Recognition of Contour-Current Influence in Mixed Contourite
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Petrology, Sedimentology, and Diagenesis of Hemipelagic Limestone and Tuffaeeous Turbidites in the Aksitero Formation, Central Luzon, Philippines
Petrology, Sedimentology, and Diagenesis of Hemipelagic Limestone and Tuffaeeous Turbidites in the Aksitero Formation, Central Luzon, Philippines Prepared in cooperation with the Bureau of Mines, Republic of the Philippines, and the U.S. National Science Foundation Petrology, Sedimentology, and Diagenesis of Hemipelagic Limestone and Tuffaceous Turbidites in the Aksitero Formation, Central Luzon, Philippines By ROBERT E. GARRISON, ERNESTO ESPIRITU, LAWRENCE J. HORAN, and LAWRENCE E. MACK GEOLOGICAL SURVEY PROFESSIONAL PAPER 1112 Prepared in cooperation with the Bureau of Mines, Republic of the Philippines, and the U.S. National Science Foundation UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1979 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director United States. Geological Survey. Petrology, sedimentology, and diagenesis of hemipelagic limestone and tuffaceous turbidites in the Aksitero Formation, central Luzon, Philippines. (Geological Survey Professional Paper; 1112) Bibliography: p. 15-16 Supt. of Docs. No.: 119.16:1112 1. Limestone-Philippine Islands-Luzon. 2. Turbidites-Philippine Islands-Luzon. 3. Geology, Stratigraphic-Eocene. 4. Geology, Stratigraphic-Oligocene. 5. Geology-Philippine Islands- Luzon. I. Garrison, Robert E. II. United States. Bureau of Mines. III. Philippines (Republic) IV. United States. National Science Foundation. V. Title. VI. Series: United States. Geological Survey. Professional Paper; 1112. QE471.15.L5U54 1979 552'.5 79-607993 For sale -
Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
BEST PRACTICES for: Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Cover Photos—Credits for images shown on the cover are noted with the corresponding figures within this document. Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States September 2010 National Energy Technology Laboratory www.netl.doe.gov DOE/NETL-2010/1420 Table of Contents Table of Contents 5 Table of Contents Executive Summary ____________________________________________________________________________ 10 1.0 Introduction and Background -
Turbidity Current Flow Over an Erodible Obstacle and Phases of Sediment Wave Generation Moshe Strauss1,2 and Michael E
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, C06007, doi:10.1029/2011JC007539, 2012 Turbidity current flow over an erodible obstacle and phases of sediment wave generation Moshe Strauss1,2 and Michael E. Glinsky2,3,4 Received 24 August 2011; revised 21 March 2012; accepted 20 April 2012; published 7 June 2012. [1] We study the flow of particle-laden turbidity currents down a slope and over an obstacle. A high-resolution 2-D computer simulation model is used, based on the Navier-Stokes equations. It includes poly-disperse particle grain sizes in the current and substrate. Particular attention is paid to the erosion and deposition of the substrate particles, including application of an active layer model. Multiple flows are modeled from a lock release that can show the development of sediment waves (SW). These are stream-wise waves that are triggered by the increasing slope on the downstream side of the obstacle. The initial obstacle is completely erased by the resuspension after a few flows leading to self consistent and self generated SW that are weakly dependant on the initial obstacle. The growth of these waves is directly related to the turbidity current being self sustaining, that is, the net erosion is more than the net deposition. Four system parameters are found to influence the SW growth: (1) slope, (2) current lock height, (3) grain lock concentration, and (4) particle diameters. Three phases are discovered for the system: (1) “no SW,” (2) “SW buildup,” and (3) “SW growth”. The second phase consists of a soliton-like SW structure with a preserved shape. -
A Detailed Study of the Physical Properties of Recently
A DETAILED STUDY OF THE PHYSICAL PROPERTIES OF RECENTLY DEPOSITED SEDIMENTS FROM A MINIBASIN, NORTHWEST GULF OF MEXICO A Thesis by MARCO ANTONIO SANTOS CASTANEDA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2012 Major Subject: Oceanography A DETAILED STUDY OF THE PHYSICAL PROPERTIES OF RECENTLY DEPOSITED SEDIMENTS FROM A MINIBASIN, NORTHWEST GULF OF MEXICO A Thesis by MARCO ANTONIO SANTOS CASTANEDA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Co-Chairs of Committee, Niall Slowey William Bryant Committee Member, Zenon Medina-Cetina Head of Department, Piers Chapman May 2012 Major Subject: Oceanography iii ABSTRACT A Detailed Study of the Physical Properties of Recently Deposited Sediments from a Minibasin, Northwest Gulf of Mexico. (May 2012) Marco Antonio Santos Castaneda, B.S., Universidad Naval Comandante Rafael Moran Valverde Co-Chairs of Advisory Committee: Dr. Niall Slowey Dr. William Bryant High-resolution seismic data from lower slope basins in the vicinity of Bryant and Keathley Canyons suggest the recent occurrence of thin mud flow events which influence the physical properties of the shallow sediments of the minibasin. Therefore to understand the effect of these events on the physical properties, a very high spatial resolution investigation of the following properties was undertaken: bulk density, grain density, shear strength, water content, ―calcium carbonate‖ content, compressional wave velocity, and the relative elemental composition, of the first 5 meters of the seabed sediments. -
