High Fructose Corn Syrup: Production, Uses and Public Health Concerns

Total Page:16

File Type:pdf, Size:1020Kb

High Fructose Corn Syrup: Production, Uses and Public Health Concerns Biotechnology and Molecular Biology Review Vol. 5(5), pp. 71 - 78 December 2010 Available online at http://www.academicjournals.org/BMBR ISSN 1538-2273 ©2010 Academic Journals Review High fructose corn syrup: Production, uses and public health concerns Kay Parker, Michelle Salas and Veronica C. Nwosu* Department of Biology, College of Science and Technology, North Carolina Central University, Durham, NC 27707, USA. Accepted 21 September, 2010 High fructose corn syrup (HFCS) is a liquid alternative sweetener to sucrose that is made from corn, the “king of crops” using chemicals (caustic soda, hydrochloric acid) and enzymes (-amylase and glucoamylase) to hydrolyze corn starch to corn syrup containing mostly glucose and a third enzyme (glucose isomerase) to isomerize glucose in corn syrup to fructose to yield HFCS products classified according to their fructose content: HFCS-90, HFCS-42, and HFCS-55. HFCS-90 is the major product of these chemical reactions and is blended with glucose syrup to obtain HFCS-42 and HFCS-55. HFCS has become a major sweetener and additive used extensively in a wide variety of processed foods and beverages ranging from soft and fruit drinks to yogurts and breads. HFCS has many advantages compared to sucrose that make it attractive to food manufacturers. These include its sweetness, solubility, acidity and its relative cheapness in the United States (US). The use of HFCS in the food and beverage industry has increased over the years in the US. The increase in its consumption in the US has coincided with the increase in incidence of obesity, diabetes, and other cardiovascular diseases and metabolic syndromes. This study examines literature on the production and properties of HFCS and the possible health concerns of HFCS consequent to its consumption in a wide variety of foods and beverages in the typical US diet. Key words: High fructose corn syrup, sweeteners, soft and juice drinks, baked goods, obesity, diabetes, metabolic syndrome, mercury; honey bees, colony collapse disorder. INTRODUCTION The bulk of the United States (US) diet comes from four containing amylose and amylopectin to corn syrup crops: corn, wheat, soybean, and rice. Of the four crops, containing mostly glucose followed by the isomerization corn is arguably the most dominant and most profitable to of the glucose in corn syrup to fructose to yield HFCS farm with its cultivation being highly subsidized by the US (Figure 1). Three categories of HFCS are in common government elevating corn to the “king of crops”. Corn use: HFCS-90 (90% fructose and 10% glucose) which is has been subjected to various genetic modifications that used in specialty applications but more importantly is have resulted in a crop that is resistant to pesticides, a blended with glucose syrup to yield HFCS-42 (42% feature that has increased the productivity of corn for fructose and 58% glucose) and HFCS-55 (55% fructose farmers. Corn is not only food for humans, but is also and 45% glucose). HFCS is called isoglucose in England feed for farm animals as diverse as cattle, pigs, and and glucose-fructose in Canada, and was first introduced poultry that are the major sources of meats for the US to the food and beverage industry in the late 1960s diet. Corn is the primary source of high fructose corn (HFCS-42 in 1967) and 1970s (HFCS-55 in 1977) to syrup (HFCS) in the US. Marshall and Kooi (1957) improve stability and functionality of various foods and developed the process for making HFCS. HFCS is made beverages. Carbohydrate sweeteners are craved for their by the chemical and enzymatic hydrolysis of corn starch sweetness because they enhance the taste and enjoy- ment of various foods. They are mostly monosaccharides such as glucose, fructose, and galactose; and disaccha- rides such as sucrose, lactose, and maltose. They come *Corresponding author. E-mail: [email protected]. Tel: in various forms such as cane and beet sugar, cane juice, (919)530-6170. Fax: (919) 530-7773. molasses, honey, fruit juice concentrates, corn syrups, 72 Biotechnol. Mol. Biol. Rev. and HFCS. Non carbohydrate sweeteners that have been Apergillus, breaks dextrins and oligosaccharides to the in use include saccharin (discovered in 1879); cyclamate simple sugar glucose. The product of these two enzymes (discovered in 1937); aspartame (discovered in 1965); is corn syrup also called glucose syrup. The third and acesulfame (discovered in 1967) and sucralose relatively expensive enzyme used in the process is (discovered in 1976). Sweeteners are measured on a glucose isomerase (also called D-glucose ketoisomerase sweetness index using sucrose as the baseline sugar or D-xylose ketolisomerase), that converts glucose to with a sweetness index of 1.0. The impetus for the search fructose. for alternative and non-caloric sweeteners to sucrose has While -amylase and glucoamylase are added directly historically been for better health for diabetics and also to the processing slurry, pricey glucose isomerase is for weight