Hippoboscidae; Streblidae1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Giardiasis Importance Giardiasis, a Gastrointestinal Disease Characterized by Acute Or Chronic Diarrhea, Is Caused by Protozoan Parasites in the Genus Giardia
Giardiasis Importance Giardiasis, a gastrointestinal disease characterized by acute or chronic diarrhea, is caused by protozoan parasites in the genus Giardia. Giardia duodenalis is the major Giardia Enteritis, species found in mammals, and the only species known to cause illness in humans. This Lambliasis, organism is carried in the intestinal tract of many animals and people, with clinical signs Beaver Fever developing in some individuals, but many others remaining asymptomatic. In addition to diarrhea, the presence of G. duodenalis can result in malabsorption; some studies have implicated this organism in decreased growth in some infected children and Last Updated: December 2012 possibly decreased productivity in young livestock. Outbreaks are occasionally reported in people, as the result of mass exposure to contaminated water or food, or direct contact with infected individuals (e.g., in child care centers). People are considered to be the most important reservoir hosts for human giardiasis. The predominant genetic types of G. duodenalis usually differ in humans and domesticated animals (livestock and pets), and zoonotic transmission is currently thought to be of minor significance in causing human illness. Nevertheless, there is evidence that certain isolates may sometimes be shared, and some genetic types of G. duodenalis (assemblages A and B) should be considered potentially zoonotic. Etiology The protozoan genus Giardia (Family Giardiidae, order Giardiida) contains at least six species that infect animals and/or humans. In most mammals, giardiasis is caused by Giardia duodenalis, which is also called G. intestinalis. Both names are in current use, although the validity of the name G. intestinalis depends on the interpretation of the International Code of Zoological Nomenclature. -
Sari Et Al. 2012 J. Biogeography.Pdf
Journal of Biogeography (J. Biogeogr.) (2012) ORIGINAL Tracking the origins of lice, haemospo- ARTICLE ridian parasites and feather mites of the Galapagos flycatcher (Myiarchus magnirostris) Eloisa H. R. Sari1*, Hans Klompen2 and Patricia G. Parker1,3 1Department of Biology and Whitney R. ABSTRACT Harris World Ecology Center, University of Aim To discover the origins of the lice, haemosporidian parasites and feather Missouri-St. Louis, St Louis, MO, 63121, 2 mites found on or in Galapagos flycatchers (Myiarchus magnirostris), by testing USA, Department of Evolution, Ecology and Organismal Biology, The Ohio State whether they colonized the islands with the ancestors of M. magnirostris or if University, Columbus, OH, 43212, USA, they were acquired by M. magnirostris after its arrival in the Galapagos Islands. 3 Saint Louis Zoo WildCare Institute, St Louis, Location The Galapagos Islands (Ecuador) and north-western Costa Rica. MO, 63110, USA Methods We collected lice, feather mites and blood samples from M. magni- rostris on seven of the Galapagos Islands (n = 254), and from its continental sister species, M. tyrannulus, in Costa Rica (n = 74), and identified them to species level using traditional taxonomy and DNA sequencing. Results The blood parasites from the two bird species were different: Plasmo- dium was found only in M. tyrannulus, while a few individuals of M. magnirostris were infected by Haemoproteus multipigmentatus from Galapagos doves (Zenaida galapagoensis). Myiarchus tyrannulus was parasitized by three louse species, two of which (Ricinus marginatus and Menacanthus distinctus) were also found on Myiarchus magnirostris. We also collected one louse specimen from M. magnirostris, which was identified as Brueelia interposita, a species commonly found on finches and yellow warblers from the Galapagos, but never recorded on M. -
