Potential PGPR Properties of Cellulolytic, Nitrogen-Fixing

Total Page:16

File Type:pdf, Size:1020Kb

Potential PGPR Properties of Cellulolytic, Nitrogen-Fixing bioRxiv preprint doi: https://doi.org/10.1101/351916; this version posted June 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Potential PGPR properties of cellulolytic, nitrogen- 2 fixing, and phosphate-solubilizing bacteria of a 3 rehabilitated tropical forest soil 4 Amelia Tang1¶*, Ahmed Osumanu Haruna123¶, Nik Muhamad Ab. Majid3¶ 5 1 Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Campus, 6 Sarawak, Malaysia 7 2 Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra 8 Malaysia, Serdang, Selangor, Malaysia 9 3 Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra 10 Malaysia, Selangor, Malaysia 11 12 *Corresponding author 13 E-mail: [email protected] (AT) 14 ¶ These authors contributed equally to this work. 15 16 17 18 19 1 bioRxiv preprint doi: https://doi.org/10.1101/351916; this version posted June 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 20 Abstract 21 In the midst of major soil degradation and erosion faced by tropical ecosystems, 22 rehabilitated forests are established to avoid further deterioration of forest land. In this context, 23 cellulolytic, nitrogen-fixing (N-fixing), and phosphate-solubilizing bacteria are very important 24 functional groups in regulating the elemental cycle and plant nutrition, hence replenishing the 25 nutrient content in forest soil. As other potential plant growth-promoting (PGP) rhizobacteria, 26 these functional bacteria could have cross-functional abilities or beneficial traits that are 27 essential for plants and improve their growths. This study was conducted to isolate, identify, and 28 characterize selected PGP properties of these 3 functional groups of bacteria from tropical 29 rehabilitated forest soils at Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. 30 Isolated cellulolytic, N-fixing and phosphate-solubilizing bacteria were characterized for 31 respective functional activities, biochemical properties, molecularly identified, and assessed for 32 PGP assays based on seed germination and indole-3-acetic acid (IAA) production. Out of 15 33 identified bacterial isolates exhibiting beneficial phenotypic traits, a third belong to genus 34 Burkholderia and a fifth to Stenotrophomonas sp. with both genera consisting of members from 35 two different functional groups. Among the tested bacterial strains, isolate Serratia 36 nematodiphila C46d, Burkholderia nodosa NB1, and Burkholderia cepacia PC8 showed 37 outstanding cellulase, N-fixing, and phosphate-solubilizing activities, respectively. The results 38 of the experiments confirmed the multiple PGP traits of selected bacterial isolates based on 39 respective high functional activities, root, shoot lengths, and seedling vigour improvements 40 when bacterized on mung bean seeds, as well as presented some significant IAA productions. 41 The results of this study indicated that these functional bacterial strains could potentially be 42 included in future biotechnological screenings to produce beneficial synergistic effects via their 43 versatile properties on improving soil fertility and possible crop growth stimulation. 44 Keywords: rehabilitated tropical forest soil; cellulolytic bacteria; N-fixing bacteria; phosphate- 45 solubilizing bacteria; PGP traits 2 bioRxiv preprint doi: https://doi.org/10.1101/351916; this version posted June 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 46 Introduction 47 Albeit vast in carbon and biodiversity, tropical ecosystems are facing major 48 deforestations, leading to widespread soil erosion which garnered much recent attention 49 [1-3]. As soil erosion aggravates, the soil loss overrides soil establishment, which 50 results in diminishing soil resources and the ecosystem supports they render [4-5], in 51 particularly manifested as low productivity and farming sustainability on the degraded 52 soils [6]. Planted forest or rehabilitation efforts are undertaken to avoid further 53 deterioration of forest land. 54 Bacteria has large biodiversity composition in soils, and thus, is major 55 participant of soil principal processes that regulate whole terrestrial ecosystems 56 operations, by means of completing nutrient, and geochemical cycles, including C,N,S, 57 and P [7-9]. In plant litter mass, 20-30% portion are constituted as cellulose, making the 58 latter as most abundant biopolymer [10]. Decomposition of cellulose has been 59 established to be primarily accountable by soil microorganisms, which assimilate the 60 simple sugars resulting from the reduction process of the complex polysaccharides [11- 61 12]. Despite the general ruling capabilities of fungi over bacteria in cellulose 62 decomposition in soils [13-14], these capabilities are also reserved to some, albeit 63 phylogenetically different taxa of bacteria [11]. Previous reports have emphasized 64 bacterial taxa which were recently discovered to possess cellulolytic capabilities, in 65 which they were formerly not known to reduce cellulose [15-16]. To this end, the study 66 of cellulolytic bacterial diversity in tropical soils is warranted. 