Ectoparasites of Feral Horses [Equus Ferus Caballus (Linnaeus., 1758)] on Karadag˘ Mountain, Karaman, Turkey

Total Page:16

File Type:pdf, Size:1020Kb

Ectoparasites of Feral Horses [Equus Ferus Caballus (Linnaeus., 1758)] on Karadag˘ Mountain, Karaman, Turkey J Parasit Dis https://doi.org/10.1007/s12639-020-01234-4 ORIGINAL ARTICLE Ectoparasites of feral horses [Equus ferus caballus (Linnaeus., 1758)] on Karadag˘ Mountain, Karaman, Turkey 1 1 1 2 Bilal Dik • Onur Ceylan • Ceylan Ceylan • Mustafa Agah Tekindal • 3 2 1 Asma Semassel • Gonca So¨nmez • O¨ zlem Derinbay Ekici Received: 20 February 2020 / Accepted: 3 June 2020 Ó Indian Society for Parasitology 2020 Abstract Approximately 250 feral horses [Equus ferus Keywords Tick Á Louse Á Bovicola equi Á caballus (Linnaeus, 1758)] living on Karadag˘ Mountain Hippobosca equina Á Haemaphysalis parva near Karaman City were caught by Kazakh horse herdsmen with permission of the Turkish Ministry of Agriculture and Forestry and brought to a farm in Karkın village in Konya Introduction Province, 70 km from Karadag˘, in November, 2017. This study was carried out to determine the presence of Linnaeus described domestic horse as Equus caballus in ectoparasites infesting a subsample of 36 feral horses. The 1758. Equus caballus, which is known as Equus ferus, horses were visually inspected, and then their bodies were contains seven subspecies some of which are extinct checked by hand for ectoparasites. Thirty-five (97.2%) (Bennett and Hoffmann 1999). The origin of domestic were infested with at least one of five species of ectopar- horses (Equus caballus caballus and Equus ferus caballus) asites: Bovicola equi (Linnaeus, 1758), Hippobosca equina stems from potential wild ancestors known as the Prze- (Linnaeus, 1758), Haemaphysalis parva (Neuman, 1897), walski horse and the Tarpan horse. Even today, the Prze- Hyalomma excavatum (Koch, 18449), Dermacentor walski horse (Equus ferus przewalskii Poliakov, 1881) lives marginatus (Sulzer, 1776). Most of the horses were coin- free in Siberia and Mongolia. The Tarpan horse (Equus fested with two ectoparasite species. Prevalence of infes- ferus ferus Boddaert, 1785) is a subspecies of the Eurasian tation with H. equina was 80.6% and with B. equi 72.2%. wild horse that is now extinct. In Anatolia, feral horses (E. In addition, prevalence of Ha. parva was 25.0%, Hy. ferus caballus) living free in nature are called the Yılkı excavatum 13.9%, and D. marginatus was 5.6%. This is the horse (Aksoy 2016). first systematic examination for external parasites of feral Ectoparasites such as ticks, mange mites, lice, fleas, and horses in Turkey. Further studies are needed to determine some flies are found on domestic horses. They can cause ectoparasites of greater numbers of feral horses in different irritation, itching, hair loss, deterioration of the skin qual- localities. ity, and decreased performance, and they can transmit several viral, bacterial, and parasitic agents (Halos et al. 2004; Laus et al. 2013). Two louse species Haematopinus asini (Linnaeus, 1758) & Bilal Dik and Bovicola (Werneckiella) equi (Denny, 1842) (Durden [email protected] and Musser 1994; Price et al. 2003; Gawler et al. 2005; Gu¨leg˘en and C¸ ırak 2005; Larsen et al. 2005; Bermu´dez 1 Department of Parasitology, Veterinary Faculty, Selc¸uk University, 42250 Selc¸uklu, Konya, Turkey et al. 2006; Lowden et al. 2007; Moreno et al. 2011; Payne et al. 2017) typically infest horses worldwide. Both species 2 Department of Zootechnics and Husbandry, Veterinary Faculty, Selc¸uk University, 42250 Selc¸uklu, Konya, Turkey are obligatory and permanent ectoparasites of horses and spend their entire lives on the hosts. It was reported that B. 3 Department of Veterinary Parasitology, Graduate School of Health Sciences, Selc¸uk University, 42250 Selc¸uklu, Konya, equi was common on Dartmoor ponies than privately Turkey owned horses (Gawler et al. 2005). It was stated that B. 123 J Parasit Dis equi is rarely seen on horses in USA and Ontario in Canada Materials and methods (Wright 1999; Gawler et al. 2005), and has narrowed dis- tribution in Panama and Cameroon (Bermu´dez et al. 2006; Approximately 250 feral horses [E. f. caballus (Linnaeus, Payne et al. 2017). 