9.3 the Parabola

Total Page:16

File Type:pdf, Size:1020Kb

9.3 the Parabola P-BLTZMC09_873-950-hr 21-11-2008 13:28 Page 900 900 Chapter 9 Conic Sections and Analytic Geometry 79. Write 4x2 - 6xy + 2y2 - 3x + 10y - 6 = 0 as a quadratic In Exercises 85–88, determine whether each statement is true or false. equation in y and then use the quadratic formula to express y If the statement is false, make the necessary change(s) to produce a in terms of x. Graph the resulting two equations using a true statement. graphing utility in a -50, 70, 10 by -30, 50, 10 viewing 85. If one branch of a hyperbola is removed from a graph, then 3 4 3 4 rectangle. What effect does the xy-term have on the graph of the branch that remains must define y as a function of x. the resulting hyperbola? What problems would you 86. All points on the asymptotes of a hyperbola also satisfy the encounter if you attempted to write the given equation in hyperbola’s equation. standard form by completing the square? x2 y2 2 87. The graph of - = 1 does not intersect the line y =- x. x2 y2 x ƒ x ƒ y ƒ y ƒ 9 4 3 80. Graph - = 1 and - = 1 in the same viewing 88. Two different hyperbolas can never share the same asymptotes. 16 9 16 9 x2 y2 rectangle. Explain why the graphs are not the same. - = 89. What happens to the shape of the graph of 2 2 1 as c a b : q, where c2 = a2 + b2? a Critical Thinking Exercises 90. Find the standard form of the equation of the hyperbola with vertices 5, -6 and (5, 6), passing through (0, 9). Make Sense? In Exercises 81–84, determine whether each 1 2 statement makes sense or does not make sense, and explain your 91. Find the equation of a hyperbola whose asymptotes are reasoning. perpendicular. 81. I changed the addition in an ellipse’s equation to subtraction and this changed its elongation from horizontal to vertical. Preview Exercises Exercises 92–94 will help you prepare for the material covered in 82. I noticed that the definition of a hyperbola closely resembles the next section. that of an ellipse in that it depends on the distances between a set of points in a plane to two fixed points, the foci. In Exercises 92–93, graph each parabola with the given equation. 92.y = x2 + 4x - 5 93. y =-3 x - 1 2 + 2 83. I graphed a hyperbola centered at the origin that had 1 2 y-intercepts, but no x-intercepts. 94. Isolate the terms involving y on the left side of the equation: 2 + + - = 84. I graphed a hyperbola centered at the origin that was y 2y 12x 23 0. symmetric with respect to the x-axis and also symmetric Then write the equation in an equivalent form by completing with respect to the y-axis. the square on the left side. Section 9.3 The Parabola Objectives At first glance, this image looks like columns of smoke rising from a ᕡ Graph parabolas with vertices fire into a starry sky.Those are, indeed, stars in the background, but at the origin. you are not looking at ordinary smoke columns. These stand almost 6 trillion miles high and are 7000 light-years from Earth—more ᕢ Write equations of parabolas than 400 million times as far away as the sun. in standard form. his NASA photograph is one of a series of ᕣ Graph parabolas with vertices stunning images captured from the ends of not at the origin. T the universe by the Hubble Space ᕤ Solve applied problems Telescope. The image shows infant involving parabolas. star systems the size of our solar system emerging from the gas and dust that shrouded their creation. Using a parabolic mirror that is 94.5 inches in diameter, the Hubble has provided answers to many of the profound mysteries of the cosmos: How big and how old is the universe? How did the galaxies come to exist? Do other Earth-like planets orbit other sun-like stars? In this section, we study parabolas and their applications, including parabolic shapes that gather distant rays of light and focus them into spectacular images. Definition of a Parabola In Chapter 2, we studied parabolas, viewing them as graphs of quadratic functions in the form y = a x - h 2 + k or y = ax2 + bx + c. 1 2 P-BLTZMC09_873-950-hr 21-11-2008 13:28 Page 901 Section 9.3 The Parabola 901 Study Tip Here is a summary of what you should already know about graphing parabolas. ax 2 ؉ bx ؉ c ؍ a(x ؊ h)2 ؉ k and y ؍ Graphing y 1. If a 7 0, the graph opens upward. If a 6 0, the graph opens downward. 