Introduction to Survey Sampling U.S. Census Bureau, Washington, D.C

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Survey Sampling U.S. Census Bureau, Washington, D.C Introduction to Survey Sampling U.S. Census Bureau, Washington, D.C. This workshop will present the main components of survey sampling, with a focus on probability sampling. Participants will learn some basic probability sampling techniques such as simple random sampling, systematic sampling, stratification, cluster sampling, and multistage sampling. Participants will also learn about producing estimates of population parameters from sample surveys as a function of sample design and weighting procedures. Finally, participants will learn to compute the sampling errors of survey estimates, and to make inferences from them to the population. The workshop focuses on sample survey methodologies and principles, but participants are encouraged to bring any census or survey questions that are relevant to their job responsibilities. The workshop is conducted in a hands-on and interactive environment. In addition, all participants must bring a calculator that includes at least a square root function in order to complete group exercises outside the workshop setting. Audience and Prerequisites This introductory workshop is oriented toward statisticians, demographers, and economists who wish to produce or understand probability sampling procedures such as sample design, statistical estimates, and variance estimators. No previous experience in probability sampling is required although experience using mathematics, statistics, and computer languages is desirable. Participants should not expect to obtain sufficient background in this workshop to master probability sampling, but they can expect to become familiar with basic techniques well enough to converse with sampling statisticians more easily about sample design and estimation. Date: December 2 - 13, 2019 Place: U.S. Census Bureau Headquarters Suitland, Maryland (near Washington, D.C.) Tuition: US $3,000 Apply early. The workshop will be limited to 15 participants. Those who complete the application requirements will be accepted on a first-come, first-served basis. For more information e-mail [email protected]. .
Recommended publications
  • Choosing the Sample
    CHAPTER IV CHOOSING THE SAMPLE This chapter is written for survey coordinators and technical resource persons. It will enable you to: U Understand the basic concepts of sampling. U Calculate the required sample size for national and subnational estimates. U Determine the number of clusters to be used. U Choose a sampling scheme. UNDERSTANDING THE BASIC CONCEPTS OF SAMPLING In the context of multiple-indicator surveys, sampling is a process for selecting respondents from a population. In our case, the respondents will usually be the mothers, or caretakers, of children in each household visited,1 who will answer all of the questions in the Child Health modules. The Water and Sanitation and Salt Iodization modules refer to the whole household and may be answered by any adult. Questions in these modules are asked even where there are no children under the age of 15 years. In principle, our survey could cover all households in the population. If all mothers being interviewed could provide perfect answers, we could measure all indicators with complete accuracy. However, interviewing all mothers would be time-consuming, expensive and wasteful. It is therefore necessary to interview a sample of these women to obtain estimates of the actual indicators. The difference between the estimate and the actual indicator is called sampling error. Sampling errors are caused by the fact that a sample&and not the entire population&is surveyed. Sampling error can be minimized by taking certain precautions: 3 Choose your sample of respondents in an unbiased way. 3 Select a large enough sample for your estimates to be precise.
    [Show full text]
  • Sampling and Fieldwork Practices in Europe
    www.ssoar.info Sampling and Fieldwork Practices in Europe: Analysis of Methodological Documentation From 1,537 Surveys in Five Cross-National Projects, 1981-2017 Jabkowski, Piotr; Kołczyńska, Marta Veröffentlichungsversion / Published Version Zeitschriftenartikel / journal article Empfohlene Zitierung / Suggested Citation: Jabkowski, P., & Kołczyńska, M. (2020). Sampling and Fieldwork Practices in Europe: Analysis of Methodological Documentation From 1,537 Surveys in Five Cross-National Projects, 1981-2017. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 16(3), 186-207. https://doi.org/10.5964/meth.2795 Nutzungsbedingungen: Terms of use: Dieser Text wird unter einer CC BY Lizenz (Namensnennung) zur This document is made available under a CC BY Licence Verfügung gestellt. Nähere Auskünfte zu den CC-Lizenzen finden (Attribution). For more Information see: Sie hier: https://creativecommons.org/licenses/by/4.0 https://creativecommons.org/licenses/by/4.0/deed.de Diese Version ist zitierbar unter / This version is citable under: https://nbn-resolving.org/urn:nbn:de:0168-ssoar-74317-3 METHODOLOGY Original Article Sampling and Fieldwork Practices in Europe: Analysis of Methodological Documentation From 1,537 Surveys in Five Cross-National Projects, 1981-2017 Piotr Jabkowski a , Marta Kołczyńska b [a] Faculty of Sociology, Adam Mickiewicz University, Poznan, Poland. [b] Department of Socio-Political Systems, Institute of Political Studies of the Polish Academy of Science, Warsaw, Poland. Methodology, 2020, Vol. 16(3), 186–207, https://doi.org/10.5964/meth.2795 Received: 2019-03-23 • Accepted: 2019-11-08 • Published (VoR): 2020-09-30 Corresponding Author: Piotr Jabkowski, Szamarzewskiego 89C, 60-568 Poznań, Poland. +48 504063762, E-mail: [email protected] Abstract This article addresses the comparability of sampling and fieldwork with an analysis of methodological data describing 1,537 national surveys from five major comparative cross-national survey projects in Europe carried out in the period from 1981 to 2017.
