Linear Logic Programming Dale Miller INRIA/Futurs & Laboratoire D’Informatique (LIX) Ecole´ Polytechnique, Rue De Saclay 91128 PALAISEAU Cedex FRANCE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nested Sequents, a Natural Generalisation of Hypersequents, Allow Us to Develop a Systematic Proof Theory for Modal Logics
Nested Sequents Habilitationsschrift Kai Br¨unnler Institut f¨ur Informatik und angewandte Mathematik Universit¨at Bern May 28, 2018 arXiv:1004.1845v1 [cs.LO] 11 Apr 2010 Abstract We see how nested sequents, a natural generalisation of hypersequents, allow us to develop a systematic proof theory for modal logics. As opposed to other prominent formalisms, such as the display calculus and labelled sequents, nested sequents stay inside the modal language and allow for proof systems which enjoy the subformula property in the literal sense. In the first part we study a systematic set of nested sequent systems for all normal modal logics formed by some combination of the axioms for seriality, reflexivity, symmetry, transitivity and euclideanness. We establish soundness and completeness and some of their good properties, such as invertibility of all rules, admissibility of the structural rules, termination of proof-search, as well as syntactic cut-elimination. In the second part we study the logic of common knowledge, a modal logic with a fixpoint modality. We look at two infinitary proof systems for this logic: an existing one based on ordinary sequents, for which no syntactic cut-elimination procedure is known, and a new one based on nested sequents. We see how nested sequents, in contrast to ordinary sequents, allow for syntactic cut-elimination and thus allow us to obtain an ordinal upper bound on the length of proofs. iii Contents 1 Introduction 1 2 Systems for Basic Normal Modal Logics 5 2.1 ModalAxiomsasLogicalRules . 6 2.1.1 TheSequentSystems .................... 6 2.1.2 Soundness........................... 12 2.1.3 Completeness........................ -
Sequent-Type Calculi for Systems of Nonmonotonic Paraconsistent Logics
Sequent-Type Calculi for Systems of Nonmonotonic Paraconsistent Logics Tobias Geibinger Hans Tompits Databases and Artificial Intelligence Group, Knowledge-Based Systems Group, Institute of Logic and Computation, Institute of Logic and Computation, Technische Universit¨at Wien, Technische Universit¨at Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria Favoritenstraße 9-11, A-1040 Vienna, Austria [email protected] [email protected] Paraconsistent logics constitute an important class of formalisms dealing with non-trivial reasoning from inconsistent premisses. In this paper, we introduce uniform axiomatisations for a family of nonmonotonic paraconsistent logics based on minimal inconsistency in terms of sequent-type proof systems. The latter are prominent and widely-used forms of calculi well-suited for analysing proof search. In particular, we provide sequent-type calculi for Priest’s three-valued minimally inconsistent logic of paradox, and for four-valued paraconsistent inference relations due to Arieli and Avron. Our calculi follow the sequent method first introduced in the context of nonmonotonic reasoning by Bonatti and Olivetti, whose distinguishing feature is the use of a so-called rejection calculus for axiomatising invalid formulas. In fact, we present a general method to obtain sequent systems for any many-valued logic based on minimal inconsistency, yielding the calculi for the logics of Priest and of Arieli and Avron as special instances. 1 Introduction Paraconsistent logics reject the principle of explosion, also known as ex falso sequitur quodlibet, which holds in classical logic and allows the derivation of any assertion from a contradiction. The motivation behind paraconsistent logics is simple, as contradictory theories may still contain useful information, hence we would like to be able to draw non-trivial conclusions from said theories. -
Logic Programming in a Fragment of Intuitionistic Linear Logic ∗