Depositional Processes and Environments in Wolfcampian-Leonardian Strata, Southern Midland Basin, Texas
DEPOSITIONAL PROCESSES AND ENVIRONMENTS IN WOLFCAMPIAN-LEONARDIAN STRATA, SOUTHERN MIDLAND BASIN, TEXAS By ZAKORY DEAN WARD Bachelor of Science in Geology Iowa State University Ames, Iowa 2013 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2017 DEPOSITIONAL PROCESSES AND ENVIRONMENTS IN WOLFCAMPIAN-LEONARDIAN STRATA, SOUTHERN MIDLAND BASIN, TEXAS Thesis Approved: Dr. Jack C. Pashin Thesis Advisor Dr. Jim Puckette Dr. Mary Hileman ii ACKNOWLEDGEMENTS Foremost, I would like to thank my advisor, Dr. Jack Pashin, for his guidance, insight, and support throughout the course of this research. Additionally, thank you to my committee members, Dr. Jim Puckette and Dr. Mary Hileman, for their guidance and support over the last few years. I would like to give thanks to my colleagues and the department faculty and staff for making my time at Oklahoma State University a great experience. Special thanks to my family and friends for their continued support throughout my academic career. Finally, I would like to thank EOG Resources for their support. This study would not have been possible without support from EOG Resources, who funded this research and provided the core and associated data. iii Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University. Name: ZAKORY DEAN WARD Date of Degree: MAY, 2017 Title of Study: DEPOSITIONAL PROCESSES AND ENVIRONMENTS IN WOLFCAMPIAN-LEONARDIAN STRATA, SOUTHERN MIDLAND BASIN, TEXAS Major Field: GEOLOGY Abstract: The Early Permian (Wolfcampian-Leonardian) Wolfcamp interval of the Permian Basin in West Texas is a mixed siliciclastic-carbonate succession that hosts one of the most important unconventional oil and gas plays in the world. -
Deep-Sea Mining: the Basics
A fact sheet from June 2018 NOAA Office of Ocean Exploration and Research Deep-sea Mining: The Basics Overview The deepest parts of the world’s ocean feature ecosystems found nowhere else on Earth. They provide habitat for multitudes of species, many yet to be named. These vast, lightless regions also possess deposits of valuable minerals in rich concentrations. Deep-sea extraction technologies may soon develop to the point where exploration of seabed minerals can give way to active exploitation. The International Seabed Authority (ISA) is charged with formulating and enforcing rules for all seabed mining that takes place in waters beyond national jurisdictions. These rules are now under development. Environmental regulations, liability and financial rules, and oversight and enforcement protocols all must be written and approved within three to five years. Figure 1 Types of Deep-sea Mining Production support vessel Return pipe Riser pipe Cobalt Seafloor massive Polymetallic crusts sulfides nodules Subsurface plumes 800-2,500 from return water meters deep Deposition 1,000-4,000 meters deep 4,000-6,500 meters deep Cobalt-rich Localized plumes Seabed pump Ferromanganeseferromanganese from cutting crusts Seafloor production tool Nodule deposit Massive sulfide deposit Sediment Source: New Zealand Environment Guide © 2018 The Pew Charitable Trusts 2 The legal foundations • The United Nations Convention on the Law of the Sea (UNCLOS). Also known as the Law of the Sea Treaty, UNCLOS is the constitutional document governing mineral exploitation on the roughly 60 percent of the world seabed that lies beyond national jurisdictions. UNCLOS took effect in 1994 upon passage of key enabling amendments designed to spur commercial mining. -
Relationship Between Continental Rise Development and Palaeo-Ice Sheet Dynamics, Northern Antarctic Peninsula Pacific Margin
