and eccentric apical line (although the Maestrichtian D. Description: Guard moderately elongate. Length hectori Stevens has circular stem cross-sections and about six times maximum diameter. Outline central apical line). It is concluded, therefore, that the symmetrical and nonhastate. -
Ground-Water Resources of Dupage County, Illinois
RATIVE GROUND-WATER REPORT 2 llinois 1962 STATE WATER SURVEY STATE GEOLOGICAL SURVEY GROUND-WATER RESOURCES OF DUPAGE COUNTY, ILLINOIS Arthur J. Zeizel William C. Walton Robert T. Sasman Thomas A. Prickett STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION GROUND-WATER RESOURCES OF DUPAGE COUNTY, ILLINOIS ARTHUR J. ZEIZEL, WILLIAM C. WALTON, ROBERT T. SASMAN, and THOMAS A. PRICKETT STATE WATER SURVEY STATE GEOLOGICAL SURVEY COOPERATIVE G R O U N D-WA T E R REPORT 2 URBANA, ILLINOIS 1962 STATE OF ILLINOIS OTTO KERNER, Governor DEPARTMENT OP REGISTRATION AND EDUCATION WILLIAM SYLVESTER WHITE, Director BOARD OF NATURAL RESOURCES AND CONSERVATION WILLIAM SYLVESTER WHITE, Chairman ROGER ADAMS, Ph.D., D.Se., LL.D., Chemistry ROBERT H. ANDERSON, B.S., Engineering WALTER H. NEWHOUSE, Ph.D., Geology CHARLES E. OLMSTED, Ph.D., Botany THOMAS PARK, Ph.D., Biology DEAN WILLIAM L. EVERETT, E.E., Ph.D., University of Illinois PRESIDENT DELYTE W. MORRIS, Ph.D., Southern Illinois University STATE WATER SURVEY STATE GEOLOGICAL SURVEY WILLIAM C. ACKERMANN, Chief JOHN C. PRYE, Chief Printed by Authority of the State of Illinois—IRS, Ch. 127, Par. 58.29 CONTENTS PAGE Abstract 7 Introduction 7 Purpose and scope 7 Previous reports 8 Well numbering system 8 Acknowledgments 8 Geography 8 Location and general features 8 Topography and drainage 9 Climate 9 Population 12 Economy 12 Geology 13 General relations 13 Bedrock stratigraphy 13 Precambrian 13 Cambrian 16 Ordovician 18 Silurian . 19 Alexandrian Series 19 Niagaran Series 19 Bedrock structure 20 History of the bedrock , 20 Bedrock topography 21 Unconsolidated deposits 21 Glacial drift 21 Topography 22 Composition 22 Recent deposits 24 Thickness 24 History 24 Relationship of geology to ground water 26 Glacial drift aquifers 26 Distribution 30 Silurian dolomite aquifer 30 Water-bearing properties 36 Niagaran aquifer 37 Basal unit 37 Alexandrian aquifer 39 Statistical analysis of geologic controls 39 Confining beds of the Maquoketa Formation 42 Cambrian-Ordovician aquifer 42 Confining beds of the Eau Claire Formation 45 Mt.