1758)] living on Karadag˘ Mountain near Karaman City Hippoboscid flies feed on mammals and birds. Hippo- were caught by Kazakh horse herdsmen with permission of bosca equina (Linnaeus, 1758) lives on horses; however, it the Turkish Ministry of Agriculture and Forestry and may be found on cattle also (Hutson 1984). Adults of both brought to a farm in Karkın village in Konya Province, sexes are blood feeders. Their predilection sites are per- 70 km from Karadag˘, in November, 2017 (Fig. 1). We first ineal region and between the hind legs. Hippobosca equina visited the farm in late November, a few days after the cause disturbance on their hosts (Wall and Shearer 2001). horses were brought to the farm, and the second at the Ticks are significant vectors of the causative agents of beginning of December. On the first visit, 21 horses, and on piroplasmosis (theileriosis and babesiosis) in horses. There the second 15 horses were examined. When the horses are several studies reporting the tick infestations on horses were caught, their ear tags were checked. The horses in the Palearctic Region, including Turkey (Ros-Garcia caught the second time were released. During the study, 36 et al. 2013; Abedi et al. 2014; Shubber et al. 2014; Vial wild horses caught by the herdsmen were uniquely exam- et al. 2016; Tirosh-Levy et al. 2018). Haemaphysalis parva ined for ectoparasites. The horses were properly restrained Neumann, 1897; Hyalomma anatolicum Koch, 1844; and visually inspected for presence of ectoparasites. Head, Hyalomma excavatum Koch, 1844; Hyalomma marginatum mane, neck, shoulders, base of the tail, inguinal region and Koch, 1844; Hyalomma turanicum Pomerantsev, 1946; back of the horses were palpated by hand. We could not Rhipicephalus (Boophilus) annulatus (Say, 1821); Rhipi- examine the horses for mites. The ectoparasites collected cephalus bursa Canestrini and Fanzago, 1878; and Rhipi- from each horse were preserved separately in individually cephalus turanicus Pomerantsev, 1936 are known to infest labelled vials containing 70% ethanol, and brought to the Palearctic horses (Khosravi et al. 2012; Shubber et al. laboratory. All collected arthropods were examined using a 2014; Tirosh-Levy et al. 2018). Some researchers (Roth- stereozoom microscope (Nikon SMZ745T) and identified schild 2013; Scoles and Ueti 2015) reported that equine to family, genus and/or species, if possible. Ticks were piroplasms, which are the most significant infectious agents identified by using Estrada-Pen˜a et al. (2004) and Karaer of horses, can be transmitted by a great number of ticks et al. (1997). Lice were cleared in 10% potassium including Dermacentor marginatus, D. nuttalli, D. pictus, hydroxide at room temperature for 1 day, rinsed in distilled D. reticulatus, D. silvarum, Hyalomma anatolicum, Hy. water, dehydrated in 70% and then 99% ethanol for a few excavatum, Hy. dromedarii, Hy. lusitanicum, Hy. hours to 1 day, respectively, and mounted in Canada bal- marginatum, Hy. scupense, Hy. truncatum, Ixodes ricinus, sam on microscope slides. Slides were kept in a drying Rhipicephalus bursa, Rh. annulatus, Rh. sanguineus and oven at 50 °C for 3 weeks, and the specimens then iden- Rh. turanicus in this region. tified using a compound microscope. Nomenclature of the Equine ectoparasites are poorly studied in Turkey. lice follows Price et al. (2003) and Werneck (1936). Hip- Haematopinus asini, B. equi (Merdivenci 1965;I˙nci et al. poboscid flies were identified by using Maa (1963) and 2010) and H. equina (Merdivenci 1965) have been detected Hutson (1984). on domestic horses in Turkey. However, there are no data SPSS 25 (IBM Corp. Released 2017. IBM SPSS on the prevalence of these lice in feral horses, though B. Statistics for Windows, Version 25.0. Armonk, NY: IBM equi infested two of 15 examined domestic horses in Bursa Corp.) was used for data analysis. Prevalence (% infested), Province, Turkey (Gu¨leg˘en and C¸ ırak 2005). Although multi-response percentage and frequency values were used there are some data on species of ticks infesting domestic as variables. horses in Turkey, the prevalences of these ticks have not been studied (Karaer et al. 1997). Although all these studies were carried out on domestic Results horses, we could not find any published reports on ectoparasites infesting feral horses in Turkey. This study Thirty-five (97.2%) of the 36 horses examined were was performed to assess ectoparasite species on the feral infested with ectoparasites. Five species of ectoparasites horses brought to Konya from Karadag˘, Karaman, in were found: B. equi, Hippobosca equina, Ha. parva, Hy. Central Anatolia, Turkey. excavatum, Dermacentor marginatus were detected (Table 1). Prevalence of Hippobosca equina was 80.6%, and this rate was detected 72.2% for B. equi, 25.0% for Ha. 123 J Parasit Dis Fig. 1 Locality where feral horses were captured, and study area where ectoparasites were collected Table 1 Summary of the ectoparasites found on 36 examined feral horses in Turkey Ectoparasite species Number of infested hosts Female Male Nymph Total number of parasites Hippobosca equina 29 41 52 – 93 Bovicola equi 26 52 0 103 155 Haemaphysalis parva 93110041 Hyalomma. excavatum 53407 Dermacentor marginatus 21102 Total – 128 67 103 298 parva, 13.9% for Hy. excavatum, and 5.6% for D. Discussion marginatus. Infestation status of horses with species of ectoparasites We found only one publication related to parasites of the is shown in Table 2. Mean intensity of all ectoparasites per feral horses in Turkey. In that study, faecal samples from infested horse was 8.5 (range 1–27). Mean intensity was feral horses were collected near the water reservoir on 6.0 (range 1–20) for B. equi, 4.6 (range 1–11) for Ha. Karadag˘ Mountain and examined for helminth eggs parva, 3.2 (range 1–10) for H. equina, 1.4 for (range 1–2), (Karaman Il C¸ evre ve Orman Mu¨du¨rlu¨gu¨ 2010).
Recommended publications
  • Order DIPTERA. Family HIPPOBOSCIDAE
    781 Genus Rhinolophopsylla. ! • ' . ~ • Rhin~lophopsylla. l . RhinolOphopsylla capensis ·Jordan and Rothschild. Rhinolophopsylla capensis Jord. and Rothsch, Ectoparasites, I, Pt. 3, .p. 148, f. 126-128 (1921). Described from a small series of oo and ~~ taken off Nycteris cape'f'Sis , (pape, long-eared ba,t) at . Mfongosi, Zululand. Order DIPTERA. Family HIPPOBOSCIDAE. , Th~ .flies 'incluq.ed in this family. are pa,rasitic on mammals and birds. TABLE OF SouTH Aii~ICAN GENERA (after Speiser). 1. Wings well developed and function:;tl. 2 Wings rudimentary or wanting ..... , .. :.. 8 2. Claws with the usual two points (heel and tip), ·parasitic on mammals.. 3 Claws with three teeth ; parasitic on birds,........ , : . .. 5 3. Head of normal form, not broadly impinging on the thorax, freely movable ; ocelli absent; wings always present ...... Hippobosca. Head :flat, broadly impinging on the thorax ; wings usually becoming · detached, especially in, the females, leaving only a shred. 4 ·1·. Ocelli absent . ........ ......... ................. ... Echestypus. Ocelli' presen£ .. : .........· ... ·........................... Lipoptena. 5. Ocelli present ; anal cell present ............ <· ........ Ornithomyia. Ocelli absent; anal cell absent........ 6 6. Wings of usual shape ; scutellum not truncate. 7 Wings lanceolate, rounded at tip; scutellum truncate ... ... Lynchia. 7. Distance of oral borders from frontal suture distinctly less than from the suture to the vertex ....... ........ .... .. ........ Olfersia. Distance from oral borders to suture