    [Show full text]
  • ESOMAR 28 Questions
    Responses to ESOMAR 28 Questions INTRODUCTION Intro to TapResearch TapResearch connects mobile, tablet and pc users interested in completing surveys with market researchers who need their opinions. Through our partnerships with dozens of leading mobile apps, ad networks and websites, we’re able to reach an audience exceeding 100 million people in the United States. We are focused on being a top-quality partner for ad hoc survey sampling, panel recruitment, and router integrations. Our technology platform enables reliable feasibility estimates, highly competitive costs, sophisticated quality enforcement, and quick-turnaround project management. Intro to ESOMAR ESOMAR (European Society for Opinion and Market Research) is the essential organization for encouraging, advancing and elevating market research worldwide. Since 1948, ESOMAR’s aim has been to promote the value of market and opinion research in effective decision-making. The ICC/ESOMAR Code on Market and Social Research, which was developed jointly with the International Chamber of Commerce, sets out global guidelines for self-regulation for researchers and has been undersigned by all ESOMAR members and adopted or endorsed by more than 60 national market research associations worldwide. Responses to ESOMAR 28 Questions COMPANY PROFILE 1) What experience does your company have in providing online samples for market research? TapResearch connects mobile, tablet and pc users interested in completing surveys with market researchers who need their opinions. Through our partnerships with dozens of leading mobile apps, ad networks and websites, we’re able to reach an audience exceeding 100 million people in the United States - we’re currently adding about 30,000 panelists/day and this rate is increasing.
    [Show full text]
  • Esomar/Grbn Guideline for Online Sample Quality
    ESOMAR/GRBN GUIDELINE FOR ONLINE SAMPLE QUALITY ESOMAR GRBN ONLINE SAMPLE QUALITY GUIDELINE ESOMAR, the World Association for Social, Opinion and Market Research, is the essential organisation for encouraging, advancing and elevating market research: www.esomar.org. GRBN, the Global Research Business Network, connects 38 research associations and over 3500 research businesses on five continents: www.grbn.org. © 2015 ESOMAR and GRBN. Issued February 2015. This Guideline is drafted in English and the English text is the definitive version. The text may be copied, distributed and transmitted under the condition that appropriate attribution is made and the following notice is included “© 2015 ESOMAR and GRBN”. 2 ESOMAR GRBN ONLINE SAMPLE QUALITY GUIDELINE CONTENTS 1 INTRODUCTION AND SCOPE ................................................................................................... 4 2 DEFINITIONS .............................................................................................................................. 4 3 KEY REQUIREMENTS ................................................................................................................ 6 3.1 The claimed identity of each research participant should be validated. .................................................. 6 3.2 Providers must ensure that no research participant completes the same survey more than once ......... 8 3.3 Research participant engagement should be measured and reported on ............................................... 9 3.4 The identity and personal
    [Show full text]
  • Survey Sampling
    Bayesian SAE using Complex Survey Data Lecture 5A: Survey Sampling Jon Wakefield Departments of Statistics and Biostatistics University of Washington 1 / 119 Outline Overview Design-Based Inference Simple Random Sampling Stratified Simple Random Sampling Cluster Sampling Multistage Sampling Discussion Technical Appendix: Simple Random Sampling Technical Appendix: Stratified SRS Technical Appendix: Cluster Sampling Technical Appendix: Lonely PSUs 2 / 119 Overview 3 / 119 Outline Many national surveys employ stratified cluster sampling, also known as multistage sampling, so that’s where we’d like to get to. In this lecture we will discuss: I Simple Random Sampling (SRS). I Stratified SRS. I Cluster sampling. I Multistage sampling. 