2. The vertex of y = a x - h 2 + k is h, k . 1 2 1 2 y y x = h y = a(x − h)2 + k (h, k) a < 0 x x y = a(x − h)2 + k a > 0 (h, k) x = h 2 b 3. The x-coordinate of the vertex of y = ax + bx + c is x =- . 2a Parabola Parabolas can be given a geometric definition that enables us to include graphs that open to the left or to the right, as well as those that open obliquely.The Directrix definitions of ellipses and hyperbolas involved two fixed points, the foci. By Axis of contrast, the definition of a parabola is based on one point and a line. Focus symmetry Definition of a Parabola Vertex A parabola is the set of all points in a plane that are equidistant from a fixed line, the directrix, and a fixed point, the focus, that is not on the line (see Figure 9.29). Figure 9.29 In Figure 9.29, find the line passing through the focus and perpendicular to the directrix. This is the axis of symmetry of the parabola. The point of intersection of the parabola with its axis of symmetry is called the vertex. Notice that the vertex is midway between the focus and the directrix. Standard Form of the Equation of a Parabola The rectangular coordinate system enables us y d1 to translate a parabola’s geometric definition M(−p, y) into an algebraic equation. Figure 9.30 is our P(x, y) starting point for obtaining an equation. We place the focus on the x-axis at the point d2 p, 0 . The directrix has an equation given by 1 2 x x =-p. The vertex, located midway between the focus and the directrix, is at the origin. Focus (p, 0) Directrix: x = −p What does the definition of a parabola tell us about the point x, y in Figure 9.30? 1 2 For any point x, y on the parabola, the 1 2 distance d1 to the directrix is equal to the distance d to the focus.Thus, the point x, y Figure 9.30 2 1 2 is on the parabola if and only if d1 = d2 . 4 x + p 2 + y - y 2 = 4 x - p 2 + y - 0 2 Use the distance formula. 1 2 1 2 1 2 1 2 x + p 2 = x - p 2 + y2 Square both sides of the 1 2 1 2 equation. P-BLTZMC09_873-950-hr 21-11-2008 13:28 Page 902 902 Chapter 9 Conic Sections and Analytic Geometry x2 + 2px + p2 = x2 - 2px + p2 + y2 Square x + p and x - p. 2px =-2px + y2 Subtract x 2 + p2 from both sides of the equation. y2 = 4px Solve for y 2. This last equation is called the standard form of the equation of a parabola with its vertex at the origin. There are two such equations, one for a focus on the x-axis and one for a focus on the y-axis. Standard Forms of the Equations of a Parabola The standard form of the equation of a parabola with vertex at the origin is y2 = 4px or x2 = 4py. Figure 9.31(a) illustrates that for the equation on the left, the focus is on the x-axis, which is the axis of symmetry. Figure 9.31(b) illustrates that for the equation on the right, the focus is on the y-axis, which is the axis of symmetry. y y x2 = 4py y2 = 4px Focus (0, p) Vertex Vertex Study Tip x x Focus (p, 0) It is helpful to think of p as the Directrix: x = −p directed distance from the vertex to Directrix: y = −p the focus. If p 7 0, the focus lies p units to the right of the vertex or p units above the vertex. If p 6 0, the focus lies ƒ p ƒ units to the left of the Figure 9.31(a) Parabola with the x-axis as the Figure 9.31(b) Parabola with the y-axis axis of symmetry. If p 7 0, the graph opens to the as the axis of symmetry. If p 7 0, the graph vertex or ƒ p ƒ units below the vertex. right. If p 6 0, the graph opens to the left. opens upward. If p 6 0, the graph opens downward. ᕡ Graph parabolas with vertices at Using the Standard Form of the Equation of a Parabola the origin. We can use the standard form of the equation of a parabola to find its focus and directrix. Observing the graph’s symmetry from its equation is helpful in locating the focus. y2=4px x2=4py The equation does not change if The equation does not change if y is replaced with −y.
