Rock Garden Ferns by Tom Stuart My Initial Fascination with Ferns Came from the Challenge of Identifying Them
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Native Herbaceous Perennials and Ferns for Shade Gardens
Green Spring Gardens 4603 Green Spring Rd ● Alexandria ● VA 22312 Phone: 703-642-5173 ● TTY: 703-803-3354 www.fairfaxcounty.gov/parks/greenspring NATIVE HERBACEOUS PERENNIALS AND FERNS FOR � SHADE GARDENS IN THE WASHINGTON, D.C. AREA � Native plants are species that existed in Virginia before Jamestown, Virginia was founded in 1607. They are uniquely adapted to local conditions. Native plants provide food and shelter for a myriad of birds, butterflies, and other wildlife. Best of all, gardeners can feel the satisfaction of preserving a part of our natural heritage while enjoying the beauty of native plants in the garden. Hardy herbaceous perennials form little or no woody tissue and live for several years. Some of these plants are short-lived and may live only three years, such as wild columbine, while others can live for decades. They are a group of plants that gardeners are very passionate about because of their lovely foliage and flowers, as well as their wide variety of textures, forms, and heights. Most of these plants are deciduous and die back to the ground in the winter. Ferns, in contrast, have no flowers but grace our gardens with their beautiful foliage. Herbaceous perennials and ferns are a joy to garden with because they are easily moved to create new design combinations and provide an ever-changing scene in the garden. They are appropriate for a wide range of shade gardens, from more formal gardens to naturalistic woodland gardens. The following are useful definitions: Cultivar (cv.) – a cultivated variety designated by single quotes, such as ‘Autumn Bride’. -
Woodsia Obtusa
COSEWIC Assessment and Update Status Report on the blunt-lobed woodsia Woodsia obtusa in Canada THREATENED 2007 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2006. COSEWIC assessment and update status report on the blunt-lobed woodsia Woodsia obtusa in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 17 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report: COSEWIC 2000. COSEWIC assessment and status report on the blunt-lobed woodsia Woodsia obtusa in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-20 pp. Consaul, L.L. 1994. COSEWIC status report on the blunt-lobed woodsia Woodsia obtusa in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-20 pp. Production note: COSEWIC would like to acknowledge Matthew Wild for writing the status report on the blunt-lobed woodsia Woodsia obtusa in Canada, prepared under contract with Environment Canada, overseen and edited by Dr. Erich Haber, Co-chair, COSEWIC Plants and Lichens Species Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la woodsie à lobes arrondis (Woodsia obtusa) au Canada – Mise à jour. -
Central Appalachian Forest Planning Team Considered Information from the Nature Conservancy’S Population Viability Assessment Workshop (Morris Et Al
Central Appalachian Forest Ecoregional Plan February 2001 The Nature Conservancy EXECUTIVE SUMMARY Central Appalachian Forest Ecoregional Plan The Nature Conservancy The Nature Conservancy’s Central Appalachian Forest ecoregion encompasses the Blue Ridge Mountains, the Great Valley, the Ridge and Valley, and the Allegheny Mountains of Virginia, West Virginia, Maryland, and Pennsylvania. Valleys are mostly settled with farms and, more recently, urban and suburban development, but the vast majority of the hills and mountains of this ecoregion are forested. Lying so close to the major East Coast metropolitan areas of Philadelphia, Baltimore, and Washington, DC, the region represents a tremendous natural resource for both the local people and these urbanites. The high mountains, the lack of past glacial coverage, and the environmental diversity of this ecoregion have combined to make this area one of the most ecologically diverse regions of the eastern United States. This ecoregional plan has identified plants, animals, natural communities, and ecological systems that represent the most urgent conservation priorities for The Nature Conservancy and its partners. Using an exceptional Natural Heritage database and sound science, this plan recommends protection of 467 sites. Within this set of sites, The Nature Conservancy has selected 122 sites for immediate conservation action. The approximate area covered by the portfolio is 3,011,000 acres. Of this area, 2,530,000 acres occurs within large, roadless forest areas. Therefore, smaller sites cover an additional 481,000 acres. The Federal government manages approximately 46% of roadless forest area acreage and various state governments an additional 18%. The majority of the remaining area of roadless forest areas is privately owned. -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Spores of Serpocaulon (Polypodiaceae): Morphometric and Phylogenetic Analyses