control. Cost is another major factor behind immobilized by package into columns where the glucose this search. The development of the relatively inexpen- syrup is passed over in a liquid chromatography step that sive HFCS has made it possible for it to become a viable isomerizes glucose to a mixture of 90% fructose and 10% alternative to sucrose and other natural sugars in a very glucose (HFCS-90). Whereas inexpensive -amylase and short time. HFCS represents approximately 40% of all glucoamylase are used only once, glucose isomerase is added caloric sweeteners in the US diet (Putnam and reused until it loses most of its enzymatic activity. The - Allshouse, 1999). Sucrose contains fructose and glucose amylase and glucoamylase used in HFCS processing in equal amounts linked by glucosidic bond. This bond have been genetically modified to improve their heat has to be broken to release both monosaccharides for stability for the production of HFCS. In the US, four metabolism. HFCS-55 contains more fructose than companies control 85% of the $2.6 billion HFCS glucose and this fructose is more immediately available business—Archer Daniels Midland, Cargill, Staley Manu- because it is not bound up in sucrose. There are facturing Co, and CPC International. differences in the metabolism of glucose and fructose With clarification and removal of impurities, HFCS-90 is with that of glucose being better understood than that of blended with glucose syrup to produce HFCS-55 (55% fructose. The use of HFCS in the food and beverage fructose) and HFCS-42 (42% fructose). Both HFCS-55 industry has increased over the years in the US. This and HFCS-42 have several functional advantages in study examines literature on the production and proper- common, but each has unique properties that make them ties of HFCS and the possible health concerns of HFCS attractive to specific food manufacturers. Because of its consequent to its consumption in a wide variety of foods higher fructose content, HFCS-55 is sweeter than and beverages in the typical US diet. The health imply- sucrose and is thus used extensively as sweetener in cation of HFCS consumption is subject to intense debate. soft, juice, and carbonated drinks. HFCS-42 has a mild The increase in its consumption in the US has coincided sweetness and does not mask the natural flavors of food. with the increase in incidence of obesity, diabetes, and Thus it is used extensively in canned fruits, sauces, other cardiovascular diseases and metabolic syndromes. soups, condiments, baked goods, and many other Thus published literature was surveyed to collate data on processed foods. It is also used heavily by the dairy the impact of HCFS on human health. Of concern is the industry in yogurt, eggnog, flavored milks, ice cream, and possible contamination of HFCS with mercury during other frozen desserts. The use of HFCS has increased processing. Also of concern is the possible toxicity of since its introduction as a sweetener (Figure 2). Although, HFCS and its by-products to honey bees. its use peaked in 1999, it rivals sucrose as the major sweetener in processed foods. The US is the major user of HFCS in the world, but HFCS is manufactured and PRODUCTION AND USES OF HFCS used in many countries around the world (Vuilleumier, 1993). HFCS has functional advantages relative to The schematic of HFCS production is shown in Figure 1. sucrose. HFCS is produced from corn. The corn grain undergoes These include HFCS’s relative cheapness (at 32 several unit processes starting with steeping to soften the cents/lb versus 52 cents/lb for sucrose); greater hard corn kernel followed by wet milling and physical sweetness with HFCS being sweeter than sucrose (Table separation into corn starch (from the endosperm); corn 1), better solubility than sucrose (Table 2) and ability to hull (bran) and protein and oil (from the germ). Corn remain in solution and not crystallize as can sucrose starch composed of glucose molecules of infinite length, under certain conditions. Moreover, HFCS is liquid and consists of amylose and amylopectin and requires heat, thus is easier to transport and use in soft drink caustic soda and/or hydrochloric acid plus the activity of formulations (Hanover and White, 1993). It is also acidic three different enzymes to break it down into the simple and thus has preservative ability that reduces the use of sugars glucose and fructose present in HFCS. An other preservatives. HFCS has little to no nutritional value industrial enzyme, -amylase produced from Bacillus other than calories from sugar (Table 3). Analysis of food spp., hydrolyzes corn starch to short chain dextrins and consumption patterns using USDA (2008) food consump- oligosaccharides. A second enzyme, glucoamylase (also tion tables for the US from 1967 to 2000 (Bray et al., called amyloglucosidase), produced from fungi such as 2004) showed that HFCS consumption increased Parker et al 73 Corn Starch Amylose and Amylopectin Heat Chemicals - Amylase Dextrins and Maltodextrins Heat Chemicals Glucoamylase AKA Amylo- glucosidase Glucose syrup AKA: Corn Syrup Glucose Isomerase: Column immobilized HFCS-90 Blending with Glucose Syrup Figure 1.
