Physics of Liquid Jets

Total Page:16

File Type:pdf, Size:1020Kb

Physics of Liquid Jets IOP PUBLISHING REPORTS ON PROGRESS IN PHYSICS Rep. Prog. Phys. 71 (2008) 036601 (79pp) doi:10.1088/0034-4885/71/3/036601 Physics of liquid jets Jens Eggers1 and Emmanuel Villermaux2,3 1 School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK 2 IRPHE, Universite´ de Provence, Aix-Marseille I, Technopoleˆ de Chateau-Gombert,ˆ 49, rue Fred´ eric´ Joliot-Curie 13384 Marseille Cedex 13, France Received 9 August 2007, in final form 14 December 2007 Published 21 February 2008 Online at stacks.iop.org/RoPP/71/036601 Abstract Jets, i.e. collimated streams of matter, occur from the microscale up to the large-scale structure of the universe. Our focus will be mostly on surface tension effects, which result from the cohesive properties of liquids. Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical diagnostics, sprays, agricultural irrigation and jet engine technology. Liquid jets thus serve as a paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop breakup. In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as surface tension, viscosity or non-Newtonian rheology. They also arise from the last but one topology change of liquid masses bursting into sprays. Jet dynamics are sensitive to the turbulent or thermal excitation of the fluid, as well as to the surrounding gas or fluid medium. The aim of this review is to provide a unified description of the fundamental and the technological aspects of these subjects. (Some figures in this article are in colour only in the electronic version) This article was invited by Professor G Gillies. Contents 1. Introduction 2 4. Breakup 37 1.1. Scope and motivation 2 4.1. Overview 37 1.2. History 3 4.2. Asymptotics of viscous breakup 37 2. Describing jets 6 4.3. Other scalings and crossover 39 2.1. Essential parameters 6 4.4. Outer fluid: logarithmic scaling 42 2.2. Hydrodynamic description 8 4.5. Noise 44 2.3. Numerics: Navier–Stokes methods 10 4.6. Continuation through the singularity 47 2.4. Long-wavelength descriptions 11 4.7. Controlling breakup 48 3. Physical mechanisms and small perturbations 15 5. Sprays 51 3.1. Capillarity and the circular geometry: the 5.1. Jets everywhere: ligaments production and Plateau argument 15 dynamics 52 3.2. Capillary instability 15 5.2. Fragmentation scenarios 59 3.3. Weakly non-linear theories 17 5.3. Drop size distributions 61 3.4. A quiescent external medium 17 5.4. Origin of roughness: the case study of merging 3.5. Viscous slowing 18 jets. 65 3.6. Absolute, convective and temporal instability 20 6. Non-Newtonian effects 66 3.7. Longitudinal stretch 22 6.1. Flexible polymers 66 3.8. Shear at the interface 25 6.2. Shear-thinning fluids 70 3.9. Charged jets 28 6.3. Other non-Newtonian behaviour 71 3.10. Ferrofluids in a magnetic field 30 6.4. Surfactants 71 3.11. Other body forces 31 7. Perspectives 72 3.12. Liquid intact length 34 Acknowledgments 73 3.13. Gravitational collapse 35 References 73 3 Also at: Institut Universitaire de France. 0034-4885/08/036601+79$90.00 1 © 2008 IOP Publishing Ltd Printed in the UK Rep. Prog. Phys. 71 (2008) 036601 J Eggers and E Villermaux List of symbols 1. Introduction 1.1. Scope and motivation Q flow rate A jet is a stream of matter having a more or less columnar g acceleration of gravity shape. They are encountered in an extremely large variety of h jet radius situations, spanning a broad range of physical length scales, ρ density hence the wide scope of this review. γ surface tension Jets occur on the scale of the universe as well as on λ wavelength subatomic length scales and have attracted attention both for x dimensionless wave number their potential practical use and for their heuristic interest, We Weber number demonstrating some key phenomena of physics and applied Oh Ohnesorge number mathematics. Our focus will be on the breakup of jets, ν kinematic viscosity most often driven by surface tension. In the first stage, one Bo Bond number investigates the jet’s stability; in the case of instability one is ultimately interested in the resulting fragment sizes. The v velocity motivation is essentially twofold: κ mean curvature On one hand, these studies are motivated by practical σ stress tensor questions and applications. Among them, illustrated p pressure below, one can mention: understanding and explaining the φ velocity potential large-scale structure of the universe and the support of n normal vector galaxy clusters (figure 1), improving and optimizing liquid t tangent vector jet propulsion, diesel engine technology, manufacturing λ viscosity ratio (figure 2), agricultural sewage and irrigation (figure 3), powder η shear viscosity technology, ink-jet printing (figure 4), medical