Logic Programming in a Fragment of Intuitionistic Linear Logic ¤ Joshua S. Hodas Dale Miller Computer Science Department Computer Science Department Harvey Mudd College University of Pennsylvania Claremont, CA 91711-5990 USA Philadelphia, PA 19104-6389 USA [email protected] [email protected] Abstract When logic programming is based on the proof theory of intuitionistic logic, it is natural to allow implications in goals and in the bodies of clauses. Attempting to prove a goal of the form D ⊃ G from the context (set of formulas) Γ leads to an attempt to prove the goal G in the extended context Γ [ fDg. Thus during the bottom-up search for a cut-free proof contexts, represented as the left-hand side of intuitionistic sequents, grow as stacks. While such an intuitionistic notion of context provides for elegant specifications of many computations, contexts can be made more expressive and flexible if they are based on linear logic. After presenting two equivalent formulations of a fragment of linear logic, we show that the fragment has a goal-directed interpretation, thereby partially justifying calling it a logic programming language. Logic programs based on the intuitionistic theory of hereditary Harrop formulas can be modularly embedded into this linear logic setting. Programming examples taken from theorem proving, natural language parsing, and data base programming are presented: each example requires a linear, rather than intuitionistic, notion of context to be modeled adequately. An interpreter for this logic programming language must address the problem of splitting contexts; that is, when attempting to prove a multiplicative conjunction (tensor), say G1 G2, from the context ∆, the latter must be split into disjoint contexts ∆1 and ∆2 for which G1 follows from ∆1 and G2 follows from ∆2. -
Relevant and Substructural Logics
Relevant and Substructural Logics GREG RESTALL∗ PHILOSOPHY DEPARTMENT, MACQUARIE UNIVERSITY [email protected] June 23, 2001 http://www.phil.mq.edu.au/staff/grestall/ Abstract: This is a history of relevant and substructural logics, written for the Hand- book of the History and Philosophy of Logic, edited by Dov Gabbay and John Woods.1 1 Introduction Logics tend to be viewed of in one of two ways — with an eye to proofs, or with an eye to models.2 Relevant and substructural logics are no different: you can focus on notions of proof, inference rules and structural features of deduction in these logics, or you can focus on interpretations of the language in other structures. This essay is structured around the bifurcation between proofs and mod- els: The first section discusses Proof Theory of relevant and substructural log- ics, and the second covers the Model Theory of these logics. This order is a natural one for a history of relevant and substructural logics, because much of the initial work — especially in the Anderson–Belnap tradition of relevant logics — started by developing proof theory. The model theory of relevant logic came some time later. As we will see, Dunn's algebraic models [76, 77] Urquhart's operational semantics [267, 268] and Routley and Meyer's rela- tional semantics [239, 240, 241] arrived decades after the initial burst of ac- tivity from Alan Anderson and Nuel Belnap. The same goes for work on the Lambek calculus: although inspired by a very particular application in lin- guistic typing, it was developed first proof-theoretically, and only later did model theory come to the fore. -
Systematic Construction of Natural Deduction Systems for Many-Valued Logics