Recommended publications
  • What Is Still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector
    applied sciences Review What is still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector Monica Padella *, Adrian O’Connell and Matteo Prussi European Commission, Joint Research Centre, Directorate C-Energy, Transport and Climate, Energy Efficiency and Renewables Unit C.2-Via E. Fermi 2749, 21027 Ispra, Italy; [email protected] (A.O.); [email protected] (M.P.) * Correspondence: [email protected] Received: 16 September 2019; Accepted: 15 October 2019; Published: 24 October 2019 Abstract: Ethanol production from cellulosic material is considered one of the most promising options for future biofuel production contributing to both the energy diversification and decarbonization of the transport sector, especially where electricity is not a viable option (e.g., aviation). Compared to conventional (or first generation) ethanol production from food and feed crops (mainly sugar and starch based crops), cellulosic (or second generation) ethanol provides better performance in terms of greenhouse gas (GHG) emissions savings and low risk of direct and indirect land-use change. However, despite the policy support (in terms of targets) and significant R&D funding in the last decade (both in EU and outside the EU), cellulosic ethanol production appears to be still limited. The paper provides a comprehensive overview of the status of cellulosic ethanol production in EU and outside EU, reviewing available literature and highlighting technical and non-technical barriers that still limit its production at commercial scale. The review shows that the cellulosic ethanol sector appears to be still stagnating, characterized by technical difficulties as well as high production costs.
    [Show full text]
  • Synthesis of Terephthalic Acid Via Diels-Alder Reactions with Ethylene and Oxidized Variants of 5-Hydroxymethylfurfural
    Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural Joshua J. Pacheco and Mark E. Davis1 Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 Contributed by Mark E. Davis, May 7, 2014 (sent for review April 16, 2014) Terephthalic acid (PTA), a monomer in the synthesis of polyethylene can react to form PX in a one-pot Diels-Alder dehydration re- terephthalate (PET), is obtained by the oxidation of petroleum- action (7). This reaction has received much attention recently, derived p-xylene. There is significant interest in the synthesis of and it is catalyzed by homogeneous Lewis acids and a wide va- renewable, biomass-derived PTA. Here, routes to PTA starting riety of heterogeneous Brønsted acid-containing solids (7–12). from oxidized products of 5-hydroxymethylfurfural (HMF) that can Although nearly 100% PX yields from the Diels-Alder de- be produced from biomass are reported. These routes involve Diels- hydration reaction can be achieved, the reduction step to convert Alder reactions with ethylene and avoid the hydrogenation of HMF HMF to DMF requires expensive metal catalysts and a hydrogen to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with source, making this route challenging to commercially imple- ethylene over solid Lewis acid catalysts that do not contain strong ment (13). Therefore, the discovery of routes to PTA from HMF Brønsted acids to synthesize intermediates of PTA and its equally that avoid any hydrogenation steps could be useful. important diester, dimethyl terephthalate (DMT). The partially oxi- An oxidation route to PTA that has previously been consid- dized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with ered is the Diels-Alder dehydration reaction of ethylene with the high pressure ethylene over a pure-silica molecular sieve containing fully oxidized HMF, 2,5-furandicarboxylic acid (FDCA).