67 Nitrogen needs by plant are supported by means of organic compound 68 degradation, atmospheric deposition of N, and biological nitrogen-fixation (BNF), 69 whereby BNF supplies 97% of natural N reserve [17] via Bacteria and Archaea [18-19]. 70 The N allocation in tropical ecosystems contributed by N-fixing microorganisms 3 bioRxiv preprint doi: https://doi.org/10.1101/351916; this version posted June 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 71 (diazotrophs), prevailing mostly in free-living condition, could range from 12.2 to 36.1 72 kg ha-1 year-1 [20]. Considering the importance of free-living diazotrophic communities 73 to ecosystem processes, there is a need to broaden our knowledge on their diversity in 74 rehabilitated tropical forests. This is essential because there is dearth of information of 75 this kind. 76 In most tropical soils which are usually very acidic, P is one of the most 77 commonly deficient macronutrients, owing to the prevalence of typically high Al and/or 78 Fe level, in which P is fixed as insoluble mineral complexes, causing unavailability of P 79 for root uptake [21]. Apart from chemical treatments, microorganisms have also been 80 applied over the years to improve nutrient availability, especially P in soils, as well as 81 alleviating Al toxicity [22]. Furthermore, tropical acid soils support only limited acid- 82 tolerant plant species and microbes. In soils, phosphate-solubilizers are predominated 83 by bacteria over fungi at 1-50% and 0.1-0.5%, of total population, respectively [23]. 84 Bacterial strains consisting of Pseudomonas, Bacillus, and Rhizobium have been cited to 85 be the dominant phosphate-solubilizers [24]. In addition, Burkholderia strains and 86 species which occur in broadly different natural niches have been frequently reported as 87 plant-associated bacteria, albeit their prevalence as free-living in the rhizosphere, as 88 well as epiphytic or endophytic, obligate endosymbionts, or phytopathogens [25]. The 89 phosphate-solubilizing bacteria could release substantial amount of organic acids crucial 90 for fixing Al via a chelation process, thus reducing Al toxicity to plant roots in the 91 highly weathered soils [26]. 92 As other potential PGPR, these functional bacteria could have cross-functional 93 abilities or beneficial traits, apart from their primary functional ability such as the 94 production of PGP phytohormones, polysaccharides, and organic acids that are essential 95 for plant growth and development [22]. In addition, IAA which is known to stimulate 4 bioRxiv preprint doi: https://doi.org/10.1101/351916; this version posted June 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 96 shoot elongation and/or in particularly root structures by those IAA produced by the 97 bacteria [27], could result in more efficient elemental nutrient acquisition by host plants, 98 leading to higher plant growth and development. To be specific, adoption of functional 99 bacterial strains with multiple functional and PGP traits in crop production would not 100 only promote sustainably increased crop productivity, the practice also offers an option 101 for minimizing costs related to chemical fertilizers application, while at the same time 102 reducing the pollution risks from rampant application of chemical fertilizers. 103 However, the isolation and characterization of these particular three types of 104 potential functional bacteria from tropical soils of rehabilitated forest remain
Recommended publications
  • Chemical Structures of Some Examples of Earlier Characterized Antibiotic and Anticancer Specialized