Grana, 2016 http://dx.doi.org/10.1080/00173134.2016.1184307 Spores of Serpocaulon (Polypodiaceae): morphometric and phylogenetic analyses VALENTINA RAMÍREZ-VALENCIA1,2 & DAVID SANÍN 3 1Smithsonian Tropical Research Institute, Center of Tropical Paleocology and Arqueology, Grupo de Investigación en Agroecosistemas y Conservación de Bosques Amazonicos-GAIA, Ancón Panamá, Republic of Panama, 2Laboratorio de Palinología y Paleoecología Tropical, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia, 3Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia Caquetá, Colombia Abstract The morphometry and sculpture pattern of Serpocaulon spores was studied in a phylogenetic context. The species studied were those used in a published phylogenetic analysis based on chloroplast DNA regions. Four additional Polypodiaceae species were examined for comparative purposes. We used scanning electron microscopy to image 580 specimens of spores from 29 species of the 48 recognised taxa. Four discrete and ten continuous characters were scored for each species and optimised on to the previously published molecular tree. Canonical correspondence analysis (CCA) showed that verrucae width/verrucae length and verrucae width/spore length index and outline were the most important morphological characters. The first two axes explain, respectively, 56.3% and 20.5% of the total variance. Regular depressed and irregular prominent verrucae were present in derived species. However, the morphology does not support any molecular clades. According to our analyses, the evolutionary pathway of the ornamentation of the spores is represented by depressed irregularly verrucae to folded perispore to depressed regular verrucae to irregularly prominent verrucae. Keywords: character evolution, ferns, eupolypods I, canonical correspondence analysis useful in phylogenetic analyses of several other Serpocaulon is a fern genus restricted to the tropics groups of ferns (Wagner 1974; Pryer et al. -
Species Relationships and Farina Evolution in the Cheilanthoid Fern
Systematic Botany (2011), 36(3): pp. 554–564 © Copyright 2011 by the American Society of Plant Taxonomists DOI 10.1600/036364411X583547 Species Relationships and Farina Evolution in the Cheilanthoid Fern Genus Argyrochosma (Pteridaceae) Erin M. Sigel , 1 , 3 Michael D. Windham , 1 Layne Huiet , 1 George Yatskievych , 2 and Kathleen M. Pryer 1 1 Department of Biology, Duke University, Durham, North Carolina 27708 U. S. A. 2 Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166 U. S. A. 3 Author for correspondence ( [email protected] ) Communicating Editor: Lynn Bohs Abstract— Convergent evolution driven by adaptation to arid habitats has made it difficult to identify monophyletic taxa in the cheilanthoid ferns. Dependence on distinctive, but potentially homoplastic characters, to define major clades has resulted in a taxonomic conundrum: all of the largest cheilanthoid genera have been shown to be polyphyletic. Here we reconstruct the first comprehensive phylogeny of the strictly New World cheilanthoid genus Argyrochosma . We use our reconstruction to examine the evolution of farina (powdery leaf deposits), which has played a prominent role in the circumscription of cheilanthoid genera. Our data indicate that Argyrochosma comprises two major monophyletic groups: one exclusively non-farinose and the other primarily farinose. Within the latter group, there has been at least one evolutionary reversal (loss) of farina and the development of major chemical variants that characterize specific clades. Our phylogenetic hypothesis, in combination with spore data and chromosome counts, also provides a critical context for addressing the prevalence of polyploidy and apomixis within the genus. Evidence from these datasets provides testable hypotheses regarding reticulate evolution and suggests the presence of several previ- ously undetected taxa of Argyrochosma. -
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE ERICACEAE (Heath Family) A family of about 107 genera and 3400 species, primarily shrubs, small trees, and subshrubs, nearly cosmopolitan. The Ericaceae is very important in our area, with a great diversity of genera and species, many of them rather narrowly endemic. Our area is one of the north temperate centers of diversity for the Ericaceae. Along with Quercus and Pinus, various members of this family are dominant in much of our landscape. References: Kron et al. (2002); Wood (1961); Judd & Kron (1993); Kron & Chase (1993); Luteyn et al. (1996)=L; Dorr & Barrie (1993); Cullings & Hileman (1997). Main Key, for use with flowering or fruiting material 1 Plant an herb, subshrub, or sprawling shrub, not clonal by underground rhizomes (except Gaultheria procumbens and Epigaea repens), rarely more than 3 dm tall; plants mycotrophic or hemi-mycotrophic (except Epigaea, Gaultheria, and Arctostaphylos). 