Research Methods and Measurement 2 Two
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The History and Philosophy of Health Psychology And
Revista Psicologia e Saúde. DOI: hƩ p://dx.doi.org/10.20435/pssa.v10i2.693 25 Mind the Gap: The History and Philosophy of Health Psychology and Mindfulness Atenção aos Detalhes: A História e Filosofi a da Psicologia da Saúde e Mindfulness Ojo a los Detalles: Historia y Filosoİ a de la Psicología de la Salud y Mindfulness Shayna Fox Lee1 York University, Canada Jacy L. Young Abstract The recent surge in popularity of the concept ‘mindfulness’ in academic, professional, and popular psychology has been remarkable. The ease with which mindfulness has gained trac on in the health sciences and cultural imagina on makes it apparent mindfulness is well-suited to our current social climate, appealing to both, experts and laypeople. As a subdiscipline established rela vely late in the twen eth century, health psychology has a unique rela onship to mindfulness. This ar cle elucidates the shared roots between health psychology and mindfulness as a psychological construct and fi eld of research, providing a frame of reference for the ways in which health psychology and mindfulness share similar theore cal and methodological challenges that aff ect their integra on into health, social systems, and services. Keywords: mindfulness, history, philosophy Resumo O recente aumento na popularidade do conceito mindfulness (plena atenção) tem sido notado signifi ca vamente na área acadêmica e professional da psicologia. O termo tem se fortalecido nas ciências da saúde, além do imaginário cultural para expressar um contexto contemporâneo da sociedade, atraindo tanto especialistas quanto leigos. Sendo uma sub-área estabelecida rela vamente tardia no fi nal do século XX, a psicologia da saúde tem uma relação singular com o conceito. -
The Very Process of Taking a Pill May Create Expectations in a Patient Which May Affect Reactions to the Pill
Ch 1 Pause for Thought Questions p. 36 1- Why is it important to use placebos and a double-blind approach in some studies? The very process of taking a pill may create expectations in a patient which may affect reactions to the pill. To help eliminate the role of patient expectation during testing, a placebo (or fake medicine) is used on subjects in a control group. A researcher’s expectations may also affect results. Therefore, double-blind studies are often used. In such studies, neither the researcher nor the participants know which group is which. 2- Assume that researchers find that people’s memories are sharpest right after they’ve eaten lunch. What hidden variables may have affected these results? Other variables that may play a role (hidden variables): Time of Day Type of food eaten Meaning of “lunch” - May mean “time away from work” - Subjective State of feeling free (not food) helps memory. Socializing at lunch may make a person more alert and then able to take-in more info and retain it longer. 3- How might you use the scientific method to study factors that affect obedience? Devise a simple study, and identify the following: hypothesis, subjects, independent variable, dependent variable, experimental group, and control group. Hypothesis: If employee fears/believes they will be punished if they don’t follow directives, then they will be obedient to directives of bosses/people in “higher” positions than themselves in the workplace. Subjects: Employees Independent Variable: Directive given with harsh consequences for not following through. Dependent Variable: Obedience (Level of) Experimental Group: Group with “harsh” bosses (very by the book; give extreme consequences) present during their work day. -
Evolution of Clinical Trials Throughout History
Evolution of clinical trials throughout history Emma M. Nellhaus1, Todd H. Davies, PhD1 Author Affiliations: 1. Office of Research and Graduate Education, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia The authors have no financial disclosures to declare and no conflicts of interest to report. Corresponding Author: Todd H. Davies, PhD Director of Research Development and Translation Marshall University Joan C. Edwards School of Medicine Huntington, West Virginia Email: [email protected] Abstract The history of clinical research accounts for the high ethical, scientific, and regulatory standards represented in current practice. In this review, we aim to describe the advances that grew from failures and provide a comprehensive view of how the current gold standard of clinical practice was born. This discussion of the evolution of clinical trials considers the length of time and efforts that were made in order to designate the primary objective, which is providing improved care for our patients. A gradual, historic progression of scientific methods such as comparison of interventions, randomization, blinding, and placebos in clinical trials demonstrates how these techniques are collectively responsible for a continuous advancement of clinical care. Developments over the years have been ethical as well as clinical. The Belmont Report, which many investigators lack appreciation for due to time constraints, represents the pinnacle of ethical standards and was developed due to significant misconduct. Understanding the history of clinical research may help investigators value the responsibility of conducting human subjects’ research. Keywords Clinical Trials, Clinical Research, History, Belmont Report In modern medicine, the clinical trial is the gold standard and most dominant form of clinical research. -
