Linking Geology and Biodiversity (Part 1)

Total Page:16

File Type:pdf, Size:1020Kb

Linking Geology and Biodiversity (Part 1) Report Number 562 Linking Geology and Biodiversity English Nature Research Reports working today for nature tomorrow English Nature Research Reports Number 562 Linking Geology and Biodiversity R Cottle Royal Haskoning, Rightwell House, Bretton, Peterborough PE3 8DW You may reproduce as many additional copies of this report as you like, provided such copies stipulate that copyright remains with English Nature, Northminster House, Peterborough PE1 1UA ISSN 0967-876X © Copyright English Nature 2004 Foreword Geology has strong ties with biodiversity, in that the nature of the substrate, as usually determined by the nature of the underlying rock, is a key factor in determining the distribution of habitats and species. An obvious example of this is the distribution of chalk grassland habitats with outcrops of chalk. As a signatory to the Convention on Biological Diversity drawn up at the World Summit held in Rio de Janeiro in 1992, the UK Government has a commitment to promoting and protecting biodiversity. This commitment has been focused through the identification of priority habitats and species and the development of a series of national targets which aim to maintain or enhance their conservation status. These have been published as part of the UK Biodiversity Action Plan (UKBAP). Biodiversity action groups have been set up locally and regionally to identify and promote how local initiatives can play a part in achieving the national targets and also enhance local biodiversity. This report investigates the links between biodiversity and geology. Some work had already been done in looking at how standard geological site management practices can benefit biodiversity and how some priority species may be associated with types of geological outcrop (report produced for English Nature - Geological conservation – benefits for biodiversity ENRR 561). This report takes this a step further, looking specifically at the link between rock type and biodiversity across England and thus how the achievement of biodiversity targets can be assisted through a better understanding of geology. The outcome is an examination of the key factors influencing and determining ecosystems, illustrated by examples of the links and factors from a number of countries, including England, to illustrate the work that has been done elsewhere. It is therefore a useful examination of this aspect of ecosystem studies and provides an extensive bibliography for those wishing to look at the subject in more detail. This report, along with English Nature Research Reports, No. 561 and English Nature Research Reports, No. 502 (Learning from the past to influence the future), has been summarised in a booklet by English Nature Geology and Biodiversity – making the links, available from the English Nature enquiry service. This is a research report and its findings have not necessarily been adopted as English Nature policy and practice. Anna Wetherell Senior Geologist – Stratigraphy Project Manager, Linking Geology and Biodiversity April 2004 Contents Foreword 1. Introduction....................................................................................................................9 2. Factors influencing the relationship between geology and biodiversity......................10 2.1 Soil formation..................................................................................................14 2.1.1 Parent material and weathering............................................................14 2.1.2 The influence of climate ......................................................................16 2.1.3 Biota.....................................................................................................16 2.1.4 Summary..............................................................................................17 2.2 Climate.............................................................................................................17 2.3 Relief and topography......................................................................................18 2.4 The recent past .................................................................................................20 2.5 Man’s influence ...............................................................................................21 3. Rock classification.......................................................................................................22 3.1 Introduction......................................................................................................22 3.2 Igneous rocks...................................................................................................23 3.3 Sedimentary rocks............................................................................................24 3.4 Metamorphic rocks..........................................................................................24 4. Plant-rock associations and the calicole-calcifuge issue .............................................25 5. Sedimentary rocks........................................................................................................26 5.1 Calcareous rocks..............................................................................................27 5.1.1 The chalk..............................................................................................27 5.1.2 Carboniferous Limestone.....................................................................30 5.1.3 The Jurassic Limestones ......................................................................33 5.1.4 The Magnesian Limestone...................................................................34 5.1.5 Calcareous heathland ...........................................................................36 5.2 Shales and mudstones ......................................................................................37 5.3 Sandstones........................................................................................................41 5.4 Sands and gravels.............................................................................................43 5.5 Drift and glacially derived deposits .................................................................45 6. Igneous rocks...............................................................................................................47 7. Metamorphic rocks......................................................................................................50 7.1 Introduction......................................................................................................50 7.2 Serpentine ........................................................................................................50 