    Supplementary figure S1: Chemical structures of some examples of earlier characterized antibiotic and anticancer specialized metabolites: (A) salinilactam, (B) lactocillin, (C) streptochlorin, (D) abyssomicin C and (E) salinosporamide K. Figure S2. Heat map representing hierarchical classification of the SMGCs detected in all the metagenomes in the dataset. Table S1: The sampling locations of each of the sites in the dataset. Sample Sample Bio-project Site depth accession accession Samples Latitude Longitude Site description (m) number in SRA number in SRA AT0050m01B1-4C1 SRS598124 PRJNA193416 Atlantis II water column 50, 200, Water column AT0200m01C1-4D1 SRS598125 21°36'19.0" 38°12'09.0 700 and above the brine N "E (ATII 50, ATII 200, 1500 pool water layers AT0700m01C1-3D1 SRS598128 ATII 700, ATII 1500) AT1500m01B1-3C1 SRS598129 ATBRUCL SRS1029632 PRJNA193416 Atlantis II brine 21°36'19.0" 38°12'09.0 1996– Brine pool water ATBRLCL1-3 SRS1029579 (ATII UCL, ATII INF, N "E 2025 layers ATII LCL) ATBRINP SRS481323 PRJNA219363 ATIID-1a SRS1120041 PRJNA299097 ATIID-1b SRS1120130 ATIID-2 SRS1120133 2168 + Sea sediments Atlantis II - sediments 21°36'19.0" 38°12'09.0 ~3.5 core underlying ATII ATIID-3 SRS1120134 (ATII SDM) N "E length brine pool ATIID-4 SRS1120135 ATIID-5 SRS1120142 ATIID-6 SRS1120143 Discovery Deep brine DDBRINP SRS481325 PRJNA219363 21°17'11.0" 38°17'14.0 2026– Brine pool water N "E 2042 layers (DD INF, DD BR) DDBRINE DD-1 SRS1120158 PRJNA299097 DD-2 SRS1120203 DD-3 SRS1120205 Discovery Deep 2180 + Sea sediments sediments 21°17'11.0"
    [Show full text]
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • Response of Azotobacter , Pseudomonas and Trichoderma on Growth of Apple Seedling
    2012 International Conference on Biological and Life Sciences IPCBEE vol.40 (2012) © (2012) IACSIT Press, Singapore Response of Azotobacter , Pseudomonas and Trichoderma on Growth of Apple Seedling + Jayant Raman Department of Botany and Microbiology, Gurukul Kangri Vishwavidyalaya, Hardwar-249404, Uttarakhand Abstract. The investigation on the efficacy of biofertilizers (Azotobacter chroococcum, Pseudomonas striata and Trichoderma viride) considering different aspects of seedling growth under apple nursery conditions enabled to reach the positive conclusions. Azotobacter chroococcum and Trichoderma viride increased the maximum germination per cent of seeds while the maximum survival of seedlings was observed on inoculation with Azotobacter chroococcum and Trichoderma viride. Azotobacter chroococcum and Pseudomonas striata was found beneficial in promoting the growth of seedling by increasing the growth rate of length and diameter of seedlings. Trichoderma viride also helped against the pests and diseases at the same time provided sufficient moisture in dry spell. The highest growth rate of length and diameter of seedling was observed on inoculation with Azotobacter chroococcum + Pseudomonas striata + Trichoderma viride. The maximum initiation and increase rate in production of number of leaves was observed on inoculation with Azotobacter chroococcum and Pseudomonas striata. This treatment also produced large sized leaves. The highest content of N,P,K, Zn and Cu in leaves was analyzed on inoculation with Azotobacter chroococcum + Pseudomonas striata + Trichoderma viride. The highest reduction of the pests attack was observed on inoculation with Pseudomonas striata and Trichoderma viride, while the infestation was least in seedling due to antifungal fungistatic organic compounds and toxins on inoculation with Azotobacter chroococcum + Pseudomonas striata + Trichoderma viride. The good growth of root in seedlings was observed on inoculation with Azotobacter chroococcum + Pseudomonas striata + Trichoderma viride.
    [Show full text]
  • Identification of Genes Responsible for Ochratoxin-A Biodegradation By
    Szent István University PhD School of Environmental Sciences Identification of genes responsible for ochratoxin-A biodegradation by Cupriavidus basilensis ŐR16 and valuation of Cupriavidus genus for mycotoxins biodegradation potential Thesis of Doctoral Dissertation (PhD) Mohammed Talib Jasim AL-Nussairawi Gödöllő, Hungary 2020 I. DECLARATION I declare that this thesis is a record of original work and contains no material that has been accepted for the award of any other degree or diploma in any university. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text. Name: Ph.D. School of Environmental Sciences Discipline: Environmental Sciences / Biotechnology Leader of Doctoral School: Csákiné Dr. Erika Michéli, Ph.D. professor, head of department Department of Soil science and Agrochemistry Faculty of Agricultural and Environmental Sciences Institute of Environmental Sciences Szent István University Supervisor: Matyas Cserhati, Ph.D. associate professor Department of Environmental Protection and Ecotoxicology Faculty of Agricultural and Environmental Sciences Institute of Aquaculture and Environmental Protection Szent István University ........................................................... ................................................... Approval of School Leader Approval of Supervisor 2 Table of Contents I. DECLARATION ...................................................................................................................