    [Show full text]
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • BREWERS' CRYSTALS® High Maltose Corn Syrup Solids
    BREWERS’ CRYSTALS® High Maltose Corn Syrup Solids Advantages • Good match for all malt wort • Gluten free • Consistent purity and quality while adding flexibility and capacity Ingredion understands that brewery is an art as well as a science; our brewing adjunct portfolio is based on more What is it? than 100 years of service to the industry with a variety of ingredients. We take pride in our quality and ISO 9001 and BREWERS’ CRYSTALS High Maltose Corn Syrup Solids are FSSC 22000 systems certifications and our reliability one fermentable carbohydrates from corn, specially produced of the strongest supply chains in the industry. to obtain a profile close to an all-barley malt wort (Figure 1). Easy to use in powder form, they can be added directly to the brew kettle to create beers with crisper lighter flavor, or later How do I use it? in the process to add more complex character in priming. Ingredion BREWERS’ CRYSTALS HM Corn Syrup Solids can be easily added as an adjunct directly to the brewing kettle BREWERS’ CRYSTALS HM Corn Syrup Solids provide 100% or before filtration steps to add crisp and light character- total extract and 80% fermentable extract allowing the istics to lagers, ales and special beer recipes, or in priming Brew Master the flexibility of including them in a broad for added notes to complex beers. range of formulation and thus a wider spectrum of beers. Why should I use it? FIGURE 1: CARBOHYDRATE PROFILES COMPARISON 60 The benefits of BREWERS’ CRYSTALS HM Corn Syrup Solids: 56 • Packaged in convenient 25 kg (55 lb) multiwall poly-lined 52 BREWERS’ 50 CRYSTALS bags, they are easy to handle and store without the need for Wort* additional liquid handling systems.
    [Show full text]
  • Pentose PO4 Pathway, Fructose, Galactose Metabolism.Pptx
    Pentose PO4 pathway, Fructose, galactose metabolism The Entner Doudoroff pathway begins with hexokinase producing Glucose 6 PO4 , but produce only one ATP. This pathway prevalent in anaerobes such as Pseudomonas, they doe not have a Phosphofructokinase. The pentose phosphate pathway (also called the phosphogluconate pathway and the hexose monophosphate shunt) is a biochemical pathway parallel to glycolysis that generates NADPH and pentoses. While it does involve oxidation of glucose, its primary role is anabolic rather than catabolic. There are two distinct phases in the pathway. The first is the oxidative phase, in which NADPH is generated, and the second is the non-oxidative synthesis of 5-carbon sugars. For most organisms, the pentose phosphate pathway takes place in the cytosol. For each mole of glucose 6 PO4 metabolized to ribulose 5 PO4, 2 moles of NADPH are produced. 6-Phosphogluconate dh is not only an oxidation step but it’s also a decarboxylation reaction. The primary results of the pathway are: The generation of reducing equivalents, in the form of NADPH, used in reductive biosynthesis reactions within cells (e.g. fatty acid synthesis). Production of ribose-5-phosphate (R5P), used in the synthesis of nucleotides and nucleic acids. Production of erythrose-4-phosphate (E4P), used in the synthesis of aromatic amino acids. Transketolase and transaldolase reactions are similar in that they transfer between carbon chains, transketolases 2 carbon units or transaldolases 3 carbon units. Regulation; Glucose-6-phosphate dehydrogenase is the rate- controlling enzyme of this pathway. It is allosterically stimulated by NADP+. The ratio of NADPH:NADP+ is normally about 100:1 in liver cytosol.
    [Show full text]
  • A Guide for Connecting Farms to Schools and Communities
    VERMONT FARM TO SCHOOL A Guide for Connecting Farms to Schools and Communities INSIDE: • How to market your food for use in schools • How to use your farm for education with kids • Hands-on, farm-based educational activities • How to connect your farm to the community Vermont FEED: Food Education Every Day a partnership of Food Works, Northeast Organic Farming Association of Vermont (NOFA-VT), and Shelburne Farms JANUARY 2007 The work of Vermont FEED, including this guidebook, has been made possible by the generous support of the Argosy Foundation, Blue Cross and Blue Shield of Vermont, Vermont Housing and Conservation Board - Farm Viability Program, CSREES - USDA Community Food Projects Award #00-33800-9807, Northeast SARE (Sustainable Agriculture Research and Education) Vermont Food Education Every Day Grant LNE03-187, the Vermont Agency of Agriculture and the Vermont Department of Education. Any ideas or text in this manual that are similar to those in any copyrighted source were used unin- tentionally and without awareness. Table of Contents Introduction Purpose of the Guide . 1 Contact Information . 2 Thank You . 3 FEED Goals, Mission, Beliefs . 4 The Three C’s Approach to Food in Vermont Schools. 5 Why Vermont FEED? . 6 Getting Started . 7 How do I insure a safe environment for visitors on my farm? . 9 How do I protect my farm and my visitors? . 10 What are my insurance liability considerations for farm visitors?. 11 Do I charge groups to visit my farm? . 12 How will visitors know where to go on my farm?. 13 Will all visitors have adequate accessibility to my farm? .