7.3 Other metamorphic rocks.................................................................................53 7.3.1 Calcareous mica-schist.........................................................................56 8. Mineralisation and mining ...........................................................................................56 9. The influence and role of geomorphological processes...............................................60 9.1 The influence of cliffs and cliff processes .......................................................60 9.2 Slope processes................................................................................................63 9.3 Karst systems ...................................................................................................66 9.3.1 Caves....................................................................................................67 9.4 The Influence of geology on fluvial habitats ...................................................67 9.4.1 Rivers ...................................................................................................68 9.4.2 Lakes and ponds...................................................................................70 9.4.3 Tufa and spring-fed alkaline fens ........................................................72 9.5 Coastal processes.............................................................................................73 9.5.1 Sand dunes...........................................................................................74 9.5.2 Coastal shingle.....................................................................................75 9.5.3 Rocky shorelines and reefs ..................................................................76 9.6 Bare ground......................................................................................................78 10. Comparative studies and links at the landscape level..................................................79 10.1 Introduction......................................................................................................79 10.2 Comparative studies.........................................................................................79 10.3 Natural Areas ...................................................................................................81 10.3.1 Isle of Wight ........................................................................................81 10.3.2 The East Thames corridor....................................................................82 11. Conclusions..................................................................................................................84 12. References....................................................................................................................87 1. Introduction Since the Earth
Recommended publications
  • Scrubbers' Bulletin
    MONTANE333333333 Scrubbers’ SCRUB ACTION GROUP Bulletin 10 Cover photo: Vapourer moth, Orgyia antiqua (L.) eggs, on dark-leaved willow, Salix myrsinifolia Salisb., Ben Lawers NNR, alt. 580m. photo D.K. Mardon Scrubbers’ Bulletin No. 10 Page 2 of 24 Scrubbers’ Bulletin No. 10. The Bulletin of the Montane Scrub Action Group, a partnership of individuals supported by their organisations. The current members of the group are: Diana Gilbert, (Chair) Andrew Warwick, the National Trust for John Holland, Scottish Rural College Scotland Phil Baarda, Scottish Natural Heritage Mick Drury, Trees for Life Rob Soutar, Forest Enterprise Scotland Philip Ashmole, Borders Forest Trust Richard Thompson, FE Scotland Deborah Long, Plantlife Billy Bodles, Highland Birchwoods David Mardon Andrew Campbell, Woodland Trust Welcome to issue number 10 of the Scrubber’s Bulletin, compiled by David Mardon, Fagus, Manse Road, Killin, FK21 8UY, [email protected] Earlier issues of the Bulletin may be read at www.mountainwoodlands.org We are most grateful to the authors for their contributions to this issue, as follows: Contents Gilbert, D. Scrubber’s Bulletin 10th (Anniversary) issue: Group Report …………………. 4 Green, S. Phytophthora austrocedrae: an emerging threat to juniper. ………………….. 5 Black, D. & Gilbert, D. Plantlife Scotland’s Flora Guardian provides valuable monitoring on Dwarf birch (Betula nana) at Ben Wyvis to SNH ……………. 8 Robinson, P. Cree Valley Community Woodlands Trust – Involvement in mountain woodlands and woodland fringe ………………………………………………. 11 Bodles, W. Mountain Woodland Project ……………………………………………………. 15 Borrell, J. Project Update: Ecological and Genomic research to optimize the conservation of Dwarf Birch in Scotland …………………………………………………….. 17 Marriott, R. Monitoring planted montane willows at Coire Sharroch, Coire Fee NNR, 2013 …………………………………………………………..
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Cultivation of Soils for Forestry
    Forestry Commission ARCHIVE Forestry Commission Bulletin 119 Cultivation of Soils for Forestry FORESTRY COMMISSION BULLETIN 119 Cultivation of Soils for Forestry D.B. Paterson and W. L. Mason Forest Research, Silviculture North Branch, Northern Research Station, Roslin, Midlothian EH25 9SY Forestry Commission, Edinburgh © Crown copyright 1999 Applications for reproduction should he made to HMSO, The Copyright Unit St Clements House, 2-16 Colegate, Norwich NR3 1BQ ISBN 0 85538 400 X Paterson, David B. and Mason, William L., 1999. Cultivation of Soils for Forestry. Bulletin 119. FDC 237:114:(410) KEYWORDS: Forestry, Cultivation, Soils Acknowledgements Special thanks are due to Chris Quine, Silviculturist at Northern Research Station, who made available his unpublished Cultivation Review and many background papers and references. We thank the project leaders, research foresters and workers, past and present in Silviculture (North), and the former Site Studies and Physiology Branches who initiated and managed the experiments reported here and gave permission for their results to be used. The statistical services of I.M.S. White are gratefully acknowledged. The reports of Technical Development Branch (formerly Work Study) on trials of cultivation machinery have been heavily used. Many authors outside the Forestry Commission have provided valuable information - with particular thanks to R. Schaible, M. Carey and E. Hendrick in Ireland and D.C. Malcolm of Edinburgh University. Numerous helpful comments have been made by Graham Pyatt, Richard Toleman, John Morgan, Duncan Ray, David Henderson- Howat and Brian Spencer. Karen Chambers edited and substantially improved the structure and presentation of an early draft. Finally, we are grateful to Madge Holmes for typing various drafts, Glenn Brearley for illustrations and John Parker for editorial and publishing services.