4 / 119 Main texts I Lohr, S.L. (2010). Sampling Design and Analysis, Second Edition. Brooks/Cole Cengage Learning. Very well-written and clear mix of theory and practice. I Lumley, T. (2010). Complex Surveys: A Guide to Analysis Using R, Wiley. Written around the R survey package. Great if you already know a lot about survey sampling. I Korn, E.L. and Graubard, B.I. (1999). Analysis of Health Surveys. Wiley. Well written but not as comprehensive as Lohr. I Sarndal,¨ Swensson and Wretman (1992). Model Assisted Survey Sampling. Springer. Excellent on the theory though steep learning curve and hard to dip into if not familiar with the notation. Also, anti- model-based approaches. 5 / 119 The problem We have a question concerning variables in a well-defined finite population (e.g., 18+ population in Washington State). What is required of a sample plan? We want: I Accurate answer to the question (estimate). I Good estimate of the uncertainty of the estimate (e.g., variance).
    [Show full text]
  • Computing Effect Sizes for Clustered Randomized Trials
    Computing Effect Sizes for Clustered Randomized Trials Terri Pigott, C2 Methods Editor & Co-Chair Professor, Loyola University Chicago [email protected] The Campbell Collaboration www.campbellcollaboration.org Computing effect sizes in clustered trials • In an experimental study, we are interested in the difference in performance between the treatment and control group • In this case, we use the standardized mean difference, given by YYTC− d = gg Control group sp mean Treatment group mean Pooled sample standard deviation Campbell Collaboration Colloquium – August 2011 www.campbellcollaboration.org 1 Variance of the standardized mean difference NNTC+ d2 Sd2 ()=+ NNTC2( N T+ N C ) where NT is the sample size for the treatment group, and NC is the sample size for the control group Campbell Collaboration Colloquium – August 2011 www.campbellcollaboration.org TREATMENT GROUP CONTROL GROUP TT T CC C YY,,..., Y YY12,,..., YC 12 NT N Overall Trt Mean Overall Cntl Mean T Y C Yg g S 2 2 Trt SCntl 2 S pooled Campbell Collaboration Colloquium – August 2011 www.campbellcollaboration.org 2 In cluster randomized trials, SMD more complex • In cluster randomized trials, we have clusters such as schools or clinics randomized to treatment and control • We have at least two means: mean performance for each cluster, and the overall group mean • We also have several components of variance – the within- cluster variance, the variance between cluster means, and the total variance • Next slide is an illustration Campbell Collaboration Colloquium – August 2011 www.campbellcollaboration.org TREATMENT GROUP CONTROL GROUP Cntl Cluster mC Trt Cluster 1 Trt Cluster mT Cntl Cluster 1 TT T T CC C C YY,...ggg Y ,..., Y YY11,..
    [Show full text]
  • Intro Surveys for Honors Theses, 2009
    PROGRAM ON SURVEY RESEARCH HARVARD UNIVERSITY ` Introduction to Survey Research ` The Survey Process ` Survey Resources at Harvard ` Sampling, Coverage, and Nonresponse ` Thinking About Modes April 14, 2009 ` Question Wording `Representation ◦The research design make inference to a larger population ◦Various population characteristics are represented in research data the same way there are present in population ◦Example: General population survey to estimate population characteristics Reporting `Realism Research Survey ◦A full picture of subjects emerges And ◦Relationships between multiple variables and multiple ways of looking at Methods the same variables can be studied Theories Analysis ◦Example: A qualitative case study to evaluate the nature of democracy in a small town with community meetings `Randomization ◦Variables which are not important in model are completely randomized ◦Effects of non-randomized variables can be tested ◦Example: Randomized clinical trial to test effectiveness of new cancer drug Integrated Example: Surveys and the Research Process Theories About Things `Good Measures: ◦Questions or measures impact your ability to study concepts ◦Think carefully about the underlying concepts a survey is trying to measure. Do the survey questions do a good job of capturing this? ◦The PSR Tip Sheet on Questionnaire Design contains good ideas on Concepts Population Validity External how to write survey questions. Specification Error ` Measures Sample Good Samples: ◦Samples give you the ability to generalize your findings Survey Errors ◦Think carefully about the population you are trying to generalize Internal Validity Internal your findings to. Does your sample design do a good job of Data Respondents representing these people? ◦The PSR Tip Sheet on Survey Sampling, Coverage, and Nonresponse contains thinks to think about in designing or evaluating a sample.