Recommended publications
  • Exploding the Ellipse Arnold Good
    Exploding the Ellipse Arnold Good Mathematics Teacher, March 1999, Volume 92, Number 3, pp. 186–188 Mathematics Teacher is a publication of the National Council of Teachers of Mathematics (NCTM). More than 200 books, videos, software, posters, and research reports are available through NCTM’S publication program. Individual members receive a 20% reduction off the list price. For more information on membership in the NCTM, please call or write: NCTM Headquarters Office 1906 Association Drive Reston, Virginia 20191-9988 Phone: (703) 620-9840 Fax: (703) 476-2970 Internet: http://www.nctm.org E-mail: [email protected] Article reprinted with permission from Mathematics Teacher, copyright May 1991 by the National Council of Teachers of Mathematics. All rights reserved. Arnold Good, Framingham State College, Framingham, MA 01701, is experimenting with a new approach to teaching second-year calculus that stresses sequences and series over integration techniques. eaders are advised to proceed with caution. Those with a weak heart may wish to consult a physician first. What we are about to do is explode an ellipse. This Rrisky business is not often undertaken by the professional mathematician, whose polytechnic endeavors are usually limited to encounters with administrators. Ellipses of the standard form of x2 y2 1 5 1, a2 b2 where a > b, are not suitable for exploding because they just move out of view as they explode. Hence, before the ellipse explodes, we must secure it in the neighborhood of the origin by translating the left vertex to the origin and anchoring the left focus to a point on the x-axis.
    [Show full text]
  • Combination of Cubic and Quartic Plane Curve
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 2 (Mar. - Apr. 2013), PP 43-53 www.iosrjournals.org Combination of Cubic and Quartic Plane Curve C.Dayanithi Research Scholar, Cmj University, Megalaya Abstract The set of complex eigenvalues of unistochastic matrices of order three forms a deltoid. A cross-section of the set of unistochastic matrices of order three forms a deltoid. The set of possible traces of unitary matrices belonging to the group SU(3) forms a deltoid. The intersection of two deltoids parametrizes a family of Complex Hadamard matrices of order six. The set of all Simson lines of given triangle, form an envelope in the shape of a deltoid. This is known as the Steiner deltoid or Steiner's hypocycloid after Jakob Steiner who described the shape and symmetry of the curve in 1856. The envelope of the area bisectors of a triangle is a deltoid (in the broader sense defined above) with vertices at the midpoints of the medians. The sides of the deltoid are arcs of hyperbolas that are asymptotic to the triangle's sides. I. Introduction Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. 1. Bicorn curve 2. Klein quartic 3. Bullet-nose curve 4. Lemniscate of Bernoulli 5. Cartesian oval 6. Lemniscate of Gerono 7. Cassini oval 8. Lüroth quartic 9. Deltoid curve 10. Spiric section 11. Hippopede 12. Toric section 13. Kampyle of Eudoxus 14. Trott curve II. Bicorn curve In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation It has two cusps and is symmetric about the y-axis.
    [Show full text]
  • Chapter 10 Analytic Geometry
    Chapter 10 Analytic Geometry Section 10.1 13. (e); the graph has vertex ()()hk,1,1= and opens to the right. Therefore, the equation of the graph Not applicable has the form ()yax−=142 () − 1. Section 10.2 14. (d); the graph has vertex ()()hk,0,0= and ()()−+−22 1. xx21 yy 21 opens down. Therefore, the equation of the graph has the form xay2 =−4 . The graph passes 2 −4 through the point ()−−2, 1 so we have 2. = 4 2 2 ()−=−−241a () 2 = 3. ()x +=49 44a = x +=±43 a 1 2 xx+=43 or +=− 4 3 Thus, the equation of the graph is xy=−4 . xx=−1 or =− 7 15. (h); the graph has vertex ()(hk,1,1=− − ) and The solution set is {7,1}−−. opens down. Therefore, the equation of the graph 2 4. (2,5)−− has the form ()xay+=−+141 (). 5. 3, up 16. (a); the graph has vertex ()()hk,0,0= and 6. parabola opens to the right. Therefore, the equation of the graph has the form yax2 = 4 . The graph passes 7. c through the point ()1, 2 so we have 8. (3, 2) ()2412 = a () 44= a 9. (3,6) 1 = a 2 10. y =−2 Thus, the equation of the graph is yx= 4 . 11. (b); the graph has a vertex ()()hk,0,0= and 17. (c); the graph has vertex ()()hk,0,0= and opens up. Therefore, the equation of the graph opens to the left. Therefore, the equation of the 2 has the form xay2 = 4 . The graph passes graph has the form yax=−4 .