    [Show full text]
  • Folk Taxonomy, Nomenclature, Medicinal and Other Uses, Folklore, and Nature Conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3
    Ulicsni et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:47 DOI 10.1186/s13002-016-0118-7 RESEARCH Open Access Folk knowledge of invertebrates in Central Europe - folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3 Abstract Background: There is scarce information about European folk knowledge of wild invertebrate fauna. We have documented such folk knowledge in three regions, in Romania, Slovakia and Croatia. We provide a list of folk taxa, and discuss folk biological classification and nomenclature, salient features, uses, related proverbs and sayings, and conservation. Methods: We collected data among Hungarian-speaking people practising small-scale, traditional agriculture. We studied “all” invertebrate species (species groups) potentially occurring in the vicinity of the settlements. We used photos, held semi-structured interviews, and conducted picture sorting. Results: We documented 208 invertebrate folk taxa. Many species were known which have, to our knowledge, no economic significance. 36 % of the species were known to at least half of the informants. Knowledge reliability was high, although informants were sometimes prone to exaggeration. 93 % of folk taxa had their own individual names, and 90 % of the taxa were embedded in the folk taxonomy. Twenty four species were of direct use to humans (4 medicinal, 5 consumed, 11 as bait, 2 as playthings). Completely new was the discovery that the honey stomachs of black-coloured carpenter bees (Xylocopa violacea, X. valga)were consumed. 30 taxa were associated with a proverb or used for weather forecasting, or predicting harvests. Conscious ideas about conserving invertebrates only occurred with a few taxa, but informants would generally refrain from harming firebugs (Pyrrhocoris apterus), field crickets (Gryllus campestris) and most butterflies.
    [Show full text]
  • Contribution to the Knowledge of Louse Flies of Croatia (Diptera: Hippoboscidae)
    NAT. CROAT. VOL. 14 No 2 131¿140 ZAGREB June 30, 2005 original scientific paper / izvorni znanstveni rad CONTRIBUTION TO THE KNOWLEDGE OF LOUSE FLIES OF CROATIA (DIPTERA: HIPPOBOSCIDAE) TOMI TRILAR1 &STJEPAN KR~MAR2 1Slovenian Museum of Natural History, Pre{ernova 20, P.O. Box 290, SI-1001 Ljubljana, Slovenia ([email protected]) 2Department of Biology, Faculty of Philosophy, J. J. Strossmayer University, L. Jägera 9, HR-31000 Osijek, Croatia ([email protected]) Trilar, T. & Kr~mar, S.: Contribution to the knowledge of louse flies of Croatia (Diptera: Hippoboscidae), Nat. Croat., Vol. 14, No. 2., 131–140, 2005, Zagreb. Faunistic research into louse flies (Hippoboscidae) in Croatia during the last two decades has increased the total number of louse flies known from this country to 11 species, of which Ornithoica turdi, Ornithophila metallica, Ornithomya avicularia, Ornithomya biloba, Ornithomya chloropus, Orni- thomya fringillina, Crataerina melbae, Stenepteryx hirundinis and Icosta minor are new to Croatia. Key words: louse flies, Hippoboscidae, faunistics, Croatia Trilar, T. & Kr~mar, S.: Prilog poznavanju faune u{ara Hrvatske (Diptera: Hippoboscidae), Nat. Croat., Vol. 14, No. 2., 131–140, 2005, Zagreb. Faunisti~ka istra`ivanja u{ara (Hippoboscidae) tijekom posljednjih dvadeset godina u Hrvatskoj rezultirala su utvr|ivanjem 11 vrsta, od kojih su drozdova u{ara (Ornithoica turdi), sjajna u{ara (Ornithophila metallica), velika pti~ja u{ara (Ornithomya avicularia), lastavi~ja u{ara (Ornithomya bilo- ba), tamna pti~ja u{ara (Ornithomya chloropus), mala pti~ja u{ara (Ornithomya fringillina), velika ~iopina u{ara (Crataerina melbae), piljkova u{ara (Stenepteryx hirundinis) i mala ~apljina u{ara (Icosta minor) nove u fauni Hrvatske.