    [Show full text]
  • Diversity and Characterization of Azotobacter Isolates Obtained from Rice Rhizosphere Soils in Taiwan
    Ann Microbiol (2018) 68:17–26 https://doi.org/10.1007/s13213-017-1312-0 ORIGINAL ARTICLE Diversity and characterization of Azotobacter isolates obtained from rice rhizosphere soils in Taiwan Syuan-Lu Chen 1 & Meng-Ke Tsai1 & Yuh-Ming Huang1 & Cheng-Hua Huang1 Received: 4 March 2017 /Accepted: 7 November 2017 /Published online: 15 December 2017 # Springer-Verlag GmbH Germany, part of Springer Nature and the University of Milan 2017 Abstract Azotobacter species, free-living nitrogen-fixing A. chroococcum CHB 869 may be used to develop bacteria, have been used as biofertilizers to improve the pro- biofertilizers for rice cultivation because they significantly ductivity of non-leguminous crops, including rice, due to their promoted rice growth. This study contributes to the selection various plant growth-promoting traits. The purposes of this of suitable Azotobacter strains for developing biofertilizer for- study were to characterize Azotobacter species isolated from mulations and soil management strategies of Azotobacter for rice rhizospheres in Taiwan and to determine the relationship paddy fields. between the species diversity of Azotobacter and soil proper- ties. A total of 98 Azotobacter isolates were isolated from 27 Keywords Nitrogen-fixing bacteria . Rice . Diazotropic paddy fields, and 16S rRNA gene sequences were used to bacteria . Nitrogenase . Diversity identify Azotobacter species. The characteristics of these Azotobacter strains were analyzed including carbon source utilization and plant growth-promoting traits such as nitrogen Introduction fixation activity, indole acetic acid production, phosphate- solubilizing ability, and siderophore secretion. Of the 98 Rice is one of the main food crops in the world, being con- strains isolated in this study, 12 were selected to evaluate their sumed by about 50% of world and 85% of Asian populations effects on rice growth.
    [Show full text]
  • Diversity of Free-Living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 2016 Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/etd Part of the Bacteriology Commons, and the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Dahal, Bibha, "Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota" (2016). Theses and Dissertations. 688. http://openprairie.sdstate.edu/etd/688 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. DIVERSITY OF FREE-LIVING NITROGEN FIXING BACTERIA IN THE BADLANDS OF SOUTH DAKOTA BY BIBHA DAHAL A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Biological Sciences Specialization in Microbiology South Dakota State University 2016 iii ACKNOWLEDGEMENTS “Always aim for the moon, even if you miss, you’ll land among the stars”.- W. Clement Stone I would like to express my profuse gratitude and heartfelt appreciation to my advisor Dr. Volker Brӧzel for providing me a rewarding place to foster my career as a scientist. I am thankful for his implicit encouragement, guidance, and support throughout my research. This research would not be successful without his guidance and inspiration.
    [Show full text]
  • Plasmid Transformation of Azotobacter Vinelandii OP by JAMES L
    Journal of General Microbiology (1987), 133, 2059-2072. Printed in Great Britain 2059 Plasmid Transformation of Azotobacter vinelandii OP By JAMES L. DORAN, WADE H. BINGLE, KENNETH L. ROY, KOJI HIRATSUKA AND WILLIAM J. PAGE* Department of Microbiology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 (Received 19 December 1986; revised 19 March 1987) Azotobacter vinelandii OP which had been naturally induced to competence by growth in iron- and molybdenum-limited medium was transformed with the broad-host-range cloning vector pKT210. However, the transformation frequency at nearly saturating levels of DNA was 1000- fold lower for pKT210 than for a single chromosomal DNA marker (nif+). Plasmid- and chromosomal-DN A-mediated transformation events were competitive, magnesium-dependent, 42 "C-sensitive processes specific to double-stranded DNA, suggesting a common mechanism of DNA binding and uptake. The low frequency of plasmid transformation was not related to restriction of transforming DNA or to the growth period allowed for phenotypic expression. Covalently-closed-circular and open-circular forms of pKT2 10 transformed cells equally well whereas EcoRI- or HindIII-linearized pKT210 transformed cells with two to three times greater efficiency. Genetic transformation was enhanced 10- to 50-fold when pKT210 contained an insert fragment of A. vinelandii nif DNA, indicating that A. vinelandii possessed a homology- facilitated transformation system. However, all transformants failed to maintain the plasmid- encoded antibiotic resistance determinants, and extrachromosomal plasmid DNA was not recovered from these cells. Flush-ended pKT210 was not active in transformation; however, competent cells were transformed to Nif+ by HincII-digested plasmid DNA containing the cloned A.