U.S. Investments in Medical and Health Research and Development 2013 - 2017 Advocacy Has Helped Bring About Five Years of Much-Needed Growth in U.S
Fall 2018 U.S. Investments in Medical and Health Research and Development 2013 - 2017 Advocacy has helped bring about five years of much-needed growth in U.S. medical and health research investment. More advocacy is critical now to ensure our nation steps up in response to health threats that we can—we must—overcome. More Than Half Favor Doubling Federal Spending on Medical Research Do you favor or oppose doubling federal spending on medical research over the next five years? 19% Not Sure 23% 8% Strongly favor Strongly oppose 16% 35% Somewhat oppose Somewhat favor Source: A Research!America survey of U.S. adults conducted in partnership with Zogby Analytics in January 2018. Research!America 3 Introduction Investment1 in medical and health research and development (R&D) in the U.S. grew by $38.8 billion or 27% from 2013 to 2017. Industry continues to invest more than any other sector, accounting for 67% of total spending in 2017, followed by the federal government at 22%. Federal investments increased from 2016 to 2017, the second year of growth after a dip from 2014 to 2015. Overall, federal investment increased by $6.1 billion or 18.4% from 2013 to 2017, but growth has been uneven across federal health agencies. Investment by other sectors, including academic and research institutions, foundations, state and local governments, and voluntary health associations and professional societies, also increased from 2013 to 2017. Looking ahead, medical and health R&D spending is expected to move in an upward trajectory in 2018 but will continue to fall short relative to the health and economic impact of major health threats. -
When Psychometrics Meets Epidemiology and the Studies V1.Pdf
When psychometrics meets epidemiology, and the studies which result! Tom Booth [email protected] Lecturer in Quantitative Research Methods, Department of Psychology, University of Edinburgh Who am I? • MSc and PhD in Organisational Psychology – ESRC AQM Scholarship • Manchester Business School, University of Manchester • Topic: Personality psychometrics • Post-doctoral Researcher • Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh. • Primary Research Topic: Cognitive ageing, brain imaging. • Lecturer Quantitative Research Methods • Department of Psychology, University of Edinburgh • Primary Research Topics: Individual differences and health; cognitive ability and brain imaging; Psychometric methods and assessment. Journey of a talk…. • Psychometrics: • Performance of likert-type response scales for personality data. • Murray, Booth & Molenaar (2015) • Epidemiology: • Allostatic load • Measurement: Booth, Starr & Deary (2013); (Unpublished) • Applications: Early life adversity (Unpublished) • Further applications Journey of a talk…. • Methodological interlude: • The issue of optimal time scales. • Individual differences and health: • Personality and Physical Health (review: Murray & Booth, 2015) • Personality, health behaviours and brain integrity (Booth, Mottus et al., 2014) • Looking forward Psychometrics My spiritual home… Middle response options Strongly Agree Agree Neither Agree nor Disagree Strong Disagree Disagree 1 2 3 4 5 Strongly Agree Agree Unsure Disagree Strong Disagree -
Clinical Research Services
Clinical Research Services Conducting efficient, innovative clinical research from initial planning to closeout WHY LEIDOS LIFE SCIENCES? In addition to developing large-scale technology programs for U.S. federal f Leidos has expertise agencies with a focus on health, Leidos provides a broad range of clinical supporting all product services and solutions to researchers, product sponsors, U.S. government development phases agencies, and other biomedical enterprises, hospitals, and health systems. for vaccines, drugs, and Our broad research experience enables us to support programs throughout biotherapeutics the development life cycle: from concept through the exploratory, f Leidos understands the development, pre-clinical, and clinical phases, as well as with product need to control clinical manufacturing and launching. Leidos designs and develops customized project scope, timelines, solutions that support groundbreaking medical research, optimize business and cost while remaining operations, and expedite the discovery of safe and effective medical flexible amidst shifting products. We apply our technical knowledge and experience in selecting research requirements institutions, clinical research organizations, and independent research f Leidos remains vendor- facilities to meet the specific needs of each clinical study. We also manage neutral while fostering and team integration, communication, and contracts throughout the project. managing collaborations Finally, Leidos has a proven track record of ensuring that research involving with -
Health Psychology 19