2 Plants without chlorophyll (fully mycotrophic); stems fleshy; leaves represented by bract-like scales, white or variously colored, but not green; pollen grains single; [subfamily Monotropoideae; section Monotropeae]. 3 Petals united; fruit nodding, a berry; flower and fruit several per stem . Monotropsis 3 Petals separate; fruit erect, a capsule; flower and fruit 1-several per stem. 4 Flowers few to many, racemose; stem pubescent, at least in the inflorescence; plant yellow, orange, or red when fresh, aging or drying dark brown ...............................................Hypopitys 4 Flower solitary; stem glabrous; plant white (rarely pink) when fresh, aging or drying black . Monotropa 2 Plants with chlorophyll (hemi-mycotrophic or autotrophic); stems woody; leaves present and well-developed, green; pollen grains in tetrads (single in Orthilia). -
"How To" Tips on Hedge and Tree Maintenance
How To Tips Landscaping Suggestions for Shady Yards Part of what makes Greenbelt so special is its abundant trees. However our wealth of tree cover can also present some challenges in yard landscaping. If your yard has partial to full shade this information sheet will provide some of the landscaping options for a beautiful GHI yard. Grass options for shady yards If your yard has at least partial sun during the summer months you can probably maintain a healthy grass layer by following these tips. Choose the right seed type. Mixes with Red Fescue and Perennial Rye tend to do better in shady yards. Make sure to read the label on any seed mix you buy to make sure what type of seed you are buying. Fertilize and aerate your yard in the spring. Don’t mow too short. Let the grass grow to 3-3.5 inches in shady areas. Short cutting will overstress the plants. See “How to Tips Establishing a Great Lawn” for more details. Leaving the turf behind If your yard is full shade during the summer, growing grass is probably not an option. Consider yourself lucky. This means you don’t need to worry about mowing. But you do need to cover bare spots to prevent erosion. Don’t worry there are options for heavily shaded yards that are both beautiful and manageable. Ground Moss Ground moss plants are a low-growing, no-maintenance grass alternative. Some mosses, massed together, give a smooth appearance, including rock cap mosses (Dicranum), fern mosses (Thuidium) and the aptly named "cushion" mosses (Leucobryum). -
Four Western Cheilanthoid Ferns in Oklahoma
Oklahoma Native Plant Record 65 Volume 10, December 2010 FOUR WESTERN CHEILANTHOID FERNS IN OKLAHOMA Bruce A. Smith McLoud High School McLoud, Oklahoma 74851 Keywords: arid, distribution, habitat, key ABSTRACT The diversity of ferns in some of the more arid climates of western Oklahoma is surprising. This article examines four Oklahoma cheilanthoid ferns: Astrolepis integerrima, Cheilanthes wootonii, Notholaena standleyi, and Pellaea wrightiana. With the exceptions of A. integerrima and P. wrightiana which occur in Alabama and North Carolina respectively, all four species reach their eastern limits of distribution in Oklahoma. Included in this article are common names, synonyms, brief descriptions, distinguishing characteristics, U.S. and Oklahoma distribution, habitat information, state abundance, and a dichotomous key to selected cheilanthoids. The Oklahoma Natural Heritage Inventory has determined that all but one (N. standleyi) are species of concern in the state. INTRODUCTION of eastern Oklahoma, while most members of the Pteridaceae occur in Almost half of the ferns in the family western Oklahoma (Taylor & Taylor Pteridaceae are xeric adapted ferns. In 1991). Oklahoma six genera and sixteen species Statewide, the most common species in the family are known to occur. They in the Pteridaceae is Pellaea atropurpurea live on dry or moist rocks and can be (Figure 4), which can be found found in rock crevices, at the bases of throughout the body of the state and boulders, or on rocky ledges. Common Cimarron County in the panhandle. The associated species include lichens, mosses, rarest are Cheilanthes horridula and liverworts, and spike mosses. Two Cheilanthes lindheimeri. Cheilanthes horridula physical characteristics that unite the and Cheilanthes lindheimeri have only been family are the marginal sori (Figure 1) and seen in one county each, Murray and the lack of a true indusium. -
Fern Gazette Vol 18 Part 1 V7.Qxd