    [Show full text]
  • Metabolism of Monosaccharides and Disaccharides Glucose Is the Most Common Monosaccharide Consumed by Humans
    Metabolism of Monosaccharides and disaccharides Glucose is the most common monosaccharide consumed by humans. Two other monosaccharides that occur in significant amounts in the diet are fructose and galactose. Galactose is an important component of cell structural carbohydrates. Catabolism of fructose and galactose are essential pathways of energy metabolism in the body (both illustrated with blue in the adjacent diagram). About 15-20% of calories in the diet are supplied by fructose (55 g/day). The major source of fructose is the disaccharide sucrose. Entry of fructose is not dependent on insulin. Galactose is an important component Of cell structural carbohydrates. Fructose needs to be phosphorylated to enter the pathway either by hexokinase or fructokinase. Hexokinase has low affinity towards fructose (high Km) therefore unless high concentrations of fructose exist very little fructose will be converted to Fructose 6-P. Fructokinase provides the main mechanism of phosphorylation to fructose 1-P, Fructose 1-P does not convert to Fructose 1,6 bisphosphate but is metabolized to Glyceraldehyde and DHAP by aldolase B. DHAP can enter glycolysis or gluconeogenesis while Glyceraldehyde can be metabolized by a number of pathways. The rate of fructose metabolism is more rapid than that of glucose because trioses formed from fructose 1-phosphate bypass PFK1, the rate limiting step in glycolisis. What disorders are associated with fructose metabolism? Where? First lets summarize the various routes of Fructose metabolism in the diagram. Disorders of fructose metabolism can result from excessive fructose consumption. An increase in fructose 1-P due to rapid phosphorylation. This accumulation leads to sequestering of phosphate (A & B).
    [Show full text]
  • Relationships Among Impurity Components, Sucrose, and Sugarbeet Processing Quality
    2 Journal of Sugar Beet Research Vol. 52 Nos. 1 & 2 Relationships Among Impurity Components, Sucrose, and Sugarbeet Processing Quality L. G. Campbell and K.K. Fugate USDA-ARS Northern Crop Science Laboratory, Fargo, ND 58102-2765 Corresponding author: Larry Campbell ([email protected]) DOI: 10.5274/jsbr.52.1.2 ABSTRACT Sodium, potassium, amino-nitrogen, and invert sugar are nat- urally-occurring constituents of the sugarbeet root, referred to as impurities, which impede sucrose extraction during rou- tine factory operations. Three germplasm lines selected for low sodium, potassium, or amino-nitrogen and a line selected for high amino-nitrogen concentration from the same parental population and two lines selected from another source, one for high and the other for low amino-nitrogen concentration, were the basis for examining relationships among the impurity components and between the impurity components and sucrose concentration, sucrose loss to mo- lasses, and sucrose extraction rate. Concentrations of the three impurity components were altered through selection; however, in no case did this result in a consistent significant increase in sucrose concentration or estimates of the propor- tion of the sucrose that would be extracted. Correlation analyses indicated a larger role for sodium than for potas- sium or amino-nitrogen in determining relative sucrose con- centration. Selection for low sodium concentration, however, did not increase the percent extractable sucrose, relative to the parental population. The probability of significant im- provement in the processing quality of elite germplasm by re- ducing the concentration of individual impurity components appears to be low, based upon the populations examined in this study.