23rd International Symposium on Multiple Valued Logic. Sacramento, CA, May 1993 Proceedings. (IEEE Press, Los Alamitos, 1993) pp. 208{213 Systematic Construction of Natural Deduction Systems for Many-valued Logics Matthias Baaz∗ Christian G. Ferm¨ullery Richard Zachy Technische Universit¨atWien, Austria Abstract sion.) Each position i corresponds to one of the truth values, vm is the distinguished truth value. The in- A construction principle for natural deduction sys- tended meaning is as follows: Derive that at least tems for arbitrary finitely-many-valued first order log- one formula of Γm takes the value vm under the as- ics is exhibited. These systems are systematically ob- sumption that no formula in Γi takes the value vi tained from sequent calculi, which in turn can be au- (1 i m 1). ≤ ≤ − tomatically extracted from the truth tables of the log- Our starting point for the construction of natural ics under consideration. Soundness and cut-free com- deduction systems are sequent calculi. (A sequent is pleteness of these sequent calculi translate into sound- a tuple Γ1 ::: Γm, defined to be satisfied by an ness, completeness and normal form theorems for the interpretationj iffj for some i 1; : : : ; m at least one 2 f g natural deduction systems. formula in Γi takes the truth value vi.) For each pair of an operator 2 or quantifier Q and a truth value vi 1 Introduction we construct a rule introducing a formula of the form 2(A ;:::;A ) or (Qx)A(x), respectively, at position i The study of natural deduction systems for many- 1 n of a sequent. -
Linear Logic : Its Syntax and Semantics
LINEAR LOGIC : ITS SYNTAX AND SEMANTICS Jean-Yves Girard Laboratoire de Math´ematiques Discr`etes UPR 9016 { CNRS 163, Avenue de Luminy, Case 930 F-13288 Marseille Cedex 09 [email protected] 1 THE SYNTAX OF LINEAR LOGIC 1.1 The connectives of linear logic Linear logic is not an alternative logic ; it should rather be seen as an exten- sion of usual logic. Since there is no hope to modify the extant classical or intuitionistic connectives 1, linear logic introduces new connectives. 1.1.1 Exponentials : actions vs situations Classical and intuitionistic logics deal with stable truths : if A and A B, then B, but A still holds. ) This is perfect in mathematics, but wrong in real life, since real implication is causal. A causal implication cannot be iterated since the conditions are modified after its use ; this process of modification of the premises (conditions) is known in physics as reaction. For instance, if A is to spend $1 on a pack of cigarettes and B is to get them, you lose $1 in this process, and you cannot do it a second time. The reaction here was that $1 went out of your pocket. The first objection to that view is that there are in mathematics, in real life, cases where reaction does not exist or can be neglected : think of a lemma which is forever true, or of a Mr. Soros, who has almost an infinite amount of dollars. 1: Witness the fate of non-monotonic \logics" who tried to tamper with logical rules with- out changing the basic operations : : : 1 2 Jean-Yves Girard Such cases are situations in the sense of stable truths. -
Categorical Models for Intuitionistic and Linear Type Theory
Categorical Models for Intuitionistic and Linear Type Theory Maria Emilia Maietti, Valeria de Paiva, and Eike Ritter? School of Computer Science, University of Birmingham Edgbaston, Birmingham B15 2TT, United Kingdom mem,vdp,exr @cs.bham.ac.uk { } Abstract. This paper describes the categorical semantics of a system of mixed intuitionistic and linear type theory (ILT). ILT was proposed by G. Plotkin and also independently by P. Wadler. The logic associ- ated with ILT is obtained as a combination of intuitionistic logic with intuitionistic linear logic, and can be embedded in Barber and Plotkin’s Dual Intuitionistic Linear Logic (DILL). However, unlike DILL, the logic for ILT lacks an explicit modality ! that translates intuitionistic proofs into linear ones. So while the semantics of DILL can be given in terms of monoidal adjunctions between symmetric monoidal closed categories and cartesian closed categories, the semantics of ILT is better presented via fibrations. These interpret double contexts, which cannot be reduced to linear ones. In order to interpret the intuitionistic and linear iden- tity axioms acting on the same type we need fibrations satisfying the comprehension axiom. 1 Introduction This paper arises from the need to fill a gap in the conceptual development of the xSLAM project. The xSLAM project is concerned with the design and implementation of abstract machines based on linear logic. For xSLAM we ini- tially developed a linear λ-calculus by adding explicit substitutions to Barber and Plotkin’s DILL [GdPR00]. We then considered the categorical models one obtains for both intuitionistic and linear logic with explicit substitutions on the style of Abadi et al. -