diagnostics or k wave number DNA sampling and nuclear fission. Jets are also present in our m azimuthal wave number everyday environment in kitchens, showers, pharmaceutical ω growth rate sprays and cosmetics, and are also used for our entertainment (figure 3), and for our security, for example to inflate air bags ρ outer density a or to help firemen. pa outer pressure On the other hand, jet dynamics probes a wide range of δ penetration depth physical properties, such as liquid surface tension, viscosity ηa outer viscosity or non-Newtonian rheology and density contrast with its e film thickness environment. Jets are also sensitive, on very small scales σ elongation rate (typically nanometres) to thermal fluctuations (see figure 5). ρ1 liquid density On very large scales, on the other hand, gravitational ρ2 gas density interactions are important. The basic flow state can be both v1 liquid velocity laminar and turbulent. The carrying fluid can be electrically charged, or magnetic. Nearly all classical physics comes into v2 gas velocity E electric field play in jet dynamics, and articulating the different effects in a sound picture remains in several cases a challenging exercise. + permittivity of free space 0 For all these applications or academic situations, the σ surface charge 0 recurrent questions are: will the jet break, and if so, how V electric potential long will it take? How sensitive is the jet to, e.g. background N magnetic Bond number turbulence, or the presence of a dense, viscous outer medium in S Swirl number relative motion? How does viscosity affect the ultimate stages CD drag coefficient of the separation between two droplets? After breakup, how constant of gravity disperse in size will the fragments be? If they are, how can the G ξ ligament diameter size distribution be made narrower, or broader? L ligament length Experimentally, various laboratory techniques, and notably high-speed digital cinematography in recent years, νs kinematic viscosity of solvent have revived the subject. Minute details of the breakup process νp kinematic viscosity of polymer can now be documented in real time, as well as the structure b extensibility parameter of polymer of the resulting spray, thus providing us with a rich source of λ time scale of polymer p information for comparison with theory. νe extensional viscosity On the analytical side, the most basic tool is linear stability - surfactant concentration analysis around the cylindrical base state. However, there are Pe Peclet number many important features of the break-up process for which β surface activity number non-linear effects are dominant. Numerically, this remains 2 Rep. Prog. Phys. 71 (2008) 036601 J Eggers and E Villermaux Figure 1. Studies of the large-scale structure of the cosmos indicate that the universe consists mostly of voids (90%), with filaments and sheets of galaxies comprising the rest. In the image on the left (Smithsonian Astrophysical Observatory, 1993), each of the 11 000 dots are individual galaxies. Our own Milky Way galaxy is at the centre. The outer radius is 450 million light years away. Obstruction by the plane of the Milky Way caused the missing pie-shaped sectors. The image above is less than 5% of the distance to the edge of the observable universe. (Right) Numerical simulation of the ‘filamentarization’ of the mass support in the universe, interacting by gravitation, and the subsequent breakup of filaments. Figure 2. (Left) A jet of tap water falling into a sink. The jet is too thick and its falling time too short for breakup to occur, yet it has become rough. The continuous jet hits the sink floor, where it expands radially in the form of a thin sheet boarded by a hydraulic jump. (Right) Higher speed water jets are also used to cut tissues, meat, and even metal plates. an extremely hard problem: one either has to focus on a 1.2. History detailed description of individual breakup events, using very high resolution. On the other hand, the complex geometry of The earliest study of the behaviour of jets and of breakup was a spray is hardly captured by existing codes due to the many by Leonardo da Vinci in the Codex Leicester (cf figure 6). The degrees of freedom. The final, highly non-linear stages of same work also contains thoughts on the cohesion of fluids and breakup can be understood making use of scale invariance; its role for the formation of drops [2]: an obvious example is visible from the conical shape of a ‘How water has tenacity in itself and cohesion French baguette (figure 4). The interpretation of the resulting between its particles. This is seen in the process drop size distribution, inherently large to jet breakup, requires of a drop becoming detached from the remainder, statistical tools.