First Report of Rickettsia Raoultii and R. Slovaca in Melophagus Ovinus, The
Liu et al. Parasites & Vectors (2016) 9:600 DOI 10.1186/s13071-016-1885-7 SHORT REPORT Open Access First report of Rickettsia raoultii and R. slovaca in Melophagus ovinus, the sheep ked Dan Liu1†, Yuan-Zhi Wang2†, Huan Zhang1†, Zhi-Qiang Liu3†, Ha-zi Wureli1, Shi-Wei Wang4, Chang-Chun Tu5 and Chuang-Fu Chen1* Abstract Background: Melophagus ovinus (Diptera: Hippoboscidae), a hematophagous ectoparasite, is mainly found in Europe, Northwestern Africa, and Asia. This wingless fly infests sheep, rabbits, and red foxes, and causes inflammation, wool loss and skin damage. Furthermore, this parasite has been shown to transmit diseases, and plays a role as a vector. Herein, we investigated the presence of various Rickettsia species in M. ovinus. Methods: In this study, a total of 95 sheep keds were collected in Kuqa County and Alaer City southern region of Xinjiang Uygur Autonomous Region, northwestern China. First, collected sheep keds were identified on the species level using morphological keys and molecular methods based on a fragment of the 18S ribosomal DNA gene (18S rDNA). Thereafter, to assess the presence of rickettsial DNA in sheep keds, the DNA of individual samples was screened by PCR based on six Rickettsia-specific gene fragments originating from six genes: the 17-kilodalton antigen gene (17-kDa), 16S rRNA gene (rrs),surfacecellantigen4gene(sca4),citratesynthasegene(gltA), and outer membrane protein A and B genes (ompA and ompB). The amplified products were confirmed by sequencing and BLAST analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_ LOC=blasthome). Results: According to its morphology and results of molecular analysis, the species was identified as Melophagus ovinus,with100%identitytoM. -
Review Article Nematodes of Birds of Armenia
Annals of Parasitology 2020, 66(4), 447–455 Copyright© 2020 Polish Parasitological Society doi: 10.17420/ap6604.285 Review article Nematodes of birds of Armenia Sergey O. MOVSESYAN1,2, Egor A. VLASOV3, Manya A. NIKOGHOSIAN2, Rosa A. PETROSIAN2, Mamikon G. GHASABYAN2,4, Dmitry N. KUZNETSOV1,5 1Centre of Parasitology, A.N. Severtsov Institute of Ecology and Evolution RAS, Leninsky pr., 33, Moscow 119071, Russia 2Institute of Zoology, Scientific Center of Zoology and Hydroecology NAS RA, P. Sevak 7, Yerevan 0014, Armenia 3V.V. Alekhin Central-Chernozem State Nature Biosphere Reserve, Zapovednyi, Kursk district, Kursk region, 305528, Russia 4Armenian Society for the Protection of Birds (ASPB), G. Njdeh, 27/2, apt.10, Yerevan 0026, Armenia 5All-Russian Scientific Research Institute of Fundamental and Applied Parasitology of Animals and Plants - a branch of the Federal State Budget Scientific Institution “Federal Scientific Centre VIEV”, Bolshaya Cheremushkinskaya str., 28, Moscow 117218, Russia Corresponding Author: Dmitry N. KUZNETSOV; e-mail: [email protected] ABSTRACT. The review provides data on species composition of nematodes in 50 species of birds from Armenia (South of Lesser Caucasus). Most of the studied birds belong to Passeriformes and Charadriiformes orders. One of the studied species of birds (Larus armenicus) is an endemic. The taxonomy and host-specificity of nematodes reported in original papers are discussed with a regard to current knowledge about this point. In total, 52 nematode species parasitizing birds in Armenia are reported. Most of the reported species of nematodes are quite common in birds outside of Armenia. One species (Desmidocercella incognita from great cormorant) was first identified in Armenia. -
A Systematic Ornithological Study of the Northern Region of Iranian Plateau, Including Bird Names in Native Language
Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library European Journal of Experimental Biology, 2012, 2 (1):222-241 ISSN: 2248 –9215 CODEN (USA): EJEBAU A systematic ornithological study of the Northern region of Iranian Plateau, including bird names in native language Peyman Mikaili 1, (Romana) Iran Dolati 2,*, Mohammad Hossein Asghari 3, Jalal Shayegh 4 1Department of Pharmacology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran 2Islamic Azad University, Mahabad branch, Mahabad, Iran 3Islamic Azad University, Urmia branch, Urmia, Iran 4Department of Veterinary Medicine, Faculty of Agriculture and Veterinary, Shabestar branch, Islamic Azad University, Shabestar, Iran ________________________________________________________________________________________________________________________________________________ ABSTRACT A major potation of this study is devoted to presenting almost all main ornithological genera and species described in Gilanprovince, located in Northern Iran. The bird names have been listed and classified according to the scientific codes. An etymological study has been presented for scientific names, including genus and species. If it was possible we have provided the etymology of Persian and Gilaki native names of the birds. According to our best knowledge, there was no previous report gathering and describing the ornithological fauna of this part of the world. Gilan province, due to its meteorological circumstances and the richness of its animal life has harbored a wide range of animals. Therefore, the nomenclature system used by the natives for naming the animals, specially birds, has a prominent stance in this country. Many of these local and dialectal names of the birds have been entered into standard language of the country (Persian language). The study has presented majority of comprehensive list of the Gilaki bird names, categorized according to the ornithological classifications. -
Tinamiformes – Falconiformes
LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma -
Order DIPTERA. Family HIPPOBOSCIDAE
781 Genus Rhinolophopsylla. ! • ' . ~ • Rhin~lophopsylla. l . RhinolOphopsylla capensis ·Jordan and Rothschild. Rhinolophopsylla capensis Jord. and Rothsch, Ectoparasites, I, Pt. 3, .p. 148, f. 126-128 (1921). Described from a small series of oo and ~~ taken off Nycteris cape'f'Sis , (pape, long-eared ba,t) at . Mfongosi, Zululand. Order DIPTERA. Family HIPPOBOSCIDAE. , Th~ .flies 'incluq.ed in this family. are pa,rasitic on mammals and birds. TABLE OF SouTH Aii~ICAN GENERA (after Speiser). 1. Wings well developed and function:;tl. 2 Wings rudimentary or wanting ..... , .. :.. 8 2. Claws with the usual two points (heel and tip), ·parasitic on mammals.. 3 Claws with three teeth ; parasitic on birds,........ , : . .. 5 3. Head of normal form, not broadly impinging on the thorax, freely movable ; ocelli absent; wings always present ...... Hippobosca. Head :flat, broadly impinging on the thorax ; wings usually becoming · detached, especially in, the females, leaving only a shred. 4 ·1·. Ocelli absent . ........ ......... ................. ... Echestypus. Ocelli' presen£ .. : .........· ... ·........................... Lipoptena. 5. Ocelli present ; anal cell present ............ <· ........ Ornithomyia. Ocelli absent; anal cell absent........ 6 6. Wings of usual shape ; scutellum not truncate. 7 Wings lanceolate, rounded at tip; scutellum truncate ... ... Lynchia. 7. Distance of oral borders from frontal suture distinctly less than from the suture to the vertex ....... ........ .... .. ........ Olfersia. Distance from oral borders to suture -
The Haematophagous Arthropods (Animalia: Arthropoda) of the Cape Verde Islands: a Review