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Polynomial Curves and Surfaces
    Polynomial Curves and Surfaces Chandrajit Bajaj and Andrew Gillette September 8, 2010 Contents 1 What is an Algebraic Curve or Surface? 2 1.1 Algebraic Curves . .3 1.2 Algebraic Surfaces . .3 2 Singularities and Extreme Points 4 2.1 Singularities and Genus . .4 2.2 Parameterizing with a Pencil of Lines . .6 2.3 Parameterizing with a Pencil of Curves . .7 2.4 Algebraic Space Curves . .8 2.5 Faithful Parameterizations . .9 3 Triangulation and Display 10 4 Polynomial and Power Basis 10 5 Power Series and Puiseux Expansions 11 5.1 Weierstrass Factorization . 11 5.2 Hensel Lifting . 11 6 Derivatives, Tangents, Curvatures 12 6.1 Curvature Computations . 12 6.1.1 Curvature Formulas . 12 6.1.2 Derivation . 13 7 Converting Between Implicit and Parametric Forms 20 7.1 Parameterization of Curves . 21 7.1.1 Parameterizing with lines . 24 7.1.2 Parameterizing with Higher Degree Curves . 26 7.1.3 Parameterization of conic, cubic plane curves . 30 7.2 Parameterization of Algebraic Space Curves . 30 7.3 Automatic Parametrization of Degree 2 Curves and Surfaces . 33 7.3.1 Conics . 34 7.3.2 Rational Fields . 36 7.4 Automatic Parametrization of Degree 3 Curves and Surfaces . 37 7.4.1 Cubics . 38 7.4.2 Cubicoids . 40 7.5 Parameterizations of Real Cubic Surfaces . 42 7.5.1 Real and Rational Points on Cubic Surfaces . 44 7.5.2 Algebraic Reduction . 45 1 7.5.3 Parameterizations without Real Skew Lines . 49 7.5.4 Classification and Straight Lines from Parametric Equations . 52 7.5.5 Parameterization of general algebraic plane curves by A-splines .
    [Show full text]
  • Construction of Rational Surfaces of Degree 12 in Projective Fourspace
    Construction of Rational Surfaces of Degree 12 in Projective Fourspace Hirotachi Abo Abstract The aim of this paper is to present two different constructions of smooth rational surfaces in projective fourspace with degree 12 and sectional genus 13. In particular, we establish the existences of five different families of smooth rational surfaces in projective fourspace with the prescribed invariants. 1 Introduction Hartshone conjectured that only finitely many components of the Hilbert scheme of surfaces in P4 contain smooth rational surfaces. In 1989, this conjecture was positively solved by Ellingsrud and Peskine [7]. The exact bound for the degree is, however, still open, and hence the question concerning the exact bound motivates us to find smooth rational surfaces in P4. The goal of this paper is to construct five different families of smooth rational surfaces in P4 with degree 12 and sectional genus 13. The rational surfaces in P4 were previously known up to degree 11. In this paper, we present two different constructions of smooth rational surfaces in P4 with the given invariants. Both the constructions are based on the technique of “Beilinson monad”. Let V be a finite-dimensional vector space over a field K and let W be its dual space. The basic idea behind a Beilinson monad is to represent a given coherent sheaf on P(W ) as a homology of a finite complex whose objects are direct sums of bundles of differentials. The differentials in the monad are given by homogeneous matrices over an exterior algebra E = V V . To construct a Beilinson monad for a given coherent sheaf, we typically take the following steps: Determine the type of the Beilinson monad, that is, determine each object, and then find differentials in the monad.