Recommended publications
  • Laws of Similarity in Fluid Mechanics 21
    Laws of similarity in fluid mechanics B. Weigand1 & V. Simon2 1Institut für Thermodynamik der Luft- und Raumfahrt (ITLR), Universität Stuttgart, Germany. 2Isringhausen GmbH & Co KG, Lemgo, Germany. Abstract All processes, in nature as well as in technical systems, can be described by fundamental equations—the conservation equations. These equations can be derived using conservation princi- ples and have to be solved for the situation under consideration. This can be done without explicitly investigating the dimensions of the quantities involved. However, an important consideration in all equations used in fluid mechanics and thermodynamics is dimensional homogeneity. One can use the idea of dimensional consistency in order to group variables together into dimensionless parameters which are less numerous than the original variables. This method is known as dimen- sional analysis. This paper starts with a discussion on dimensions and about the pi theorem of Buckingham. This theorem relates the number of quantities with dimensions to the number of dimensionless groups needed to describe a situation. After establishing this basic relationship between quantities with dimensions and dimensionless groups, the conservation equations for processes in fluid mechanics (Cauchy and Navier–Stokes equations, continuity equation, energy equation) are explained. By non-dimensionalizing these equations, certain dimensionless groups appear (e.g. Reynolds number, Froude number, Grashof number, Weber number, Prandtl number). The physical significance and importance of these groups are explained and the simplifications of the underlying equations for large or small dimensionless parameters are described. Finally, some examples for selected processes in nature and engineering are given to illustrate the method. 1 Introduction If we compare a small leaf with a large one, or a child with its parents, we have the feeling that a ‘similarity’ of some sort exists.
    [Show full text]
  • Heat Transfer in Turbulent Rayleigh-B\'Enard Convection Within Two Immiscible Fluid Layers
    This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1 Heat transfer in turbulent Rayleigh-B´enard convection within two immiscible fluid layers Hao-Ran Liu1, Kai Leong Chong2,1, , Rui Yang1, Roberto Verzicco3,4,1 and Detlef† Lohse1,5, ‡ 1Physics of Fluids Group and Max Planck Center Twente for Complex Fluid Dynamics, MESA+Institute and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands 2Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, PR China 3Dipartimento di Ingegneria Industriale, University of Rome “Tor Vergata”, Via del Politecnico 1, Roma 00133, Italy 4Gran Sasso Science Institute - Viale F. Crispi, 7 67100 L’Aquila, Italy 5Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 G¨ottingen, Germany (Received xx; revised xx; accepted xx) We numerically investigate turbulent Rayleigh-B´enard convection within two immiscible fluid layers, aiming to understand how the layer thickness and fluid properties affect the heat transfer (characterized by the Nusselt number Nu) in two-layer systems. Both two- and three-dimensional simulations are performed at fixed global Rayleigh number Ra = 108, Prandtl number Pr =4.38, and Weber number We = 5. We vary the relative thickness of the upper layer between 0.01 6 α 6 0.99 and the thermal conductivity coefficient ratio of the two liquids between 0.1 6 λk 6 10. Two flow regimes are observed: In the first regime at 0.04 6 α 6 0.96, convective flows appear in both layers and Nu is not sensitive to α.