PSY_C19.qxd 1/2/05 3:52 pm Page 408 Health Psychology 19 CHAPTER OUTLINE LEARNING OBJECTIVES INTRODUCTION HEALTH BELIEFS AND BEHAVIOURS Behaviour and mortality The role of health beliefs Integrated models ILLNESS BELIEFS The dimensions of illness beliefs A model of illness behaviour Health professionals’ beliefs THE STRESS–ILLNESS LINK Stress models Does stress cause illness? CHRONIC ILLNESS Profile of an illness Psychology’s role FINAL THOUGHTS SUMMARY REVISION QUESTIONS FURTHER READING PSY_C19.qxd 1/2/05 3:52 pm Page 409 Learning Objectives By the end of this chapter you should appreciate that: n health psychologists study the role of psychology in health and wellbeing; n they examine health beliefs as possible predictors of health-related behaviours; n health psychology also examines beliefs about illness and how people conceptualize their illness; n a health professional’s beliefs about the symptoms, the illness or the patient can have important implications; n stress is the product of the interaction between the person and their environment – it can influence illness and the stress–illness link is influenced by coping and social support; n beliefs and behaviours can influence whether a person becomes ill in the first place, whether they seek help and how they adjust to their illness. INTRODUCTION Health psychology is a relatively recent yet fast- reflects the biopsychosocial model of health and growing sub-discipline of psychology. It is best illness that was developed by Engel (1977, understood by answering the following questions: 1980). Because, in this model, illness biopsychosocial the type of inter- n What causes illness and who is responsible is regarded as the action between biological factors (e.g. -
Adaptive Designs in Clinical Trials: Why Use Them, and How to Run and Report Them Philip Pallmann1* , Alun W
Pallmann et al. BMC Medicine (2018) 16:29 https://doi.org/10.1186/s12916-018-1017-7 CORRESPONDENCE Open Access Adaptive designs in clinical trials: why use them, and how to run and report them Philip Pallmann1* , Alun W. Bedding2, Babak Choodari-Oskooei3, Munyaradzi Dimairo4,LauraFlight5, Lisa V. Hampson1,6, Jane Holmes7, Adrian P. Mander8, Lang’o Odondi7, Matthew R. Sydes3,SofíaS.Villar8, James M. S. Wason8,9, Christopher J. Weir10, Graham M. Wheeler8,11, Christina Yap12 and Thomas Jaki1 Abstract Adaptive designs can make clinical trials more flexible by utilising results accumulating in the trial to modify the trial’s course in accordance with pre-specified rules. Trials with an adaptive design are often more efficient, informative and ethical than trials with a traditional fixed design since they often make better use of resources such as time and money, and might require fewer participants. Adaptive designs can be applied across all phases of clinical research, from early-phase dose escalation to confirmatory trials. The pace of the uptake of adaptive designs in clinical research, however, has remained well behind that of the statistical literature introducing new methods and highlighting their potential advantages. We speculate that one factor contributing to this is that the full range of adaptations available to trial designs, as well as their goals, advantages and limitations, remains unfamiliar to many parts of the clinical community. Additionally, the term adaptive design has been misleadingly used as an all-encompassing label to refer to certain methods that could be deemed controversial or that have been inadequately implemented. We believe that even if the planning and analysis of a trial is undertaken by an expert statistician, it is essential that the investigators understand the implications of using an adaptive design, for example, what the practical challenges are, what can (and cannot) be inferred from the results of such a trial, and how to report and communicate the results. -
Clinical Health Psychology Fellowship
Clinical Health Psychology Fellowship APA-ACCREDITED CLINICAL HEALTH PSYCHOLOGY FELLOWSHIP AT THE MAYO CLINIC APA-Accredited Clinical Health Psychology Fellowship at the Mayo Clinic The Clinical Health Psychology Fellowship is one of three tracks offered in the Medical Psychology Post-Doctoral Fellowship at Mayo Clinic. This APA-Accredited Fellowship is the Department of Psychiatry and Psychology, which is one of the largest psychiatric treatment groups in the United States, with more than 80 psychologists and psychiatrists. The two-year fellowship includes clinical activities, 30% protected time for research, educational activities, as well as opportunities for teaching/leadership. The Clinical Health Psychology Fellowship offers both breadth and depth in health psychology training. Fellows choose a specialty area (“major rotation”) in which they focus the majority of their clinical and research work. Fellows receive their clinical supervision and research mentorship in their specialty area. In addition, fellows can obtain broad training through several minor rotations. The rotational schedule is flexible based on the fellows’ interests and goals. All major rotation areas are also offered as minor rotations. “Fellows are able to complete minor rotations in each specialty area during the two-year fellowship, or they may choose to focus on their major area of concentration.” Many of our faculty hold leadership positions in the department and the institution, offering our fellows formal and informal professional development opportunities to learn about the role of the Clinical Health Psychologist within an academic medical center setting. Our faculty includes individuals from diverse cultural and clinical training backgrounds. We strongly encourage diverse applicants to apply to our program, including international applicants. -
Design of Prospective Studies