    [Show full text]
  • Evaluating Probability Sampling Strategies for Estimating Redd Counts: an Example with Chinook Salmon (Oncorhynchus Tshawytscha)
    1814 Evaluating probability sampling strategies for estimating redd counts: an example with Chinook salmon (Oncorhynchus tshawytscha) Jean-Yves Courbois, Stephen L. Katz, Daniel J. Isaak, E. Ashley Steel, Russell F. Thurow, A. Michelle Wargo Rub, Tony Olsen, and Chris E. Jordan Abstract: Precise, unbiased estimates of population size are an essential tool for fisheries management. For a wide variety of salmonid fishes, redd counts from a sample of reaches are commonly used to monitor annual trends in abundance. Using a 9-year time series of georeferenced censuses of Chinook salmon (Oncorhynchus tshawytscha) redds from central Idaho, USA, we evaluated a wide range of common sampling strategies for estimating the total abundance of redds. We evaluated two sampling-unit sizes (200 and 1000 m reaches), three sample proportions (0.05, 0.10, and 0.29), and six sampling strat- egies (index sampling, simple random sampling, systematic sampling, stratified sampling, adaptive cluster sampling, and a spatially balanced design). We evaluated the strategies based on their accuracy (confidence interval coverage), precision (relative standard error), and cost (based on travel time). Accuracy increased with increasing number of redds, increasing sample size, and smaller sampling units. The total number of redds in the watershed and budgetary constraints influenced which strategies were most precise and effective. For years with very few redds (<0.15 reddsÁkm–1), a stratified sampling strategy and inexpensive strategies were most efficient, whereas for years with more redds (0.15–2.9 reddsÁkm–1), either of two more expensive systematic strategies were most precise. Re´sume´ : La gestion des peˆches requiert comme outils essentiels des estimations pre´cises et non fausse´es de la taille des populations.
    [Show full text]
  • Cluster Sampling
    Day 5 sampling - clustering SAMPLE POPULATION SAMPLING: IS ESTIMATING THE CHARACTERISTICS OF THE WHOLE POPULATION USING INFORMATION COLLECTED FROM A SAMPLE GROUP. The sampling process comprises several stages: •Defining the population of concern •Specifying a sampling frame, a set of items or events possible to measure •Specifying a sampling method for selecting items or events from the frame •Determining the sample size •Implementing the sampling plan •Sampling and data collecting 2 Simple random sampling 3 In a simple random sample (SRS) of a given size, all such subsets of the frame are given an equal probability. In particular, the variance between individual results within the sample is a good indicator of variance in the overall population, which makes it relatively easy to estimate the accuracy of results. SRS can be vulnerable to sampling error because the randomness of the selection may result in a sample that doesn't reflect the makeup of the population. Systematic sampling 4 Systematic sampling (also known as interval sampling) relies on arranging the study population according to some ordering scheme and then selecting elements at regular intervals through that ordered list Systematic sampling involves a random start and then proceeds with the selection of every kth element from then onwards. In this case, k=(population size/sample size). It is important that the starting point is not automatically the first in the list, but is instead randomly chosen from within the first to the kth element in the list. STRATIFIED SAMPLING 5 WHEN THE POPULATION EMBRACES A NUMBER OF DISTINCT CATEGORIES, THE FRAME CAN BE ORGANIZED BY THESE CATEGORIES INTO SEPARATE "STRATA." EACH STRATUM IS THEN SAMPLED AS AN INDEPENDENT SUB-POPULATION, OUT OF WHICH INDIVIDUAL ELEMENTS CAN BE RANDOMLY SELECTED Cluster sampling Sometimes it is more cost-effective to select respondents in groups ('clusters') Quota sampling Minimax sampling Accidental sampling Voluntary Sampling ….