A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics
FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (fourth edition) NL(A1 A2) = ( T1 ({1}T2) T2 ({1}T1) T1T2 ({1}T1) ({1}T2), I1 ({1}I2) I2 ({1}I1) I1 I2 ({1}I1) ({1} I2), F1 ({1}F2) F2 ({1} F1) F1 F2 ({1}F1) ({1}F2) ). NL(A1 A2) = ( {1}T1T1T2, {1}I1I1I2, {1}F1F1F2 ). NL(A1 A2) = ( ({1}T1T1T2) ({1}T2T1T2), ({1} I1 I1 I2) ({1}I2 I1 I2), ({1}F1F1 F2) ({1}F2F1 F2) ). ISBN 978-1-59973-080-6 American Research Press Rehoboth 1998, 2000, 2003, 2005 FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (fourth edition) NL(A1 A2) = ( T1 ({1}T2) T2 ({1}T1) T1T2 ({1}T1) ({1}T2), I1 ({1}I2) I2 ({1}I1) I1 I2 ({1}I1) ({1} I2), F1 ({1}F2) F2 ({1} F1) F1 F2 ({1}F1) ({1}F2) ). NL(A1 A2) = ( {1}T1T1T2, {1}I1I1I2, {1}F1F1F2 ). NL(A1 A2) = ( ({1}T1T1T2) ({1}T2T1T2), ({1} I1 I1 I2) ({1}I2 I1 I2), ({1}F1F1 F2) ({1}F2F1 F2) ). ISBN 978-1-59973-080-6 American Research Press Rehoboth 1998, 2000, 2003, 2005 1 Contents: Preface by C. Le: 3 0. Introduction: 9 1. Neutrosophy - a new branch of philosophy: 15 2. Neutrosophic Logic - a unifying field in logics: 90 3. Neutrosophic Set - a unifying field in sets: 125 4. Neutrosophic Probability - a generalization of classical and imprecise probabilities - and Neutrosophic Statistics: 129 5. Addenda: Definitions derived from Neutrosophics: 133 2 Preface to Neutrosophy and Neutrosophic Logic by C. -
Permutability of Proofs in Intuitionistic Sequent Calculi
Permutabilityofproofsinintuitionistic sequent calculi Roy Dyckho Scho ol of Mathematical Computational Sciences St Andrews University St Andrews Scotland y Lus Pinto Departamento de Matematica Universidade do Minho Braga Portugal Abstract Weprove a folklore theorem that two derivations in a cutfree se quent calculus for intuitioni sti c prop ositional logic based on Kleenes G are interp ermutable using a set of basic p ermutation reduction rules derived from Kleenes work in i they determine the same natu ral deduction The basic rules form a conuentandweakly normalisin g rewriting system We refer to Schwichtenb ergs pro of elsewhere that a mo dication of this system is strongly normalising Key words intuitionistic logic pro of theory natural deduction sequent calcu lus Intro duction There is a folklore theorem that twointuitionistic sequent calculus derivations are really the same i they are interp ermutable using p ermutations as de scrib ed by Kleene in Our purp ose here is to make precise and provesuch a p ermutability theorem Prawitz showed howintuitionistic sequent calculus derivations determine LJ to NJ here we consider only natural deductions via a mapping from the cutfree derivations and normal natural deductions resp ectively and in eect that this mapping is surjectiveby constructing a rightinverse of from NJ to LJ Zucker showed that in the negative fragment of the calculus c LJ ie LJ including cut two derivations have the same image under i they are interconvertible using a sequence of p ermutativeconversions eg p -
Linear Logic
App eared in SIGACT Linear Logic Patrick Lincoln lincolncslsricom SRI and Stanford University Linear Logic Linear logic was intro duced by Girard in Since then many results have supp orted Girards claims such as Linear logic is a resource conscious logic Increasingly computer scientists have recognized linear logic as an expressive and p owerful logic with deep connec tions to concepts from computer science The expressive p ower of linear logic is evidenced by some very natural enco dings of computational mo dels such as Petri nets counter machines Turing machines and others This note presents an intuitive overview of linear logic some recent theoretical results and some interesting applications of linear logic to computer science Other intro ductions to linear logic may b e found in Linear Logic vs