FERN GAZ. 18(5):264-282. 2009 264 DESICCATION TOLERANCE IN SOME BRITISH FERNS M.C.F. PROCTOR School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD Key-words: Asplenium, chlorophyll fluorescence, drying rate, light responses, Polypodium, recovery rate, relative humidity, relative water content. ABSTRACT Leaves of ten British fern species were tested for their tolerance of desiccation. Asplenium ruta-muraria, A. septentrionale, A. trichomanes, A. ceterach, Polypodium cambricum and P. interjectum withstood drying for periods of a week or more to a relative water content (RWC) of c. 4–7%. This is far below the RWC (c. 30%) at which most vascular-plant tissues are irretrievably damaged. One population of Asplenium adiantum-nigrum was desiccation tolerant, another was not. Aspelnium obovatum was fairly tolerant, behaviour differing with intensity of desiccation and in old and young growth. Polypodium cambricum and P interjectum were both highly tolerant. Polystichum aculeatum was not tolerant. Recovery rates of RWC and the chlorophyll-fluorescence parameter Fv/Fm did not vary greatly between species, with half-recovery times around 2–4 h. The small Asplenium species and A. ceterach dried quickly (half- drying times a few hours), suggesting little stomatal control over drying. The much slower drying of the Polypodium species suggests that their stomata close under water stress. Photosynthetic electron flow in most species saturated at a quarter to a half of full summer sunlight. Asplenium ruta-muraria, A. septentrionale and A. trichomanes showed a similar tendency to non-saturating electron flow at high irradiances as many desiccation-tolerant bryophytes. -
Part I Chinese Plant Names Index 2010-2017
This Book is Sponsored by Shanghai Chenshan Botanical Garden 上海辰山植物园 Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences 中国科学院上海辰山植物科学研究中心 Special Fund for Scientific Research of Shanghai Landscaping & City Appearance Administrative Bureau (G182415) 上海市绿化和市容管理局科研专项 (G182415) National Specimen Information Infrastructure, 2018 Special Funds 中国国家标本平台 2018 年度专项 Shanghai Sailing Program (14YF1413800) 上海市青年科技英才扬帆计划 (14YF1413800) Chinese Plant Names Index 2010-2017 DU Cheng & MA Jin-shuang Chinese Plant Names Index 2010-2017 中国植物名称索引 2010-2017 DU Cheng & MA Jin-shuang Abstract The first two volumes of Chinese Plant Names Index (CPNI) cover the years 2000 through 2009, with entries 1 through 5,516, and 2010 through 2017, with entries 5,517 through 10,795. A unique entry is generated for the specific name of each taxon in a specific publication. Taxonomic treatments cover all novelties at the rank of family, genus, species, subspecies, variety, form and named hybrid taxa, new name changes (new combinations and new names), new records, new synonyms and new typifications for vascular plants reported or recorded from China. Detailed information on the place of publication, including author, publication name, year of publication, volume, issue, and page number, are given in detail. Type specimens and collects information for the taxa and their distribution in China, as well as worldwide, are also provided. The bibliographies were compiled from 182 journals and 138 monographs or books published worldwide. In addition, more than 400 herbaria preserve type specimens of Chinese plants are also listed as an appendix. This book can be used as a basic material for Chinese vascular plant taxonomy, and as a reference for researchers in biodiversity research, environmental protection, forestry and medicinal botany. -
NYFA Newsletter
NYFA Newsletter New York Flora Association of the New York State Museum Institute Vol. 8. No. 1 Richard S. Mitchell, Editor April, 1997 New York State Museum ADDRESS ALL CORRESPONDENCE TO NYFA, 3140 CEC, ALBANY, NY 12230 - DUES $10 PER YEAR A New Fern Hot Spot in a Cool Clime When we joined NYF A later in 1994, we learned of this by Brian and Eileen Keelan contest and its results in the back issues of the newsletter, In the December, 1992 NYFA Newsletter, Frank and wondered whether any site in the acidic, largely Knight listed 25 species of fems found in Joralemon granitic Adirondacks could support fem diversity even Park, Albany Co., and suggested that it would be approaching that of lowland limestone areas such as interesting to look for other ~mall areas with even higher Joralemon Park and Clark Reservation. In. 19~5 w-:> b~ 6~n =- sur'.''=Y of ua~cubr p!::!lts in the Dick Mitchell announced a formal contest to find the Moose River Plains and vicinity, southeast of Inlet, most fem species within a one mile diameter circular area Hamilton Co., NY, in the southwest Adirondacks. Our within the state. In the NYFA Newsletter of Feb. 1994, study area, which would fit in a 6-mile radius, lies mostly Joseph McMullen, Bernard Carr and Diane Wheelock between 1700 and 2100 feet in elevation, although there reported 26 species from the lovely Clark Reservation, are a few higher areas with difficult access. The study Onondaga Co., and took the prize in the contest. area is primarily maple-beech forest, also encompassing coniferous forest, sandy plains and various acidic lakes, creeks, marshes and boggy areas.