ARTICLE IN PRESS Quaternary Science Reviews 25 (2006) 933–944 Relationship between continental rise development and palaeo-ice sheet dynamics, Northern Antarctic Peninsula Pacific margin David Amblasa, Roger Urgelesa, Miquel Canalsa,Ã, Antoni M. Calafata, Michele Rebescob, Angelo Camerlenghia, Ferran Estradac, Marc De Batistd, John E. Hughes-Clarkee aGRC Geocie`ncies Marines, Universitat de Barcelona, Martı´ i Franque`s s/n, E-08028 Barcelona, Spain bIstituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42/c, 34010 Sgonico, Trieste, Italy cCSIC Institut de Cie`ncies del Mar, Passeig Marı´tim Barceloneta 37-49, 08003 Barcelona, Spain dRenard Centre of Marine Geology, Ghent University, Krijgslaan 281 S8, B-9000 Gent, Belgium eOcean Mapping Group, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 Received 17 December 2004; accepted 10 July 2005 Abstract Acquisition of swath bathymetry data west of the North Antarctic Peninsula (NAP), between 631S and 661S, and its integration with the predicted seafloor topography of Smith and Sandwell [Global seafloor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962.] reveal the links between the continental rise depositional systems and the NAP palaeo-ice sheet dynamics. The NAP Pacific margin consists of a wide continental shelf dissected by several troughs, tens of kilometres wide and long. The Biscoe Trough, which has been almost entirely surveyed with multibeam sonar, shows spectacular fan-shaped streamlining sea-floor morphologies revealing the presence of ice streams during the Last Glacial Maximum. In the study area the continental rise comprises the six northernmost sediment mounds of the NAP Pacific margin and the canyon-channel systems between them. -
Ngu Report 2017.046
Geological Survey of Norway P.O.Box 6315 Torgard REPORT NO-7491 TRONDHEIM Tel.: 47 73 90 40 00 ISSN: 0800-3416 (print) Report no.: 2017.046 ISSN: 2387-3515 (online) Grading: Open Title: Seabed sedimentary environments and sediments (genesis) in the Nordland VI area off northern Norway Authors: Valérie K. Bellec, Reidulv Bøe, Client: MAREANO Leif Rise, Aave Lepland, Terje Thorsnes County: Norway Commune: Map-sheet name (M=1:250.000) Map-sheet no. and -name (M=1:50.000) Deposit name and grid-reference: Number of pages: 24 Price (NOK): 110,- Map enclosures: 0 Fieldwork carried out: Date of report: Project no.: Person responsible: 2008-2016 15.12.2017 311720 Summary: This report presents maps of sedimentary environments and seabed sediments (genesis) in the Nordland VI management area off northern Norway. The maps, which cover about 25 000 km² and water depths from 60 m to 2700 m, are based on multibeam echosounder data (bathymetry and backscatter), 215 video lines each 700 m long, seabed sediment samples from 40 stations (grab, boxcore and multicore) and 5500 km of sub-bottom profiler data. The sedimentary environment map has 6 classes, focussing on present depositional environments (erosion and deposition). Large parts of the Nordland VI continental shelf are dominated by erosion processes, but some deposition occurs in topographic depressions and glacial troughs like Trænadjupet and Vesterdjupet. Hemipelagic sediments are deposited in deep water areas on the continental slope and abyssal plain. The seabed sediments (genesis) map comprises a geological interpretation of the uppermost few metres of the seabed, and has 10 classes. -
Coastal and Ocean Engineering
May 18, 2020 Coastal and Ocean Engineering John Fenton Institute of Hydraulic Engineering and Water Resources Management Vienna University of Technology, Karlsplatz 13/222, 1040 Vienna, Austria URL: http://johndfenton.com/ URL: mailto:[email protected] Abstract This course introduces maritime engineering, encompassing coastal and ocean engineering. It con- centrates on providing an understanding of the many processes at work when the tides, storms and waves interact with the natural and human environments. The course will be a mixture of descrip- tion and theory – it is hoped that by understanding the theory that the practicewillbemadeallthe easier. There is nothing quite so practical as a good theory. Table of Contents References ....................... 2 1. Introduction ..................... 6 1.1 Physical properties of seawater ............. 6 2. Introduction to Oceanography ............... 7 2.1 Ocean currents .................. 7 2.2 El Niño, La Niña, and the Southern Oscillation ........10 2.3 Indian Ocean Dipole ................12 2.4 Continental shelf flow ................13 3. Tides .......................15 3.1 Introduction ...................15 3.2 Tide generating forces and equilibrium theory ........15 3.3 Dynamic model of tides ...............17 3.4 Harmonic analysis and prediction of tides ..........19 4. Surface gravity waves ..................21 4.1 The equations of fluid mechanics ............21 4.2 Boundary conditions ................28 4.3 The general problem of wave motion ...........29 4.4 Linear wave theory .................30 4.5 Shoaling, refraction and breaking ............44 4.6 Diffraction ...................50 4.7 Nonlinear wave theories ...............51 1 Coastal and Ocean Engineering John Fenton 5. The calculation of forces on ocean structures ...........54 5.1 Structural element much smaller than wavelength – drag and inertia forces .....................54 5.2 Structural element comparable with wavelength – diffraction forces ..56 6. -
Contourites and Associated Sediments Controlled by Deep-Water Circulation Processes: State-Of-The-Art and Future Considerations