    [Show full text]
  • Diptera: Streblidae; Nycteribiidae)1
    Pacific Insects Monograph 28: 119-211 20 June 1971 AN ANNOTATED BIBLIOGRAPHY OF BATFLIES (Diptera: Streblidae; Nycteribiidae)1 By T. C. Maa2 Abstract. This bibliography lists, up to the end of 1970, about 800 references relating to the batflies or Streblidae and Nycteribiidae. Annotations are given regarding the contents, dates of publication and other information of the references listed. A subject index is appended. The following bibliography is the result of an attempt to catalogue and partly digest all the literature (published up to the end of 1970) relating to the Systematics and other aspects of the 2 small dipterous families of batflies, i.e., Streblidae and Nycter­ ibiidae. The bibliography includes a list of about 800 references, with annotations, and a subject index. Soon after the start of the compilation of literature in 1960, it was found that many odd but often important records were scattered in books and other publica­ tions on travels, expeditions, speleology, mammalogy, parasitology, etc. A number of such publications are not available even in the largest entomological libraries and might well have been inadvertently overlooked. While some 50 additional references are provisionally omitted because of the lack of sufficient information, new con­ tributions on the subject are almost continuously coming out from various sources. This bibliography does not, therefore, pretend to be complete and exhaustive. The time and effort devoted toward the compilation would be worthwhile should this bibliography be of interest to its readers and the annotations and subject index be of benefit. The manuscript has been revised several times and it is hoped that not too many errors, omissions and other discrepancies have developed during the course of preparation.
    [Show full text]
  • Hippobosca Longipennis, the Dog Fly, Is a Blood-Sucking Parasite Found Mainly Longipennis on Carnivores
    Hippobosca Importance Hippobosca longipennis, the dog fly, is a blood-sucking parasite found mainly longipennis on carnivores. Its bites can be painful and irritating, although not all animals appear to be bothered. Heavy parasite burdens can occur on some animals: in one case, 180 Dog Fly, specimens were found on a single captive cheetah. Extensive blood loss might be Louse Fly, possible. H. longipennis is an intermediate host for Dipetalonema dracunculoides, a filarial parasite of dogs and hyenas. It may also be a vector or transport host for Blind-fly other pathogens. Species Affected Carnivores are the preferred hosts, as well as the only effective breeding hosts. H. Last Updated: September 2009 longipennis has been found on a wide variety of carnivores including cheetahs, lions, leopards, lynx, servals, African wild cats (Felis silvestris libyca), African civets (Civettictis civetta), hyenas, dholes (Canis adjustus), jackals, African wild dogs (Lycaeon pictus), foxes, badgers, mongooses and domesticated dogs and cats. There have been occasional reports of infestations on other species including roe deer (Capreolus capreolus), antelopes, livestock, humans and a bird; it is uncertain whether all of these parasites were correctly identified. Geographic Distribution H. longipennis seems to be adapted best to warmer areas, and its distribution seems to be limited by low temperatures and high humidity. This fly appears to have originated in Africa, where it is widespread in all but the more humid western and central regions. It can also be found in suitable habitats in much of the European and Asian Palearctic Region south of about 45º north latitude. H. longipennis is occasionally reported from countries on the fringes of this range (e.g., Ireland, Germany, Poland, Taiwan and Japan).