    [Show full text]
  • Geography: Example Erosion
    The Physical and Human Causes of Erosion The Holderness Coast By The British Geographer Situation The Holderness coast is located on the east coast of England and is part of the East Riding of Yorkshire; a lowland agricultural region of England that lies between the chalk hills of the Wolds and the North Sea. Figure 1 The Holderness Coast is one of Europe's fastest eroding coastlines. The average annual rate of erosion is around 2 metres per year but in some sections of the coast, rates of loss are as high as 10 metres per year. The reason for such high rates of coastal erosion can be attributed to both physical and human causes. Physical Causes The main reason for coastal erosion at Holderness is geological. The bedrock is made up of till. This material was deposited by glaciers around 12,000 years ago and is unconsolidated. It is made up of mixture of bulldozed clays and erratics, which are loose rocks of varying type. This boulder clay sits on layer of seaward sloping chalk. The geology and topography of the coastal plain and chalk hills can be seen in figure 2. Figure 2 The boulder clay with erratics can be seen in figure 3. As we can see in figures 2 and 3, the Holderness Coast is a lowland coastal plain deposited by glaciers. The boulder clay is experiencing more rapid rates of erosion compared to the chalk. An outcrop of chalk can be seen to the north and forms the headland, Flamborough Head. The section of coastline is a 60 kilometre stretch from Flamborough Head in the north to Spurn Point in the south.
    [Show full text]
  • Comparative Assessment of Response to Cadmium in Heavy Metal-Tolerant Shrubs Cultured in Vitro
    Water Air Soil Pollut (2017) 228: 304 DOI 10.1007/s11270-017-3488-0 Comparative Assessment of Response to Cadmium in Heavy Metal-Tolerant Shrubs Cultured In Vitro A. Wiszniewska & E. Hanus-Fajerska & E. Muszyńska & S. Smoleń Received: 18 April 2017 /Accepted: 12 July 2017 /Published online: 26 July 2017 # The Author(s) 2017. This article is an open access publication Abstract Two species of Pb-adapted shrubs, Alyssum higher biomass accretion. Both species accumulated Cd in montanum and Daphne jasminea, were evaluated developed organs, and its content increased with increas- in vitro for their tolerance to elevated concentrations of ing CdCl2 dose. Interestingly, D. jasminea accumulated cadmium. Shoot cultures were treated with 0.5, 2.5, and higher amounts of Cd in the roots than A. montanum and 5.0 μM CdCl2 for 16 weeks and analyzed for their immobilized this metal in the root system. On the contrary, organogenic response, biomass accretion, pigment con- A. montanum translocated some part of accumulated Cd tent, and macronutrient status. Cadmium accumulation to the shoots, but with low efficiency. In the presence of and its root-to-shoot translocation were also determined. Cd, A. montanum maintained macronutrient homeostasis In both species, rooted microplantlets, suitable for accli- and synthesized higher amounts of phytosynthetic pig- matization, were obtained in the presence of Cd applied as ments in the shoots. D. jasminea accumulated root bio- selection agent. In A. montanum, low and moderate dose mass, immobilized Cd, and restricted its translocation at of Cd stimulated multiplication, rooting, and biomass the expense of nutrient balance. Considering remediation production.