    [Show full text]
  • Mapping the Diversity of Microbial Lignin Catabolism: Experiences from the Elignin Database
    Applied Microbiology and Biotechnology (2019) 103:3979–4002 https://doi.org/10.1007/s00253-019-09692-4 MINI-REVIEW Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database Daniel P. Brink1 & Krithika Ravi2 & Gunnar Lidén2 & Marie F Gorwa-Grauslund1 Received: 22 December 2018 /Revised: 6 February 2019 /Accepted: 9 February 2019 /Published online: 8 April 2019 # The Author(s) 2019 Abstract Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database (www.elignindatabase.com), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings. Keywords Lignin . Database . Aromatic metabolism . Catabolic pathways
    [Show full text]
  • Cupriavidus Cauae Sp. Nov., Isolated from Blood of an Immunocompromised Patient
    TAXONOMIC DESCRIPTION Kweon et al., Int. J. Syst. Evol. Microbiol. 2021;71:004759 DOI 10.1099/ijsem.0.004759 Cupriavidus cauae sp. nov., isolated from blood of an immunocompromised patient Oh Joo Kweon1†, Wenting Ruan2†, Shehzad Abid Khan2, Yong Kwan Lim1, Hye Ryoun Kim1, Che Ok Jeon2,* and Mi- Kyung Lee1,* Abstract A novel Gram- stain- negative, facultative aerobic and rod- shaped bacterium, designated as MKL-01T and isolated from the blood of immunocompromised patient, was genotypically and phenotypically characterized. The colonies were found to be creamy yellow and convex. Phylogenetic analysis based on 16S rRNA gene and whole-genome sequences revealed that strain MKL-01T was most closely related to Cupriavidus gilardii LMG 5886T, present within a large cluster in the genus Cupriavidus. The genome sequence of strain MKL-01T showed the highest average nucleotide identity value of 92.1 % and digital DNA–DNA hybridization value of 44.8 % with the closely related species C. gilardii LMG 5886T. The genome size of the isolate was 5 750 268 bp, with a G+C content of 67.87 mol%. The strain could grow at 10–45 °C (optimum, 37–40 °C), in the presence of 0–10 % (w/v) NaCl (optimum, 0.5%) and at pH 6.0–10.0 (optimum, pH 7.0). Strain MKL-01T was positive for catalase and negative for oxidase. The major fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c and/or C16 : 1 ω6c/C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c).
    [Show full text]
  • Choice of Carbon Source for 1 Microcosm Enrichment
    bioRxiv preprint doi: https://doi.org/10.1101/517854; this version posted January 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Capturing the Diversity of Subsurface Microbiota – Choice of Carbon Source for 2 Microcosm Enrichment and Isolation of Groundwater Bacteria 3 4 Xiaoqin Wu1, Sarah Spencer2, Eric J. Alm2, Jana Voriskova1, Romy Chakraborty1* 5 6 7 1Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley 8 National Laboratory, Berkeley, California 94720, USA 9 2 Department of Biological Engineering, Massachusetts Institute of Technology, 10 Cambridge, Massachusetts 02139, USA 11 12 13 14 15 16 17 *Corresponding author: 18 Romy Chakraborty 19 Address: 70A-3317F, 1 Cyclotron Rd., Berkeley, CA 94720 20 Tel: (510) 486-4091 21 Email: [email protected] 22 1 bioRxiv preprint doi: https://doi.org/10.1101/517854; this version posted January 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 23 Abstract 24 Improved and innovative enrichment/isolation techniques that yield to relevant 25 isolates representing the true diversity of environmental microbial communities would 26 significantly advance exploring the physiology of ecologically important taxa in 27 ecosystems. Traditionally, either simple organic carbon (C) or yeast extract is used as C 28 source in culture medium for microbial enrichment/isolation in laboratory. In natural 29 environment, however, microbial population and evolution are greatly influenced by the 30 property and composition of natural organic C.