    [Show full text]
  • A Synopsis of Diptera Pupipara of Japan
    Pacific Insects 9 (4): 727-760 20 November 1967 A SYNOPSIS OF DIPTERA PUPIPARA OF JAPAN By T. C. Maa2 Abstract. Diptera Pupipara previously recorded from Japan are briefly reviewed. Ap­ parently 7 or 8 of them have been wrongly or doubtfully included in the list for that country. Insofar as this group of flies is concerned, the Japanese fauna is about as rich as and bears strong similarity to that of entire Europe. Nycteribia oitaensis Miyake 1919 is here reduced to synonym of Penicillidia jenynsii Wwd. 1834, whereas Ornithomya aobatonis Matsum., degraded as a subspecies of O. avicularia Linn. New forms described are O. chloropus extensa, O. candida, Nycteribia allotopa mikado and Brachytarsina kanoi. Illustrated keys and a host-parasite index are provided. Records of a few species from Korea and Ryukyu Is. are incorporated. Thirteen nominal species of Diptera Pupipara have been described as new from Japan and her former territories by Matsumura (1905), Miyake (1919) and Kishida (1932). Their types have never been critically re-examined by any recent workers, their published de­ scriptions are brief and inadequate and these flies are rare in most Japanese collections. The interpretation of such species is therefore extremely difficult. The following notes are presented with the hope of raising the interests of local collectors and they serve as a continuation of my earlier papers (1962, 1963) to straighten out the synonymy. They are partly based upon available material and partly a guesswork of published descriptions. The entire list contains 34 species (Hippoboscidae, 21; Nycteribiidae, 10; Streblidae, 3). Eight of them (each prefixed by an asterisk in keys and list) are considered to have re­ sulted from either incorrect or doubtful records.
    [Show full text]
  • Exposure of Humans to Attacks by Deer Keds and Consequences of Their Bites—A Case Report with Environmental Background
    insects Case Report Exposure of Humans to Attacks by Deer Keds and Consequences of Their Bites—A Case Report with Environmental Background Weronika Ma´slanko 1,* , Katarzyna Bartosik 2 , Magdalena Raszewska-Famielec 3,4, Ewelina Szwaj 5 and Marek Asman 6 1 Department of Animal Ethology and Wildlife Management, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland 2 Chair and Department of Biology and Parasitology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11 St., 20-080 Lublin, Poland; [email protected] 3 Department of Cosmetology, Faculty of Physical Education and Health, University of Physical Education, Akademicka 2 St., 21-500 Biała Podlaska, Poland; [email protected] 4 NZOZ Med-Laser Dermatology Clinic, Mły´nska14A St., 20-406 Lublin, Poland 5 Ignacy Jan Paderewski Primary School Number 43 in Lublin, Sliwi´nskiego5´ St., 20-861 Lublin, Poland; [email protected] 6 Department of Parasitology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedno´sci8 St., 41-200 Sosnowiec, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-814456831 Received: 5 November 2020; Accepted: 1 December 2020; Published: 3 December 2020 Simple Summary: Lipoptena species, also named the deer ked or deer fly, are commonly encountered in temperate areas of Europe, northern China, and North America. Although wild animals seem to be the preferred hosts of these parasitic arthropods, it is increasingly being noted that humans are also directly threatened by their bites. Skin lesions evolving after Lipoptena bites are painful and often lead to the development of inflammation of the skin.