    [Show full text]
  • Alyssum) and the Correct Name of the Goldentuft Alyssum
    ARNOLDIA VE 1 A continuation of the BULLETIN OF POPULAR INFORMATION of the Arnold Arboretum, Harvard University VOLUME 26 JUNE 17, 1966 NUMBERS 6-7 ORNAMENTAL MADWORTS (ALYSSUM) AND THE CORRECT NAME OF THE GOLDENTUFT ALYSSUM of the standard horticultural reference works list the "Madworts" as MANYa group of annuals, biennials, perennials or subshrubs in the family Cru- ciferae, which with the exception of a few species, including the goldentuft mad- wort, are not widely cultivated. The purposes of this article are twofold. First, to inform interested gardeners, horticulturists and plantsmen that this exception, with a number of cultivars, does not belong to the genus Alyssum, but because of certain critical and technical characters, should be placed in the genus Aurinia of the same family. The second goal is to emphasize that many species of the "true" .~lyssum are notable ornamentals and merit greater popularity and cul- tivation. The genus Alyssum (now containing approximately one hundred and ninety species) was described by Linnaeus in 1753 and based on A. montanum, a wide- spread European species which is cultivated to a limited extent only. However, as medicinal and ornamental garden plants the genus was known in cultivation as early as 1650. The name Alyssum is of Greek derivation : a meaning not, and lyssa alluding to madness, rage or hydrophobia. Accordingly, the names Mad- wort and Alyssum both refer to the plant’s reputation as an officinal herb. An infu- sion concocted from the leaves and flowers was reputed to have been administered as a specific antidote against madness or the bite of a rabid dog.
    [Show full text]
  • Zoogeomorphology & Ecosystem Engineering
    Zoogeomorphology & Ecosystem Engineering The 42nd Annual Binghamton Geomorphology Symposium October 21 – 23, 2011 University of South Alabama, Mobile, Alabama National Science University of Texas State University- Foundation South Alabama San Marcos Zoogeomorphology and Ecosystem Engineering The 42nd Annual Binghamton Geomorphology Symposium University of South Alabama, Mobile, Alabama October 21 – 23, 2011 Conference Organizers: David R. Butler Department of Geography, Texas State University-San Marcos Carol F. Sawyer Department of Earth Sciences, University of South Alabama Conference Sponsors National Science Foundation, GEO/EAR, Geomorphology & Land-Use Dynamics Department of Earth Sciences, University of South Alabama College of Arts and Sciences, University of South Alabama Department of Geography, Texas State University-San Marcos Field Trip Assistance Dr. Mimi Fearn, Ms. Sherall Cornwell, Ms. Karen Jordan, Ms. Tela O’Rourke, and Mr. Donald Brinkman, Department of Earth Sciences, University of South Alabama We wish to thank the following people for their assistance in organizing this symposium: Catherine Drake and the Center for Continuing Education & Conference Services staff, Univ. South Alabama Department of Earth Sciences faculty, staff, and students, including Dr. Mimi Fearn, Dr. Jim Connors, Sherall Cornwell, Chris Reese, Donald Brinkman, Tela O’Rourke, and Reva Stienstraw-Hitchcock Dr. Phil Suckling, Chair, Department of Geography, Texas State University-San Marcos Dr. Jack Vitek, Texas A&M University Dr. Richard Marston,
    [Show full text]
  • Biomechanical and Biochemical Effects Recorded in the Tree Root Zone – Soil Memory, Historical Contingency and Soil Evolution Under Trees
    Plant Soil (2018) 426:109–134 https://doi.org/10.1007/s11104-018-3622-9 REGULAR ARTICLE Biomechanical and biochemical effects recorded in the tree root zone – soil memory, historical contingency and soil evolution under trees Łukasz Pawlik & Pavel Šamonil Received: 17 September 2017 /Accepted: 1 March 2018 /Published online: 15 March 2018 # The Author(s) 2018 Abstract increase in soil spatial complexity. We hypothesized that Background and aims The changing soils is a never- trees can be a strong local factor intensifying, blocking ending process moderated by numerous biotic and abi- or modifying pedogenetic processes, leading to local otic factors. Among these factors, trees may play a changes in soil complexity (convergence, divergence, critical role in forested landscapes by having a large or polygenesis). These changes are hypothetically con- imprint on soil texture and chemical properties. During trolled by regionally predominating soil formation their evolution, soils can follow convergent or divergent processes. development pathways, leading to a decrease or an Methods To test the main hypothesis, we described the pedomorphological features of soils under tree stumps of fir, beech and hemlock in three soil regions: Haplic Highlights Cambisols (Turbacz Reserve, Poland), Entic Podzols 1) The architecture of tree root systems controls soil physical and (Žofínský Prales Reserve, Czech Republic) and Albic chemical properties. Podzols (Upper Peninsula, Michigan, USA). Soil pro- 2) The predominating pedogenetic process significantly modifies files under the stumps, as well as control profiles on sites the effect of trees on soil. 3) Trees are a factor in polygenesis in Haplic Cambisols at the currently not occupied by trees, were analyzed in the pedon scale.