Classical and Intuitionistic Logics Linear logic diers from classical and intuitionistic logic in several fundamental ways Clas sical logic may b e viewed as if it deals with static prop ositions ab out the world where each prop osition is either true or false Because of the static nature of prop ositions in classical logic one may duplicate prop ositions P implies P and P Implicitly we learn that one P is as go o d as two Also one may discard prop ositions P and Q implies P Here the prop osition Q has b een thrown away Both of these sentences are valid in classical logic for any P and Q In linear logic these sentences are not valid A linear logician might ask Where did the second P come from and Where did the Q go Of course these -
13 QUESTIONS ABOUT UNIVERSAL LOGIC 13 Questions to Jean-Yves B´Eziau, by Linda Eastwood
Bulletin of the Section of Logic Volume 35:2/3 (2006), pp. 133–150 Jean-Yves B´eziau 13 QUESTIONS ABOUT UNIVERSAL LOGIC 13 questions to Jean-Yves B´eziau, by Linda Eastwood The expression “universal logic” prompts a number of misunderstandings pressing up against to the confusion prevailing nowadays around the very notion of logic. In order to clear up such equivocations, I prepared a series of questions to Jean-Yves B´eziau,who has been working for many years on his project of universal logic, recently in the University of Neuchˆatel, Switzerland. 1. Although your proposal to develop a universal logic is very appealing, isn’t it a utopian one? Isn’t it an absurd, or even dangerous thing to believe that it would be possible to develop a unique logic accounting for everything? Let us immediately reject some misunderstanding; universal logic, as I understand it, is not one universal logic. In fact, from the viewpoint of universal logic the existence of one universal logic is not even possible, and this is a result that can easily be shown. One might thus say somehow ironically the following: according to universal logic there is no universal logic. Some people in some countries have always tried to elaborate a uni- versal system that would account for any sort of reasoning, or reasoning as a whole. Aristotelian logic was depicted itself as a universal one. More recently, first-order classical logic appeared to some as a universal system accounting for mathematical reasoning as well as current one, that is, the one used to buy your bread at the bakery. -
Gentzen Sequent Calculus GL
Chapter 11 (Part 2) Gentzen Sequent Calculus GL The proof system GL for the classical propo- sitional logic is a version of the original Gentzen (1934) systems LK. A constructive proof of the completeness the- orem for the system GL is very similar to the proof of the completeness theorem for the system RS. Expressions of the system like in the original Gentzen system LK are Gentzen sequents. Hence we use also a name Gentzen sequent calculus. 1 Language of GL: L = Lf[;\;);:;g. We add a new symbol to the alphabet: ¡!. It is called a Gentzen arrow. The sequents are built out of ¯nite sequences (empty included) of formulas, i.e. elements of F¤, and the additional sign ¡!. We denote, as in the RS system, the ¯nite sequences of formulas by Greek capital let- ters ¡; ¢; §, with indices if necessary. Sequent de¯nition: a sequent is the expres- sion ¡ ¡! ¢; where ¡; ¢ 2 F¤. Meaning of sequents Intuitively, we interpret a sequent A1; :::; An ¡! B1; :::; Bm; where n; m ¸ 1 as a formula (A1 \ ::: \ An) ) (B1 [ ::: [ Bm): The sequent: A1; :::; An ¡! (where n ¸ 1) means that A1 \ ::: \ An yields a contra- diction. The sequent ¡! B1; :::; Bm (where m ¸ 1) means j= (B1 [ ::: [ Bm). The empty sequent: ¡! means a contra- diction. 2 Given non empty sequences: ¡, ¢, we de- note by σ¡ any conjunction of all formulas of ¡, and by ±¢ any disjunction of all formulas of ¢. The intuitive semantics (meaning, interpre- tation) of a sequent ¡ ¡! ¢ (where ¡; ¢ are nonempty) is ¡ ¡! ¢ ´ (σ¡ ) ±¢): 3 Formal semantics for sequents (expressions of GL) Let v : V AR ¡! fT;F g be a truth assign- ment, v¤ its (classical semantics) extension to the set of formulas F.