    [Show full text]
  • Heat Transfer by Impingement of Circular Free-Surface Liquid Jets
    18th National & 7th ISHMT-ASME Heat and Mass Transfer Conference January 4-6, 2006 Paper No: IIT Guwahati, India Heat Transfer by Impingement of Circular Free-Surface Liquid Jets John H. Lienhard V Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02139-4307 USA email: [email protected] Abstract Q volume flow rate of jet (m3/s). 3 Qs volume flow rate of splattered liquid (m /s). 2 This paper reviews several aspects of liquid jet im- qw wall heat flux (W/m ). pingement cooling, focusing on research done in our r radius coordinate in spherical coordinates, or lab at MIT. Free surface, circular liquid jet are con- radius coordinate in cylindrical coordinates (m). sidered. Theoretical and experimental results for rh radius at which turbulence is fully developed the laminar stagnation zone are summarized. Tur- (m). bulence effects are discussed, including correlations ro radius at which viscous boundary layer reaches for the stagnation zone Nusselt number. Analyti- free surface (m). cal results for downstream heat transfer in laminar rt radius at which turbulent transition begins (m). jet impingement are discussed. Splattering of turbu- r1 radius at which thermal boundary layer reaches lent jets is also considered, including experimental re- free surface (m). sults for the splattered mass fraction, measurements Red Reynolds number of circular jet, uf d/ν. of the surface roughness of turbulent jets, and uni- T liquid temperature (K). versal equilibrium spectra for the roughness of tur- Tf temperature of incoming liquid jet (K). bulent jets. The use of jets for high heat flux cooling Tw temperature of wall (K).
    [Show full text]
  • Chapter 5 Dimensional Analysis and Similarity
    Chapter 5 Dimensional Analysis and Similarity Motivation. In this chapter we discuss the planning, presentation, and interpretation of experimental data. We shall try to convince you that such data are best presented in dimensionless form. Experiments which might result in tables of output, or even mul- tiple volumes of tables, might be reduced to a single set of curves—or even a single curve—when suitably nondimensionalized. The technique for doing this is dimensional analysis. Chapter 3 presented gross control-volume balances of mass, momentum, and en- ergy which led to estimates of global parameters: mass flow, force, torque, total heat transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif- ferential equations of fluid flow and some particular solutions. These two chapters cov- ered analytical techniques, which are limited to fairly simple geometries and well- defined boundary conditions. Probably one-third of fluid-flow problems can be attacked in this analytical or theoretical manner. The other two-thirds of all fluid problems are too complex, both geometrically and physically, to be solved analytically. They must be tested by experiment. Their behav- ior is reported as experimental data. Such data are much more useful if they are ex- pressed in compact, economic form. Graphs are especially useful, since tabulated data cannot be absorbed, nor can the trends and rates of change be observed, by most en- gineering eyes. These are the motivations for dimensional analysis. The technique is traditional in fluid mechanics and is useful in all engineering and physical sciences, with notable uses also seen in the biological and social sciences.
    [Show full text]
  • Stability of Swirling Flow in Passive Cyclonic Separator in Microgravity
    STABILITY OF SWIRLING FLOW IN PASSIVE CYCLONIC SEPARATOR IN MICROGRAVITY by ADEL OMAR KHARRAZ Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Y. Kamotani Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY January, 2018 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis dissertation of Adel Omar Kharraz candidate for the degree of Doctor of Philosophy*. Committee Chair Yasuhiro Kamotani Committee Member Jaikrishnan Kadambi Committee Member Paul Barnhart Committee Member Beverly Saylor Date of Defense July 24, 2017 *We also certify that written approval has been obtained for any proprietary material contained therein. ii Dedication This is for my parents, my wife, and my children. iii Table of Contents Dedication …………………………………………………..…………………………………………………….. iii Table of Contents ………………………………………..…………………………………………………….. iv List of Tables ……………………………………………………………………………………………………… vi List of Figures ……………………………………………………………………………………..……………… vii Nomenclature ………………………………………………………………………………..………………….. xi Acknowledgments ……………………………………………………………………….……………………. xv Abstract ……………………………………………….……………………………………………………………. xvi Chapter 1 Introduction ……………………………………………….…………………………………….. 1 1.1 Phase Separation Significance in Microgravity ……………………………………..…. 1 1.2 Effect of Microgravity on Passive Cyclonic Separators …………………………….. 3 1.3 Free Surface (Interface) in Microgravity Environment ……………………….……. 5 1.4 CWRU Separator …………………………………………………….……………………………….