    [Show full text]
  • Characterization of Ecoregions of Idaho
    1 0 . C o l u m b i a P l a t e a u 1 3 . C e n t r a l B a s i n a n d R a n g e Ecoregion 10 is an arid grassland and sagebrush steppe that is surrounded by moister, predominantly forested, mountainous ecoregions. It is Ecoregion 13 is internally-drained and composed of north-trending, fault-block ranges and intervening, drier basins. It is vast and includes parts underlain by thick basalt. In the east, where precipitation is greater, deep loess soils have been extensively cultivated for wheat. of Nevada, Utah, California, and Idaho. In Idaho, sagebrush grassland, saltbush–greasewood, mountain brush, and woodland occur; forests are absent unlike in the cooler, wetter, more rugged Ecoregion 19. Grazing is widespread. Cropland is less common than in Ecoregions 12 and 80. Ecoregions of Idaho The unforested hills and plateaus of the Dissected Loess Uplands ecoregion are cut by the canyons of Ecoregion 10l and are disjunct. 10f Pure grasslands dominate lower elevations. Mountain brush grows on higher, moister sites. Grazing and farming have eliminated The arid Shadscale-Dominated Saline Basins ecoregion is nearly flat, internally-drained, and has light-colored alkaline soils that are Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and America into 15 ecological regions. Level II divides the continent into 52 regions Literature Cited: much of the original plant cover. Nevertheless, Ecoregion 10f is not as suited to farming as Ecoregions 10h and 10j because it has thinner soils.
    [Show full text]
  • Irrigation of Wi in Rapes
    42 NO VEMBER/DECEMBER 2001 WINEGR OWING ative. The same can be said of a plant's water potential. For example, when more water is Irrigation lost from a leaf via transpiration than moves into the leaf from the vascular tissue, its water potential will become more negative due to a relative increase in its solute concentration. of w i rapes This is important as water in plants and soils moves from regions where water potential is relatively high to regions where water potential is rela- tively low. Such differences in water in potential will result in movement of water from cell to cell within a plant or from regions within the soil profile that Cal Lorry E. WIIIIams y.t portion of the growing season in contain more moisture to those with Department of Viticulture Enology these areas and vineyard water use less. University of California-Qavis, and can be greater than the soil's water One way to measure the water Kearney Agricultural Center reservoir after the winter rainfall, potential of a plant organ in the field supplemental irrigation of vineyards (such as a leaf) is by using a pressure SYNOPSIS: How much irrigation water is may be required at some point dur- chamber. required to grow quality winegrapes ing summer months. The leaf's petiole is cut and the leaf depends upon site, the stage of vine quickly placed into the chamber with growth, row spacing, size of the vine's IRRIGATION MANAGEMENT the cut end of the petiole protruding canopy, and amount of rainfall occur- No matter where grapevines are out of the chamber.
    [Show full text]
  • Newtown Linford Village Design Statement 2008
    Newtown Linford Village Design Statement 2008 Newtown Linford Village Design Statement 2008 Contents Title Page Executive summary 2-6 The Purpose of this Village Design Statement 7 1. Introduction 8 The purpose and use of this document. Aims and objectives 2. The Village Context 9-10 Geographical and historical background The village today and its people Economics and future development 3. The Landscape Setting Visual character of the surrounding countryside 11-12 Relationship between the surrounding countryside and the village periphery Landscape features Buildings in the landscape 4. Settlement Pattern and character 13-15 Overall pattern of the village Character of the streets and roads through the village Character and pattern of open spaces 5. Buildings & Materials in the Village 16-26 1. The challenge of good design 2. Harmony, the street scene 3. Proportions 4. Materials 5. Craftsmanship 6. Boundaries 7. Local Businesses 8. Building guidelines 6. Highways and Traffic 27-29 Characteristics of the roads and Footpaths Street furniture, utilities and services 7. Wildlife and Biodiversity 30-32 8. Acknowledgments 33 9. Appendix 1 Map of Village Conservation Area 34 Listed Buildings in the Village 35 10. Appendix 2 Map of the SSSI & Local Wildlife Sites 36 Key to the SSSI & Local Wildlife Sites 37-38 “Newtown Linford is a charming place with thatched and timbered dwellings, an inviting inn and a much restored medieval church in a peaceful setting by the stream - nor is this all, for the village is the doorstep to Bradgate Park, one of Leicestershire’s loveliest pleasure grounds,... … … with the ruins of the home of the ill fated nine days queen Lady Jane Grey” Arthur Mee - “Leicestershire” - Hodder and Stoughton.
    [Show full text]