    [Show full text]
  • Stablefly Bibliography
    United States Department of Agriculture A Century and a Half of Agricultural Research Research on the Stable Service ARS-173 Fly, Stomoxys calcitrans July 2012 (L.) (Diptera: Muscidae), 1862-2011: An Annotated Bibliography United States Department of A Century and a Half of Agriculture Agricultural Research on the Stable Fly, Research Service Stomoxys calcitrans (L.) ARS-173 (Diptera: Muscidae), 1862-2011: July 2012 An Annotated Bibliography K.M. Kneeland, S.R. Skoda, J.A. Hogsette, A.Y. Li, J. Molina-Ochoa, K.H. Lohmeyer, and J.E. Foster _____________________________ Kneeland, Molina-Ochoa, and Foster are with the Department of Entomology, University of Nebraska, Lincoln, NE. Molina-Ochoa also is the Head of Research and Development, Nutrilite SRL de CV, El Petacal, Jalisco, Mexico. Skoda is with the Knipling-Bushland U.S. Livestock Insects Research Laboratory (KBUSLIRL), Screwworm Research Unit, USDA Agricultural Research Service, Kerrville, TX. Hogsette is with the Center for Medical, Agricultural and Veterinary Entomology, USDA Agricultural Research Service, Gainesville, FL. Li and Lohmeyer are with KBUSLIRL, Tick and Biting Fly Research Unit, USDA Agricultural Research Service, Kerrville, TX. Abstract • sustain a competitive agricultural economy; • enhance the natural resource base and the Kneeland, K.M., S.R. Skoda, J.A. Hogsette, environment; and A.Y. Li, J. Molina-Ochoa, K.H. Lohmeyer, • provide economic opportunities for rural and J.E. Foster. 2012. A Century and a Half of citizens, communities, and society as a Research on the Stable Fly, Stomoxys whole. calcitrans (L.) (Diptera: Muscidae), 1862- 2011: An Annotated Bibliography. ARS-173. Mention of trade names or commercial U.S.
    [Show full text]
  • Transmission of 'Candidatus Anaplasma Camelii'
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.02.438174; this version posted April 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Transmission of ‘Candidatus Anaplasma camelii’ to laboratory 2 animals by camel-specific keds, Hippobosca camelina 3 Joel L. Bargul1,2,*, Kevin O. Kidambasi1,2, Merid N. Getahun1, Jandouwe 4 Villinger1, Robert S. Copeland1, Jackson M. Muema1,2, Mark Carrington3, 5 Daniel K. Masiga1 6 1International Centre of Insect Physiology and Ecology, Nairobi, Kenya 7 2Department of Biochemistry, Jomo Kenyatta University of Agriculture and 8 Technology, Nairobi, Kenya 9 3Department of Biochemistry, University of Cambridge, Tennis Court Road, 10 Cambridge CB2 1QW, UK 11 *Corresponding author: [email protected] 12 Abstract 13 Anaplasmosis, caused by infection with bacteria of the genus Anaplasma is 14 an important veterinary and zoonotic disease. The characterization of 15 transmission has concentrated on ticks and little is known about non-tick 16 vectors of livestock anaplasmosis. This study investigated the presence of 17 Anaplasma spp. in camels in northern Kenya and whether the 18 hematophagous camel ked, Hippobosca camelina, acts as a vector. Camels 19 (n = 976) and > 10,000 keds were sampled over a three-year study period 20 and the presence of Anaplasma species was determined by PCR-based 21 assays targeting the Anaplasmataceae 16S rRNA gene. Camels were 22 infected by ‘Candidatus Anaplasma camelii’ occurring from 63 - 78% during 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.02.438174; this version posted April 2, 2021.
    [Show full text]
  • Parasitic Diseases of Equids in Iran (1931–2020): a Literature Review
    Sazmand et al. Parasites Vectors (2020) 13:586 https://doi.org/10.1186/s13071-020-04472-w Parasites & Vectors REVIEW Open Access Parasitic diseases of equids in Iran (1931– 2020): a literature review Alireza Sazmand1* , Aliasghar Bahari2 , Sareh Papi1 and Domenico Otranto1,3 Abstract Parasitic infections can cause many respiratory, digestive and other diseases and contribute to some performance conditions in equids. However, knowledge on the biodiversity of parasites of equids in Iran is still limited. The present review covers all the information about parasitic diseases of horses, donkeys, mules and wild asses in Iran published as articles in Iranian and international journals, dissertations and congress papers from 1931 to July 2020. Parasites so far described in Iranian equids include species of 9 genera of the Protozoa (Trypanosoma, Giardia, Eimeria, Klossiella, Cryptosporidium, Toxoplasma, Neospora, Theileria and Babesia), 50 helminth species from the digestive system (i.e., 2 trematodes, 3 cestodes and 37 nematodes) and from other organs (i.e., Schistosoma turkestanica, Echinococcus granulosus, Dictyocaulus arnfeldi, Paraflaria multipapillosa, Setaria equina and 3 Onchocerca spp.). Furthermore, 16 species of hard ticks, 3 mite species causing mange, 2 lice species, and larvae of 4 Gastrophilus species and Hippobosca equina have been reported from equids in Iran. Archeoparasitological fndings in coprolites of equids include Fasciola hepatica, Oxyuris equi, Anoplocephala spp. and intestinal strongyles. Parasitic diseases are important issues in terms of animal welfare, economics and public health; however, parasites and parasitic diseases of equines have not received adequate attention compared with ruminants and camels in Iran. The present review highlights the knowledge gaps related to equines about the presence, species, genotypes and subtypes of Neospora hughesi, Sarcocystis spp., Trichinella spp., Cryptosporidium spp., Giardia duodenalis, Blastocystis and microsporidia.