    [Show full text]
  • Numerical Analysis of Droplet and Filament Deformation For
    NUMERICAL ANALYSIS OF DROPLET AND FILAMENT DEFORMATION FOR PRINTING PROCESS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Muhammad Noman Hasan August, 2014 NUMERICAL ANALYSIS OF DROPLET AND FILAMENT DEFORMATION FOR PRINTING PROCESS Muhammad Noman Hasan Thesis Approved: Accepted: _____________________________ _____________________________ Advisor Department Chair Dr. Jae–Won Choi Dr. Sergio Felicelli _____________________________ _____________________________ Committee Member Dean of the College Dr. Abhilash J. Chandy Dr. George K. Haritos _____________________________ _____________________________ Committee Member Dean of the Graduate School Dr. Chang Ye Dr. George R. Newkome _____________________________ Date ii ABSTRACT Numerical analysis for two dimensional case of two–phase fluid flow has been carried out to investigate the impact, deformation of (i) droplets and (ii) filament for printing processes. The objective of this research is to study the phenomenon of liquid droplet and filament impact on a rigid substrate, during various manufacturing processes such as jetting technology, inkjet printing and direct-printing. This study focuses on the analysis of interface capturing and the change of shape for droplets (jetting technology) and filaments (direct-printing) being dispensed during the processes. For the investigation, computational models have been developed for (i) droplet and (ii) filament deformation which implements quadtree spatial discretization based adaptive mesh refinement with geometrical Volume–Of–Fluid (VOF) for the representation of the interface, continuum– surface–force (CSF) model for surface tension formulation, and height-function (HF) curvature estimation for interface capturing during the impact and deformation of droplets and filaments. An open source finite volume code, Gerris Flow Solver, has been used for developing the computational models.
    [Show full text]
  • Effect of Fuel Properties on Primary Breakup and Spray Formation Studied at a Gasoline 3-Hole Nozzle
    ILASS – Europe 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 2010 Effect of fuel properties on primary breakup and spray formation studied at a gasoline 3-hole nozzle L. Zigan*, I. Schmitz, M. Wensing and A. Leipertz Lehrstuhl für Technische Thermodynamik, Universität Erlangen-Nürnberg Erlangen Graduate School in Advanced Optical Technologies (SAOT) Am Weichselgarten 8, D-91058 Erlangen, Germany Abstract The initial conditions of spray atomization and mixture formation are significantly determined by the turbulent nozzle flow. In this study the effect of fuel properties on primary breakup and macroscopic spray formation was investigated with laser based measurement techniques at a 3-hole research injector in an injection chamber. Two single-component fuels (n-hexane, n-decane), which are representative for high- and low-volatile fractions of gasoline with sufficient large differences in viscosity, surface tension and volatility were studied. Integral and planar Mie-scattering techniques were applied to visualize the macroscopic spray structures. To characterize the microscopic spray structure close to the nozzle exit a high resolving long distance microscope was used. For deeper insight into primary breakup processes with effects on global spray propagation the range of Reynolds (8,500-39,600) and liquid Weber numbers (15,300-44,500) was expanded by variation of the fuel temperature (25 °C, 70 °C) and injection pressure (50 bar, 100 bar). The spray is characterized by strong shot-to-shot fluctu- ations and flipping jets due to the highly turbulent cavitating nozzle flow. Significant differences in microscopic spray behavior were detected at valve opening and closing conditions, whereas during the quasi-stationary main injection phase the spray parameters cone angle and radial spray width show a plateau-trend for the different fuels.