    [Show full text]
  • IBM SPSS Complex Samples Business Analytics
    IBM Software IBM SPSS Complex Samples Business Analytics IBM SPSS Complex Samples Correctly compute complex samples statistics When you conduct sample surveys, use a statistics package dedicated to Highlights producing correct estimates for complex sample data. IBM® SPSS® Complex Samples provides specialized statistics that enable you to • Increase the precision of your sample or correctly and easily compute statistics and their standard errors from ensure a representative sample with stratified sampling. complex sample designs. You can apply it to: • Select groups of sampling units with • Survey research – Obtain descriptive and inferential statistics for clustered sampling. survey data. • Select an initial sample, then create • Market research – Analyze customer satisfaction data. a second-stage sample with multistage • Health research – Analyze large public-use datasets on public health sampling. topics such as health and nutrition or alcohol use and traffic fatalities. • Social science – Conduct secondary research on public survey datasets. • Public opinion research – Characterize attitudes on policy issues. SPSS Complex Samples provides you with everything you need for working with complex samples. It includes: • An intuitive Sampling Wizard that guides you step by step through the process of designing a scheme and drawing a sample. • An easy-to-use Analysis Preparation Wizard to help prepare public-use datasets that have been sampled, such as the National Health Inventory Survey data from the Centers for Disease Control and Prevention
    [Show full text]
  • Sampling and Evaluation
    Sampling and Evaluation A Guide to Sampling for Program Impact Evaluation Peter M. Lance Aiko Hattori Suggested citation: Lance, P. and A. Hattori. (2016). Sampling and evaluation: A guide to sampling for program impact evaluation. Chapel Hill, North Carolina: MEASURE Evaluation, University of North Carolina. Sampling and Evaluation A Guide to Sampling for Program Impact Evaluation Peter M. Lance, PhD, MEASURE Evaluation Aiko Hattori, PhD, MEASURE Evaluation ISBN: 978-1-943364-94-7 MEASURE Evaluation This publication was produced with the support of the United States University of North Carolina at Chapel Agency for International Development (USAID) under the terms of Hill MEASURE Evaluation cooperative agreement AID-OAA-L-14-00004. 400 Meadowmont Village Circle, 3rd MEASURE Evaluation is implemented by the Carolina Population Center, University of North Carolina at Chapel Hill in partnership with Floor ICF International; John Snow, Inc.; Management Sciences for Health; Chapel Hill, NC 27517 USA Palladium; and Tulane University. Views expressed are not necessarily Phone: +1 919-445-9350 those of USAID or the United States government. MS-16-112 [email protected] www.measureevaluation.org Dedicated to Anthony G. Turner iii Contents Acknowledgments v 1 Introduction 1 2 Basics of Sample Selection 3 2.1 Basic Selection and Sampling Weights . 5 2.2 Common Sample Selection Extensions and Complications . 58 2.2.1 Multistage Selection . 58 2.2.2 Stratification . 62 2.2.3 The Design Effect, Re-visited . 64 2.2.4 Hard to Find Subpopulations . 64 2.2.5 Large Clusters and Size Sampling . 67 2.3 Complications to Weights . 69 2.3.1 Non-Response Adjustment .
    [Show full text]
  • Introduction to Survey Sampling and Analysis Procedures (Chapter)
    SAS/STAT® 9.3 User’s Guide Introduction to Survey Sampling and Analysis Procedures (Chapter) SAS® Documentation This document is an individual chapter from SAS/STAT® 9.3 User’s Guide. The correct bibliographic citation for the complete manual is as follows: SAS Institute Inc. 2011. SAS/STAT® 9.3 User’s Guide. Cary, NC: SAS Institute Inc. Copyright © 2011, SAS Institute Inc., Cary, NC, USA All rights reserved. Produced in the United States of America. For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication. The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others’ rights is appreciated. U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987). SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513. 1st electronic book, July 2011 SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-727-3228.
    [Show full text]