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • Florida Blueberry Pollination Factsheet
    Florida Blueberry PROJECT ICP Pollination Blueberries Require Pollination Blueberries need to be cross-pollinated with another cultivar of the same species (rabbiteye or southern highbush blueberry) in order to produce fruit. Cross-pollination allows for better fruit set, berry size, and earlier ripening. Most growers bring in managed European honey bee hives or commercial bumble bees for pollination. Several types of wild bees are also effective and abundant pollinators of Florida blueberries. All of these different kinds of bees visit blueberry flowers to collect pollen and nectar to feed their young. Integrated Crop Pollination: combining strategies to improve pollination Having many different species of pollinators can help ensure reliable pollination. Different species of bees tend to visit flowers at different times of the day and are active at different times throughout the bloom season; having a diverse set of bees active in your fields can ensure consistent pollination from the beginning to the end of crop bloom. Honey bee abundance and wild bee diversity are both important contributors to southeastern US blueberry pollination. Cool, rainy, and windy spring weather can lead to poor pollination. When multiple pollinator species are active, more flowers are likely to be visited on poor weather days. Large-bodied bees, including all three types of wild bees that visit Florida blueberry flowers, stay more active under Pollination is essential for blueberry production. On the left, a blueberry cluster that was enclosed in a mesh bag during cool and cloudy conditions than do honey bees and can help bloom to exclude pollinators. On the right, a blueberry cluster pollinate the crop in variable spring weather.
    [Show full text]
  • Identification of Valuable Corn Quality Traits for Starch Production
    Identification of Valuable Corn Quality Traits for Starch Production By: Lawrence A. Johnson Center for Crops Utilization Research Food Science and Human Nutrition C. Phillip Baumel Economics Connie L. Hardy Center for Crops Utilization Research Pamela J. White Food Science and Human Nutrition A project of the Iowa Grain Quality Initiative Traits Task Team Funded by the Iowa Corn Promotion Board 306 West Towers 1200 35th St. West Des Moines, IA 50266 October 1999 Center for Crops Utilization Research Iowa Agriculture & Home Economics Experiment Station Iowa State University, Ames, IA 2 Acknowledgment This report is intended to provoke discussion and debate that will lead to a vision among researchers in public institutions, seed companies, and the starch processing and food industries for modifying corn traits for starch (and other complex carbohydrates) production to enhance utilization and profitability of growing corn. The report attempts to provide direction to farmer organizations and to the corn industry about potential targets for investing research funds. One should recognize that some of the modifications considered required speculation about functional properties and potential applications. Additional research on the relationship between the structures of starch and other complex carbohydrates and functionality in food and industrial applications may refute some of that speculation. Also, this document is a consensus report taking into account the recommendations and reviews of the consultants and advisors identified below. Dr. Jay-lin Jane, Food Science and Human Nutrition, Iowa State University, Ames, IA Dr. Morton W. Rutenberg, Emmar Consultants, North Plainfield, NJ Dr. Henry Zobel, ABCV Starch, Darien, IL Dr. Robert Friedman, Cerestar USA, Inc., Hammond, IN Dr.
    [Show full text]
  • Corn - an A-Maizing Plant
    Corn - An A-Maizing Plant Grade Level: 4-6 Approximate Length of Activity: Two to three class periods Objectives: Teacher: 1. Guide students in a discussion on corn production. 2. Help students understand the history of corn production. Students: 1. Locate and label the states on a U.S. map that make up the "Corn Belt". 2. Become familiar with the parts of the corn kernel. 3. Recognize products made from corn used in our daily lives. 4. Be able to distinguish, through dissection, the four different parts of a corn kernel. Michigan Content Standards: (Social Studies) II.2.2; II.2.3; IV.2.3 Introduction: The Corn Belt is a group of states where most of the corn in the United States is produced. Illinois, Iowa, Nebraska, and Minnesota produce 50 percent of all the corn grown in the US. Other major corn growing states include Indiana, Wisconsin, Michigan, South Dakota, Kansas, Missouri, Kentucky, and Ohio. These 12 states make up the Corn Belt. Corn is the major feed grain grown by farmers in the U.S., leading all other crops in value and volume of production. Corn is a major component in foods like cereals, peanut butter, and snack foods. An ear of corn has an average of 16 rows with 800 kernels. A pound of corn consists of approximately 1,300 kernels. An acre (about the size of a football field) of corn, yielding 100 bushels, produces approximately 7,280,000 kernels. Most of the weight of a bushel of corn is the starch, oil, protein, and fiber, with some natural moisture.
    [Show full text]