    [Show full text]
  • Scenarios of Drop Deformation and Breakup in Sprays T´Imea Kékesi
    Scenarios of drop deformation and breakup in sprays by T´ımeaK´ekesi September 2017 Technical Report Royal Institute of Technology Department of Mechanics SE-100 44 Stockholm, Sweden Akademisk avhandling som med tillst˚andav Kungliga Tekniska H¨ogskolan i Stockholm framl¨aggestill offentlig granskning f¨oravl¨aggandeav teknologie dok- torsexamen fredagen den 15 september 2017 kl 10.15 i D3, Lindstedtsv¨agen5, Kungliga Tekniska H¨ogskolan, Stockholm. TRITA-MEK Technical report 2017:10 ISSN 0348-467X ISRN KTH/MEK/TR-2017/10-SE ISBN 978-91-7729-500-6 c T. K´ekesi 2017 Tryckt av Universitetsservice US-AB, Stockholm 2017 Scenarios of drop deformation and breakup in sprays T´ımeaK´ekesi Linn´eFLOW Centre, KTH Mechanics, The Royal Institute of Technology SE-100 44 Stockholm, Sweden Abstract Sprays are used in a wide range of engineering applications, in the food and pharmaceutical industry in order to produce certain materials in the desired powder-form, or in internal combustion engines where liquid fuel is injected and atomized in order to obtain the required air/fuel mixture for ideal combustion. The optimization of such processes requires the detailed understanding of the breakup of liquid structures. In this work, we focus on the secondary breakup of medium size liquid drops that are the result of primary breakup at earlier stages of the breakup process, and that are subject to further breakup. The fragmentation of such drops is determined by the competing disruptive (pressure and viscous) and cohesive (surface tension) forces. In order to gain a deeper understanding on the dynamics of the deformation and breakup of such drops, numerical simulations on single drops in uniform and shear flows, and on dual drops in uniform flows have been performed employing a Volume of Fluid (VOF) method.
    [Show full text]
  • Heat Transfer to Droplets in Developing Boundary Layers at Low Capillary Numbers
    Heat Transfer to Droplets in Developing Boundary Layers at Low Capillary Numbers A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Everett A. Wenzel IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Professor Francis A. Kulacki August, 2014 c Everett A. Wenzel 2014 ALL RIGHTS RESERVED Acknowledgements I would like to express my gratitude to Professor Frank Kulacki for providing me with the opportunity to pursue graduate education, for his continued support of my research interests, and for the guidance under which I have developed over the past two years. I am similarly grateful to Professor Sean Garrick for the generous use of his computational resources, and for the many hours of discussion that have been fundamental to my development as a computationalist. Professors Kulacki, Garrick, and Joseph Nichols have generously served on my committee, and I appreciate all of their time. Additional acknowledgement is due to the professors who have either provided me with assistantships, or have hosted me in their laboratories: Professors Van de Ven, Li, Heberlein, Nagasaki, and Ito. I would finally like to thank my family and friends for their encouragement. This work was supported in part by the University of Minnesota Supercom- puting Institute. i Abstract This thesis describes the heating rate of a small liquid droplet in a develop- ing boundary layer wherein the boundary layer thickness scales with the droplet radius. Surface tension modifies the nature of thermal and hydrodynamic bound- ary layer development, and consequently the droplet heating rate. A physical and mathematical description precedes a reduction of the complete problem to droplet heat transfer in an analogy to Stokes' first problem, which is numerically solved by means of the Lagrangian volume of fluid methodology.
    [Show full text]
  • Chapter 2: Introduction
    Chapter 2: Introduction 2.1 Multiphase flow. At first glance it may appear that various two or multiphase flow systems and their physical phenomena have very little in common. Because of this, the tendency has been to analyze the problems of a particular system, component or process and develop system specific models and correlations of limited generality and applicability. Consequently, a broad understanding of the thermo-fluid dynamics of two-phase flow has been only slowly developed and, therefore, the predictive capability has not attained the level available for single-phase flow analyses. The design of engineering systems and the ability to predict their performance depend upon both the availability of experimental data and of conceptual mathematical models that can be used to describe the physical processes with a required degree of accuracy. It is essential that the various characteristics and physics of two-phase flow should be modeled and formulated on a rational basis and supported by detailed scientific experiments. It is well established in continuum mechanics that the conceptual model for single-phase flow is formulated in terms of field equations describing the conservation laws of mass, momentum, energy, charge, etc. These field equations are then complemented by appropriate constitutive equations for thermodynamic state, stress, energy transfer, chemical reactions, etc. These constitutive equations specify the thermodynamic, transport and chemical properties of a specific constituent material. It is to be expected, therefore, that the conceptual models for multiphase flow should also be formulated in terms of the appropriate field and constitutive relations. However, the derivation of such equations for multiphase flow is considerably more complicated than for single-phase flow.