    [Show full text]
  • Apollonius of Pergaconics. Books One - Seven
    APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro].
    [Show full text]
  • A Brief Note on the Approach to the Conic Sections of a Right Circular Cone from Dynamic Geometry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by EPrints Complutense A brief note on the approach to the conic sections of a right circular cone from dynamic geometry Eugenio Roanes–Lozano Abstract. Nowadays there are different powerful 3D dynamic geometry systems (DGS) such as GeoGebra 5, Calques 3D and Cabri Geometry 3D. An obvious application of this software that has been addressed by several authors is obtaining the conic sections of a right circular cone: the dynamic capabilities of 3D DGS allows to slowly vary the angle of the plane w.r.t. the axis of the cone, thus obtaining the different types of conics. In all the approaches we have found, a cone is firstly constructed and it is cut through variable planes. We propose to perform the construction the other way round: the plane is fixed (in fact it is a very convenient plane: z = 0) and the cone is the moving object. This way the conic is expressed as a function of x and y (instead of as a function of x, y and z). Moreover, if the 3D DGS has algebraic capabilities, it is possible to obtain the implicit equation of the conic. Mathematics Subject Classification (2010). Primary 68U99; Secondary 97G40; Tertiary 68U05. Keywords. Conics, Dynamic Geometry, 3D Geometry, Computer Algebra. 1. Introduction Nowadays there are different powerful 3D dynamic geometry systems (DGS) such as GeoGebra 5 [2], Calques 3D [7, 10] and Cabri Geometry 3D [11]. Focusing on the most widespread one (GeoGebra 5) and conics, there is a “conics” icon in the ToolBar.
    [Show full text]
  • Chapter 9: Conics Section 9.1 Ellipses
    Chapter 9: Conics Section 9.1 Ellipses ..................................................................................................... 579 Section 9.2 Hyperbolas ............................................................................................... 597 Section 9.3 Parabolas and Non-Linear Systems ......................................................... 617 Section 9.4 Conics in Polar Coordinates..................................................................... 630 In this chapter, we will explore a set of shapes defined by a common characteristic: they can all be formed by slicing a cone with a plane. These families of curves have a broad range of applications in physics and astronomy, from describing the shape of your car headlight reflectors to describing the orbits of planets and comets. Section 9.1 Ellipses The National Statuary Hall1 in Washington, D.C. is an oval-shaped room called a whispering chamber because the shape makes it possible for sound to reflect from the walls in a special way. Two people standing in specific places are able to hear each other whispering even though they are far apart. To determine where they should stand, we will need to better understand ellipses. An ellipse is a type of conic section, a shape resulting from intersecting a plane with a cone and looking at the curve where they intersect. They were discovered by the Greek mathematician Menaechmus over two millennia ago. The figure below2 shows two types of conic sections. When a plane is perpendicular to the axis of the cone, the shape of the intersection is a circle. A slightly titled plane creates an oval-shaped conic section called an ellipse. 1 Photo by Gary Palmer, Flickr, CC-BY, https://www.flickr.com/photos/gregpalmer/2157517950 2 Pbroks13 (https://commons.wikimedia.org/wiki/File:Conic_sections_with_plane.svg), “Conic sections with plane”, cropped to show only ellipse and circle by L Michaels, CC BY 3.0 This chapter is part of Precalculus: An Investigation of Functions © Lippman & Rasmussen 2020.