    [Show full text]
  • Optimising Carbon and Nitrogen Sources for Azotobacter Chroococcum Growth
    African Journal of Biotechnology Vol. 10(15), pp. 2951-2958, 11 April, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB10.1484 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Optimising carbon and nitrogen sources for Azotobacter chroococcum growth Ivonne Gutiérrez-Rojas 1, Ana Beatriz Torres-Geraldo 1 and Nubia Moreno-Sarmiento 2* 1Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología. Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ). Bogotá, D.C., Colombia. 2Instituto de Biotecnología y Depto. Ingeniería Química y Ambiental - Facultad de Ingeniería. Ciudad Universitaria, Edificio Manuel Ancizar, Universidad Nacional de Colombia, Bogotá, D.C., Colombia. Accepted 18 February, 2011 The present work deals with selecting and optimization of carbon and nitrogen sources for producing biomass from Azotobacter chroococcum . Four carbon sources (glucose, sucrose, manitol and sodium benzoate) and four nitrogen sources (yeast extract, meat extract, NH 4Cl and (NH 4)2SO 4) were evaluated 2 during the first stage by using a 4 x3 factorial design; greater bacterial growth was obtained from sucrose and yeast extract sources (without detriment to nitrogen-fixing activity). A second factorial 2 design (3 x3 ) was used for optimising the selected sources according to response surface analysis for the optimum concentrations predicted for sucrose and yeast extract (13.06 and 3.70 gL -1 respectively). Biomass productivity obtained (0.1117 gL -1h-1) with the optimised carbon and nitrogen sources was 1.5 times higher than that obtained with the starting culture medium. Key words: Azotobacter chroococcum , medium optimization, carbon source, nitrogen source.
    [Show full text]
  • Molybdate Metabolism Op Azotobacter
    MOLYBDATE METABOLISM OP AZOTOBACTER DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By RICHARD FAIRBANKS KEELER, B. S., M. S. The Ohio State University 1957 Approved by: Adviser Department of Agricultural Biochemistry ACKNOWLEDGMENTS The author wishes to express his appreciation to his adviser, Dr, <J. E. Varner, to Dr. G. C. Webster, and to the other members of the Department of Agricultural Biochemistry for their help and guidance during the course of his graduate program. Thanks go to L. B. Carr for the micrographs shown herein, and to Dr. H. J. Hausman and Paul Weiler for the preparation of the N*^. Financial support for this investigation was very generously provided by the Research Corporation. i± TABLE OF CONTENTS Page INTROHJCTION 1 REVIEW OF IRE LITERATURE 4 EXPERIMENTAL METHODS 16 RESULTS AND DISCUSSION 23 SUMMARY 61 CONCLUSIONS AND OUTLOOK 65 BIBLIOGRAPHY 106 AUTOBIOGRAPHY 111 iii LIST OP ILLUSTRATIONS Figure Page 1. Serial (NH4 )qS04 Fractionation of the Proteins of the Azotobacter vinelandil 25,000 Times Gravity Supernatant Fraction " 68 2. Paper Electrophoresis of Radioactive Tungsto- and Molybdoproteins from Partially Purified Homogenates of Azotobacter vinelandii Grown on N2 69 3. Serial (NH4 )gS04 Fractionation of the Molybdo­ proteins of the Azotobacter chroococcum 25,000 Times Gravity Supernatant Fraction 70 4. 1,500 Times Magnified Azotobacter vinelandii Preparations Photographed under tight Microscopy 71 5* 15,000 Times Magnified Electron Micrograph of the Membrane Preparation of Azotobacter vinelandii. 72 iv LIST OF TABLES Table Page 99 1. Uptake and Distribution of Mo in Centri­ fugal Fractions of Azotobacter vinelandii 73 2* Uptake and Distribution of M o " in Centri­ fugal Fractions of Azotobacter vinelandii 74 QQ 3.
    [Show full text]