Zoologia Caboverdiana 4 (2): 31-42 Available at www.scvz.org © 2013 Sociedade Caboverdiana de Zoologia The haematophagous arthropods (Animalia: Arthropoda) of the Cape Verde Islands: a review Elves Heleno Duarte1 Keywords: Arthropods, arthropod-borne diseases, bloodsucking, hematophagy, Cape Verde Islands ABSTRACT Arthropoda is the most diverse phylum of the animal kingdom. The majority of bloodsucking arthropods of public health concern are found in two classes, Arachnida and Insecta. Mosquitoes, ticks, cattle flies, horseflies and biting midges are the main hematophagous groups occurring in the Cape Verde Islands and whose role in infectious disease transmission has been established. In this literature review, the main morphological and biological characters and their role in the cycle of disease transmission are summarized. RESUMO Os artrópodes constituem o mais diverso entre todos os filos do reino animal. É na classe Arachnida e na classe Insecta que encontramos a maioria dos artrópodes com importância na saúde pública. Os mosquitos, os carrapatos, as moscas do gado, os tabanídeos e os mosquitos pólvora são os principais grupos hematófagos que ocorrem em Cabo Verde e possuem clara associação com a transmissão de agentes infecciosos. Nesta revisão da literatura apresentamos os principais caracteres morfológicos e biologicos e o seu papel no ciclo de transmissão de doenças. 1 Direcção Nacional da Saúde, Ministério da Saúde, Avenida Cidade de Lisboa, C.P. 47, Praia, Republic of Cape Verde; [email protected] Duarte 32 Haematophagous arthropods INTRODUCTION With over a million described species, which ca. 500 are strongly associated with the Arthropoda is the most diverse and species rich transmission of infectious agents (Grimaldi & clade of the animal kingdom. -
Cucurbitaceae Enrichment for Our Parrots Study of the Presence Of
Parrots and climate change Cucurbitaceae enrichment for Study of the presence of our parrots pheomelanin in parakeet Page 4 Page 23 feathers VOL 32 Page 24 NO 8-11 CONTENTS 3 VoLume 32 / Number 8-11 Editorial 4 Parrots and climate change 6 MY BREEDING WITH THE AFRICAN DAMARALAND PARROT The Brown parrot, as they are called in Africa, are widely spread in six sub-species over a big part of Africa, from Southern Chad, Sudan and Ethiopia, to the more southern countries like Angola, Namibia, Botswana and Zimbabwe. 12 Survey confirms upward trend of the Blue- » p.6 throated Macaw in Bolivia Getting birds to reproduce in controlled spaces is a process that requires dedication, a lot of attention, resources and, above all, knowledge. Only in this way can good results be obtained. In the past, scientists had to resort to museum skins collections to obtain samples or to observe biological parameters in dissected animals. 14 Bleeding Heart Pigeons Gallicolumba is a mid-sized genus of ground-dwelling doves (family Columbidae) which occur in rainforests on the Philippines, Indonesia Islands and in the Pacific region. They are not closely related to the American ground doves (genus Columbina and related genera). Rather, the present genus is closest to the thick-billed ground pigeon. » p.22 22 Calabash for parrots 23 Cucurbitaceae enrichment for our parrots 24 Study of the presence of pheomelanin in par- akeet feathers The colors in a bird’s feathers are formed in two different ways: pigments and light refraction caused by the structure of the feather. -
Nomenclatural Studies Toward a World List of Diptera Genus-Group Names
Nomenclatural studies toward a world list of Diptera genus-group names. Part V Pierre-Justin-Marie Macquart Evenhuis, Neal L.; Pape, Thomas; Pont, Adrian C. DOI: 10.11646/zootaxa.4172.1.1 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Evenhuis, N. L., Pape, T., & Pont, A. C. (2016). Nomenclatural studies toward a world list of Diptera genus- group names. Part V: Pierre-Justin-Marie Macquart. Magnolia Press. Zootaxa Vol. 4172 No. 1 https://doi.org/10.11646/zootaxa.4172.1.1 Download date: 02. Oct. 2021 Zootaxa 4172 (1): 001–211 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4172.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:22128906-32FA-4A80-85D6-10F114E81A7B ZOOTAXA 4172 Nomenclatural Studies Toward a World List of Diptera Genus-Group Names. Part V: Pierre-Justin-Marie Macquart NEAL L. EVENHUIS1, THOMAS PAPE2 & ADRIAN C. PONT3 1 J. Linsley Gressitt Center for Entomological Research, Bishop Museum, 1525 Bernice Street, Honolulu, Hawaii 96817-2704, USA. E-mail: [email protected] 2 Natural History Museum of Denmark, Universitetsparken 15, 2100 Copenhagen, Denmark. E-mail: [email protected] 3Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by D. Whitmore: 15 Aug. 2016; published: 30 Sept. 2016 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 NEAL L. -