Design of Prospective Studies Kyoungmi Kim, Ph.D. June 14, 2017 This seminar is jointly supported by the following NIH-funded centers: Seminar Objectives . Discuss about design of prospective longitudinal studies . Understand options for overcoming shortcomings of prospective studies . Learn to determine how many subjects to recruit for a follow-up study What is a prospective study? Study subjects of disease‐free at enrollment are followed for a period of time and periodically checked for progress to see who/when gets the outcome in question ‐thus be able to establish a temporal relationship between exposure & outcome. What is a prospective study? During the follow‐up, data is collected on the factors of interest, including: •When the subject develops the condition •When they drop out of the study or become “lost” •When they exposure status changes •When they die Example: Framingham Study . An original cohort of 5,209 subjects from Framingham, MA between the ages of 30 and 62 years of age was recruited and followed up for 20 years. A number of hypotheses were generated and described by Dawber et al. in 1980 listing various presupposed risk factors such as increasing age, increased weight, tobacco smoking, elevated blood pressure and cholesterol and decreased physical activity. It is largely quoted as a successful longitudinal study owing to the fact that a large proportion of the exposures chosen for analysis were indeed found to correlate closely with the development of cardiovascular disease. Example: Framingham Study . Biases exist: – It was a study carried out in a single population in a single town, brining into question the generalizability and applicability of this data to different groups. -
Good Statistical Practices for Contemporary Meta-Analysis: Examples Based on a Systematic Review on COVID-19 in Pregnancy
Review Good Statistical Practices for Contemporary Meta-Analysis: Examples Based on a Systematic Review on COVID-19 in Pregnancy Yuxi Zhao and Lifeng Lin * Department of Statistics, Florida State University, Tallahassee, FL 32306, USA; [email protected] * Correspondence: [email protected] Abstract: Systematic reviews and meta-analyses have been increasingly used to pool research find- ings from multiple studies in medical sciences. The reliability of the synthesized evidence depends highly on the methodological quality of a systematic review and meta-analysis. In recent years, several tools have been developed to guide the reporting and evidence appraisal of systematic reviews and meta-analyses, and much statistical effort has been paid to improve their methodological quality. Nevertheless, many contemporary meta-analyses continue to employ conventional statis- tical methods, which may be suboptimal compared with several alternative methods available in the evidence synthesis literature. Based on a recent systematic review on COVID-19 in pregnancy, this article provides an overview of select good practices for performing meta-analyses from sta- tistical perspectives. Specifically, we suggest meta-analysts (1) providing sufficient information of included studies, (2) providing information for reproducibility of meta-analyses, (3) using appro- priate terminologies, (4) double-checking presented results, (5) considering alternative estimators of between-study variance, (6) considering alternative confidence intervals, (7) reporting predic- Citation: Zhao, Y.; Lin, L. Good tion intervals, (8) assessing small-study effects whenever possible, and (9) considering one-stage Statistical Practices for Contemporary methods. We use worked examples to illustrate these good practices. Relevant statistical code Meta-Analysis: Examples Based on a is also provided. -
Study Designs in Biomedical Research
STUDY DESIGNS IN BIOMEDICAL RESEARCH INTRODUCTION TO CLINICAL TRIALS SOME TERMINOLOGIES Research Designs: Methods for data collection Clinical Studies: Class of all scientific approaches to evaluate Disease Prevention, Diagnostics, and Treatments. Clinical Trials: Subset of clinical studies that evaluates Investigational Drugs; they are in prospective/longitudinal form (the basic nature of trials is prospective). TYPICAL CLINICAL TRIAL Study Initiation Study Termination No subjects enrolled after π1 0 π1 π2 Enrollment Period, e.g. Follow-up Period, e.g. three (3) years two (2) years OPERATION: Patients come sequentially; each is enrolled & randomized to receive one of two or several treatments, and followed for varying amount of time- between π1 & π2 In clinical trials, investigators apply an “intervention” and observe the effect on outcomes. The major advantage is the ability to demonstrate causality; in particular: (1) random assigning subjects to intervention helps to reduce or eliminate the influence of confounders, and (2) blinding its administration helps to reduce or eliminate the effect of biases from ascertainment of the outcome. Clinical Trials form a subset of cohort studies but not all cohort studies are clinical trials because not every research question is amenable to the clinical trial design. For example: (1) By ethical reasons, we cannot assign subjects to smoking in a trial in order to learn about its harmful effects, or (2) It is not feasible to study whether drug treatment of high LDL-cholesterol in children will prevent heart attacks many decades later. In addition, clinical trials are generally expensive, time consuming, address narrow clinical questions, and sometimes expose participants to potential harm.