    [Show full text]
  • Hippobosca Longipennis
    Rani et al. Parasites & Vectors 2011, 4:143 http://www.parasitesandvectors.com/content/4/1/143 RESEARCH Open Access Hippobosca longipennis - a potential intermediate host of a species of Acanthocheilonema in dogs in northern India Puteri Azaziah Megat Abd Rani1,3*, Glen T Coleman1, Peter J Irwin2 and Rebecca J Traub1 Abstract Background: Hippobosca longipennis (the ‘dog louse fly’) is a blood sucking ectoparasite found on wild carnivores such as cheetahs and lions and domesticated and feral dogs in Africa, the Middle East and Asia, including China. Known as an intermediate host for Acanthocheilonema dracunculoides and a transport host for Cheyletiella yasguri,it has also been suggested that H. longipennis may be a vector for other pathogens, including Acanthocheilonema sp.? nov., which was recently reported to infect up to 48% of dogs in northern India where this species of fly is known to commonly infest dogs. To test this hypothesis, hippoboscid flies feeding on dogs in Ladakh in northern India were collected and subjected to microscopic dissection. Results: A total of 12 infective larvae were found in 10 out of 65 flies dissected; 9 from the head, 2 from the thorax and 1 from the abdomen. The larvae averaged 2, 900 (± 60) μm in length and 34 (± 5) μm in width and possessed morphological features characteristic of the family Onchocercidae. Genetic analysis and comparison of the 18S, ITS-2, 12S and cox-1 genes confirmed the identity of the larvae as the Acanthocheilonema sp.? nov. reported in dogs in Ladakh. Conclusion: This study provides evidence for a potential intermediate host-parasite relationship between H.
    [Show full text]
  • First Report of the Dog Louse Fly Hippobosca Longipennis in Romania
    Medical and Veterinary Entomology (2019) 33, 530–535 doi: 10.1111/mve.12395 First report of the dog louse fly Hippobosca longipennis in Romania A. D. MIHALCA1,I.R.PASTRAV˘ 1, A. D. SÁNDOR1,G.DEAK1, C. M. GHERMAN1, A. SARMA¸SI 1 andJ. VOTÝPKA2,3 1Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania, 2Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic and 3Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceskéˇ Budejovice,ˇ Czech Republic Abstract. Hippobosca longipennis (Diptera: Hippoboscidae), the dog fly or dog louse fly, is an obligate blood-feeding ectoparasite of wild and domestic carnivores inAfrica and the Middle East. Outside its typically known geographic range, H. longipennis has been reported occasionally on mainly domestic dogs in Asia and southern Europe, and infrequently in other areas (central Europe and the U.S.A.). This paper presents the first report of H. longipennis in Romania and the second record of Lipoptena fortisetosa (Diptera: Hippoboscidae), a potentially invasive species. Hippobosca longipennis was found on domestic dogs in two regions of the country (northern Romania in Maramures and southwestern Romania in Dobrogea) and on two road-killed wildcats in Maramures. Lipoptena fortisetosa was found on domestic dogs in Maramures. In both species identification was based on morphology and confirmed by barcoding of the cytochrome c oxidase subunit 1 gene. It is not clear for how long H. longipennis has been present in central Europe, nor if it was introduced (via the movement of domestic dogs or import of exotic carnivores) or present historically (Holocene remnants).
    [Show full text]