    [Show full text]
  • Parabola Error Evaluation Based on Geometry Optimizing Approxima- Tion Algorithm
    Send Orders for Reprints to [email protected] The Open Automation and Control Systems Journal, 2014, 6, 277-282 277 Open Access Parabola Error Evaluation Based on Geometry Optimizing Approxima- tion Algorithm Lei Xianqing1,*, Gao Zuobin1, Wang Haiyang2 and Cui Jingwei3 1Henan University of Science and Technology, Luoyang, 471003, China 2Heavy Industries Co., Ltd, Luoyang, 471003, China 3Luoyang Bearing Science &Technology Co. Ltd, Luoyang, 471003, China Abstract: A more accurate evaluation for parabola errors based on Geometry Optimizing Approximation Algorithm (GOAA) is presented in this paper. Firstly, according to the least squares method, two parabola characteristic points are determined as reference points to form a series of auxiliary points according to a certain geometry shape, and then, as- sumption ideal auxiliary parabolas are reversed by the parabola geometric characteristic. The range distance of all given points to the assumption ideal parabolas are calculated by the auxiliary parabolas as supposed ideal parabolas, and the ref- erence points, the auxiliary points, reference parabola and auxiliary parabolas are reconstructed by comparing the range distances, the evaluation for parabola error is finally obtained after repeating this entire process. On the basis of 0.1 mm of a group of simulative metrical data, compared with the least square method, while the criteria of stop searching is 0.00001 mm, the parabola error value from this algorithm can be reduced by 77 µm. The result shows this algorithm realizes the evaluation of parabola with minimum zone, accurately and stably. Keywords: Error evaluation, geometry approximation, minimum zone, parabola error. 1. INTRODUCTION squares techniques, but the iterations of the calculations is relatively complex.
    [Show full text]
  • Lines, Circles, and Parabolas 9
    4100 AWL/Thomas_ch01p001-072 8/19/04 10:49 AM Page 9 1.2 Lines, Circles, and Parabolas 9 1.2 Lines, Circles, and Parabolas This section reviews coordinates, lines, distance, circles, and parabolas in the plane. The notion of increment is also discussed. y b P(a, b) Cartesian Coordinates in the Plane Positive y-axis In the previous section we identified the points on the line with real numbers by assigning 3 them coordinates. Points in the plane can be identified with ordered pairs of real numbers. 2 To begin, we draw two perpendicular coordinate lines that intersect at the 0-point of each line. These lines are called coordinate axes in the plane. On the horizontal x-axis, num- 1 Negative x-axis Origin bers are denoted by x and increase to the right. On the vertical y-axis, numbers are denoted x by y and increase upward (Figure 1.5). Thus “upward” and “to the right” are positive direc- –3–2 –1 01 2a 3 tions, whereas “downward” and “to the left” are considered as negative. The origin O, also –1 labeled 0, of the coordinate system is the point in the plane where x and y are both zero. Positive x-axis Negative y-axis If P is any point in the plane, it can be located by exactly one ordered pair of real num- –2 bers in the following way. Draw lines through P perpendicular to the two coordinate axes. These lines intersect the axes at points with coordinates a and b (Figure 1.5).
    [Show full text]
  • 14. Mathematics for Orbits: Ellipses, Parabolas, Hyperbolas Michael Fowler
    14. Mathematics for Orbits: Ellipses, Parabolas, Hyperbolas Michael Fowler Preliminaries: Conic Sections Ellipses, parabolas and hyperbolas can all be generated by cutting a cone with a plane (see diagrams, from Wikimedia Commons). Taking the cone to be xyz222+=, and substituting the z in that equation from the planar equation rp⋅= p, where p is the vector perpendicular to the plane from the origin to the plane, gives a quadratic equation in xy,. This translates into a quadratic equation in the plane—take the line of intersection of the cutting plane with the xy, plane as the y axis in both, then one is related to the other by a scaling xx′ = λ . To identify the conic, diagonalized the form, and look at the coefficients of xy22,. If they are the same sign, it is an ellipse, opposite, a hyperbola. The parabola is the exceptional case where one is zero, the other equates to a linear term. It is instructive to see how an important property of the ellipse follows immediately from this construction. The slanting plane in the figure cuts the cone in an ellipse. Two spheres inside the cone, having circles of contact with the cone CC, ′, are adjusted in size so that they both just touch the plane, at points FF, ′ respectively. It is easy to see that such spheres exist, for example start with a tiny sphere inside the cone near the point, and gradually inflate it, keeping it spherical and touching the cone, until it touches the plane. Now consider a point P on the ellipse.
    [Show full text]