    [Show full text]
  • Dimensional Analysis and Similitude
    Fluid Mechanics Chapter 8 Dimensional Analysis and Similitude Dr. Amer Khalil Ababneh Introduction Because of the complexity of fluid mechanics, the design of many fluid systems relies heavily on experimental results. Tests are typically carried out on a subscale model, and the results are extrapolated to the full-scale system (prototype). The principles underlying the correspondence between the model and the prototype are addressed in this chapter. Dimensional analysis is the process of grouping of variables into significant dimensionless groups, thus reducing problem complexity. Similitude (Similarity) is the process by which geometric and dynamic parameters are selected for the subscale model so that meaningful correspondence can be made to the full size prototype. 8.2 Buckingham Π Theorem In 1915 Buckingham showed that the number of independent dimensionless groups (dimensionless parameters) can be reduced from a set of variables in a given process is n - m, where n is the number of variables involved and m is the number of basic dimensions included in the variables. Buckingham referred to the dimensionless groups as Π, which is the reason the theorem is called the Π theorem. Henceforth dimensionless groups will be referred to as π-groups. If the equation describing a physical system has n dimensional variables and is expressed as then it can be rearranged and expressed in terms of (n - m) π- groups as 1 ( 2 , 3 ,..., nm ) Example If there are five variables (F, V, ρ, μ, and D) to describe the drag on a sphere and three basic dimensions (L, M, and T) are involved. By the Buckingham Π theorem there will be 5 - 3 = 2 π-groups that can be used to correlate experimental results in the form F= f(V, r, m, D) 8.3 Dimensional Analysis Dimensional analysis is the process used to obtain the π-groups.
    [Show full text]
  • Dimensional Analysis Autumn 2013
    TOPIC T3: DIMENSIONAL ANALYSIS AUTUMN 2013 Objectives (1) Be able to determine the dimensions of physical quantities in terms of fundamental dimensions. (2) Understand the Principle of Dimensional Homogeneity and its use in checking equations and reducing physical problems. (3) Be able to carry out a formal dimensional analysis using Buckingham’s Pi Theorem. (4) Understand the requirements of physical modelling and its limitations. 1. What is dimensional analysis? 2. Dimensions 2.1 Dimensions and units 2.2 Primary dimensions 2.3 Dimensions of derived quantities 2.4 Working out dimensions 2.5 Alternative choices for primary dimensions 3. Formal procedure for dimensional analysis 3.1 Dimensional homogeneity 3.2 Buckingham’s Pi theorem 3.3 Applications 4. Physical modelling 4.1 Method 4.2 Incomplete similarity (“scale effects”) 4.3 Froude-number scaling 5. Non-dimensional groups in fluid mechanics References White (2011) – Chapter 5 Hamill (2011) – Chapter 10 Chadwick and Morfett (2013) – Chapter 11 Massey (2011) – Chapter 5 Hydraulics 2 T3-1 David Apsley 1. WHAT IS DIMENSIONAL ANALYSIS? Dimensional analysis is a means of simplifying a physical problem by appealing to dimensional homogeneity to reduce the number of relevant variables. It is particularly useful for: presenting and interpreting experimental data; attacking problems not amenable to a direct theoretical solution; checking equations; establishing the relative importance of particular physical phenomena; physical modelling. Example. The drag force F per unit length on a long smooth cylinder is a function of air speed U, density ρ, diameter D and viscosity μ. However, instead of having to draw hundreds of graphs portraying its variation with all combinations of these parameters, dimensional analysis tells us that the problem can be reduced to a single dimensionless relationship cD f (Re) where cD is the drag coefficient and Re is the Reynolds number.
    [Show full text]