2nd Deep-Water Circulation Congress, 10-12 Sept. 2014, Ghent, Belgium Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations Michele Rebesco1, Francisco Javier Hernández-Molina2, David Van Rooij3 and Anna Wåhlin4 1 OGS, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Borgo Grotta Gigante 42 /C, 34010, TS, Italy; ([email protected]) 2 Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK; ([email protected]) 3 Department of Geology and Soil Science, Ghent University, B-9000 Gent, Belgium; ([email protected]) 4 Department of Earth Sciences, University of Gothenburg, PO Box 460, SE-405 30 Göteborg, Sweden; ([email protected]) Abstract: The contourite paradigm was conceived a few decades ago and about 120 major contourite areas are presently known associated to myriad oceanographic processes, which involve dense bottom currents, tides, eddies, deep-sea storms, internal waves and tsunamis. The increasing recognition of these deposits is influencing palaeoclimatology & palaeoceanography, slope-stability/geological hazard assessment, and hydrocarbon exploration. Nevertheless, there is a pressing need for a better understanding of the sedimentological and oceanographic processes governing contourites. Persistent oceanographic processes significantly affect the seafloor, resulting in a continuous spectrum of depositional and erosional features. Although much progress has been made in the large-scale, geophysically based recognition of these deposits, there remains a lack of unambiguous and commonly accepted diagnostic criteria for deciphering the small-scaled contourite facies and for distinguishing them from turbidite ones. Similarly, the study of sandy deposits generated or affected by bottom currents offers great research potential: these deposits might prove invaluable as future reservoir targets. -
Measuring Currents in Submarine Canyons: Technological and Scientifi C Progress in the Past 30 Years
Exploring the Deep Sea and Beyond themed issue Measuring currents in submarine canyons: Technological and scientifi c progress in the past 30 years J.P. Xu U.S. Geological Survey, 345 Middlefi eld Road, MS-999, Menlo Park, California 94025, USA ABSTRACT 1. INTRODUCTION processes, and summarize and discuss several future research challenges constructed primar- The development and application of The publication of the American Association ily for submarine canyons in temperate climate, acoustic and optical technologies and of of Petroleum Geologists Studies in Geology 8: such as the California coast. accurate positioning systems in the past Currents in Submarine Canyons and Other Sea 30 years have opened new frontiers in the Valleys (Shepard et al., 1979) marked a signifi - 2. TECHNOLOGICAL ADVANCES submarine canyon research communities. cant milestone in submarine canyon research. IN CURRENT OBSERVATION IN This paper reviews several key advance- Although there had been studies on the topics of SUBMARINE CANYONS ments in both technology and science in the submarine canyon hydrodynamics and sediment fi eld of currents in submarine canyons since processes in various journals since the 1930s 2.1. Instrumentation the1979 publication of Currents in Subma- (Shepard et al., 1939; Emory and Hulsemann, rine Canyons and Other Sea Valleys by Fran- 1963; Ryan and Heezen 1965; Inman, 1970; Instrument development has come a long way cis Shepard and colleagues. Precise place- Drake and Gorsline, 1973; Shepard, 1975), this in the past 30 yr. The greatest leap in the tech- ments of high-resolution, high-frequency book was the fi rst of its kind to provide descrip- nology of fl ow measurements was the transition instruments have not only allowed research- tion and discussion on the various phenomena from mechanical to acoustic current meters. -
Mozambique Channel, South-West Indian Ocean) E
Deep-water dunes on drowned isolated carbonate terraces (Mozambique Channel, south-west Indian Ocean) E. Miramontes, S.J. Jorry, G. Jouet, J.W. Counts, S. Courgeon, P. Le Roy, C. Guerin, F.J. Hernández-Molina To cite this version: E. Miramontes, S.J. Jorry, G. Jouet, J.W. Counts, S. Courgeon, et al.. Deep-water dunes on drowned isolated carbonate terraces (Mozambique Channel, south-west Indian Ocean). Sedimentology, 2019, 66 (4), pp.1222-1242. 10.1111/sed.12572. hal-02944583 HAL Id: hal-02944583 https://hal.archives-ouvertes.fr/hal-02944583 Submitted on 12 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Sedimentology Article In Press Archimer https://archimer.ifremer.fr Acceptation date : 2018 https://doi.org/10.1111/sed.12572 https://archimer.ifremer.fr/doc/00472/58418/ Deep-water dunes on drowned isolated carbonate terraces (Mozambique Channel, south-west Indian Ocean) Miramontes Elda 1, *, Jorry Stephan 2, Jouet Gwenael 2, Counts John 3, Courgeon Simon 4, Roy Philippe 1, Guerin Charline 2, Hernández-Molina F. Javier 5 1 UMR6538; CNRS-UBO;