Diptera) Diversity in a Patch of Costa Rican Cloud Forest: Why Inventory Is a Vital Science
Zootaxa 4402 (1): 053–090 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4402.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:C2FAF702-664B-4E21-B4AE-404F85210A12 Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science ART BORKENT1, BRIAN V. BROWN2, PETER H. ADLER3, DALTON DE SOUZA AMORIM4, KEVIN BARBER5, DANIEL BICKEL6, STEPHANIE BOUCHER7, SCOTT E. BROOKS8, JOHN BURGER9, Z.L. BURINGTON10, RENATO S. CAPELLARI11, DANIEL N.R. COSTA12, JEFFREY M. CUMMING8, GREG CURLER13, CARL W. DICK14, J.H. EPLER15, ERIC FISHER16, STEPHEN D. GAIMARI17, JON GELHAUS18, DAVID A. GRIMALDI19, JOHN HASH20, MARTIN HAUSER17, HEIKKI HIPPA21, SERGIO IBÁÑEZ- BERNAL22, MATHIAS JASCHHOF23, ELENA P. KAMENEVA24, PETER H. KERR17, VALERY KORNEYEV24, CHESLAVO A. KORYTKOWSKI†, GIAR-ANN KUNG2, GUNNAR MIKALSEN KVIFTE25, OWEN LONSDALE26, STEPHEN A. MARSHALL27, WAYNE N. MATHIS28, VERNER MICHELSEN29, STEFAN NAGLIS30, ALLEN L. NORRBOM31, STEVEN PAIERO27, THOMAS PAPE32, ALESSANDRE PEREIRA- COLAVITE33, MARC POLLET34, SABRINA ROCHEFORT7, ALESSANDRA RUNG17, JUSTIN B. RUNYON35, JADE SAVAGE36, VERA C. SILVA37, BRADLEY J. SINCLAIR38, JEFFREY H. SKEVINGTON8, JOHN O. STIREMAN III10, JOHN SWANN39, PEKKA VILKAMAA40, TERRY WHEELER††, TERRY WHITWORTH41, MARIA WONG2, D. MONTY WOOD8, NORMAN WOODLEY42, TIFFANY YAU27, THOMAS J. ZAVORTINK43 & MANUEL A. ZUMBADO44 †—deceased. Formerly with the Universidad de Panama ††—deceased. Formerly at McGill University, Canada 1. Research Associate, Royal British Columbia Museum and the American Museum of Natural History, 691-8th Ave. SE, Salmon Arm, BC, V1E 2C2, Canada. Email: [email protected] 2. -
Folk Taxonomy, Nomenclature, Medicinal and Other Uses, Folklore, and Nature Conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3
Ulicsni et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:47 DOI 10.1186/s13002-016-0118-7 RESEARCH Open Access Folk knowledge of invertebrates in Central Europe - folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3 Abstract Background: There is scarce information about European folk knowledge of wild invertebrate fauna. We have documented such folk knowledge in three regions, in Romania, Slovakia and Croatia. We provide a list of folk taxa, and discuss folk biological classification and nomenclature, salient features, uses, related proverbs and sayings, and conservation. Methods: We collected data among Hungarian-speaking people practising small-scale, traditional agriculture. We studied “all” invertebrate species (species groups) potentially occurring in the vicinity of the settlements. We used photos, held semi-structured interviews, and conducted picture sorting. Results: We documented 208 invertebrate folk taxa. Many species were known which have, to our knowledge, no economic significance. 36 % of the species were known to at least half of the informants. Knowledge reliability was high, although informants were sometimes prone to exaggeration. 93 % of folk taxa had their own individual names, and 90 % of the taxa were embedded in the folk taxonomy. Twenty four species were of direct use to humans (4 medicinal, 5 consumed, 11 as bait, 2 as playthings). Completely new was the discovery that the honey stomachs of black-coloured carpenter bees (Xylocopa violacea, X. valga)were consumed. 30 taxa were associated with a proverb or used for weather forecasting, or predicting harvests. Conscious ideas about conserving invertebrates only occurred with a few taxa, but informants would generally refrain from harming firebugs (Pyrrhocoris apterus), field crickets (Gryllus campestris) and most butterflies.