Automatic Performance Setting for Dynamic Voltage Scaling

Total Page:16

File Type:pdf, Size:1020Kb

Automatic Performance Setting for Dynamic Voltage Scaling Automatic Performance Setting for Dynamic Voltage Scaling Krisztián Flautner [email protected] Steve Reinhardt Trevor Mudge Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 1 Overview • A mechanism for quantifying the user experience. – Metric: response time. – Automatic, no user program modifications required. – Run-time feedback to the kernel. • Guiding performance setting of DVS processors. – For interactive episodes: slow down processor to save energy when response times are fast enough. – For periodic events: track periodicity, utilization and inter- task communication to establish necessary performance. • Simulated and experimental results. Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 2 Dynamic Voltage Scaling Execute only as fast as necessary to meet deadlines. Running fast and idling is not energy efficient. Power = Capacitance • voltage2 • frequency • Voltage is proportional to the frequency. • Reduce f and v to match performance demands. • Reduced frequency implies longer execution time. Energy ~ voltage2 Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 3 Why bother? 100 Pentium II (R) Pentium Pro ? (R) Pentium(R) Pentium(R) 10 MMX 486 486 Max Power (Watts) Power Max 386 386 Source: Intel 1 1.5µ 1µ 0.8µ 0.6µ 0.35µ 0.25µ 0.18µ 0.13µ Higher performance = increased power consumption. Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 4 Power Density! 1000 Rocket Nozzle Sun’s Nuclear Reactor Surface 100 ? 2 Watts/cm 10 Hot plate 1 Source: Intel 1.5µ 0.8µ 0.35µ 0.18µ 0.1µ Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 5 Small performance reduction = big energy savings 2 1 1.6 0.8 Energy factor 1.2 0.6 Voltage (V) 0.8 0.4 0.4 0.2 Graph based on Intel XScale data 0 0 0 200 400 600 800 1000 1200 Frequency (Mhz) 20% performance reduction = 32% energy reduction 40% performance reduction = 55% energy reduction Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 6 Processors supporting DVS Transmeta Intel XScale lpARM Intel SA-1100 Intel XScale Crusoe 5600 Demo 8Mhz 59Mhz 500Mhz 150Mhz 150Mhz Min. 1.1V 0.79V 1.2V 0.75V 0.75V 1.8mW 106mW ~1W 40mW 40mW 100Mhz 251Mhz 700Mhz 800Mhz 1000Mhz Max. 3.3V 1.65V 1.6V 1.5V 1.75V 220mW 964mW ~2W 900mW 1.45W Process 0.6 0.35 0.18 0.18 0.18 Max/min 9 4.4 1.8 4 5.4 energy Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 7 Some recent desktop processors AMD Athlon Intel Pentium IV Intel Pentium III MPC 7450 Model 4 500Mhz @ 1.35V 650Mhz @ 1.75V 533Mhz @ 1.8V Core 1.4Ghz @ 1.7V 733Mhz @ 1.65V 1.2Ghz @ 1.75V 667Mhz @ 1.8V 100Mhz, 133Mhz 200Mhz, 266Mhz 133Mhz I/O 400Mhz 3.3V 1.6V 1.8V-2.5V Process 0.18 0.18 0.18 0.18 Max. 12W 38W 17W 66.3W Power 19.1W 66W 19.1W Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 8 Performance setting algorithms • Programmer specified – Works well but requires explicit specification of deadlines. • Interval based algorithms – Use the ratio of idle to busy time to guide DVS. – Only work well if processor utilization is regular. – No service quality guarantees. • Ours: episode classification based – Find important execution episodes – predict their performance. – Works with existing user programs. – Works well with irregular workloads. – Uses information in kernel to derive deadlines automatically. – Impact on response time is automatically quantified. • Performance can be adapted to the user’s preference. Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 9 Episode classification • Interactive episodes – When the user is waiting for the computer to respond. • Periodic episodes – Producer (e.g. MP3 player). – Consumer (e.g. sound daemon). Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 10 A utilization trace Each horizontal quantum is a millisecond, height corresponds to the utilization in that quantum. Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 11 Episode classification Interactive (Acrobat Reader), Producer (MP3 playback), and Consumer (esd sound daemon) episodes. Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 12 Mouse movement X server updates screen every ~10ms. Update takes ~0.25ms. Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 13 Interactive episodes Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 14 Interactive episodes can include idle time Waiting for data from the network during a run of Netscape. Page rendering starts after 250ms. Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 15 Finding interactive episodes • One way: mouse click indicates start, idle time indicates end. – Inaccurate, latency in finding the end of the episode. • Our approach: track inter-task communication. – Start of an interactive episode: • X server sends a message to another task. – During interactive episode: • Keep track of communicating tasks (episode’s task set). • Compute desired metrics. – Conditions for ending the episode (applied to tasks in task set): • No tasks are executing. • Data written by the tasks have been consumed. • No task was preempted the last time it ran. • No tasks are blocked on I/O. Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 16 Characteristics of Interactive Episodes • Faster is not necessarily better. – Human perception has finite resolution. – Perception threshold is ~50ms. – The goal is to run fast enough to meet the perception threshold, no point to running any faster. • Many interactive episodes are already fast enough. • More will be imperceptible in the near future. – 200ms perception threshold today estimates work done during 50ms 3 years from now. Slow down the processor! Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 17 Time above the perception threshold 100% 80% 60% 40% Acrobat Reader 20% FrameMaker Ghostview Time aboveTime the perception threshold GIMP Nets cape 0% 50ms 100ms 150ms 200ms 250ms 300ms Perception threshold Time above the perception threshold is given as a percentage of time spent in all interactive episodes. Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 18 The key: performance-setting algorithm • Use episode detection and classification. – Interactive episodes. – Periodic episodes (producer and consumer). • Performance-setting on a per episode basis. • Stretch episodes to their deadlines. – Interactive episode: perception threshold. – Stretch producer to consumer. No modification of existing programs needed. Works with irregular processor utilization and multiprogramming. Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 19 Cumulative interactive episode length distribution Minimum performance level sufficient Max. performance 10ms 50ms 100% 90% 80% 70% 60% 50% 40% FrameMaker 30% 20% Cumulative number 10% Cumulative time 0% 1e-05 0.0001 0.001 0.01 0.1 1 Episode length (sec) Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 20 Performance-setting strategy for interactive episodes • Predict the performance factor that would be correct most of the time (not for most events). – Based on past optimal performance factors. • Limit worst case impact on response time. – Run at full performance after PanicThreshold is reached. Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 21 Performance-setting for interactive episodes At the beginning of the episode • Wait 5ms before transition to ignore short episodes • Switch to predicted performance level. During the episode • If episode duration reaches PanicThreshold, switch to maximum performance. At the end of the episode • Estimate full performance episode duration. • Compute optimum performance level for past episode. • Compute new prediction based on optimum settings. PanicThreshold = PerceptionThreshold(1 + PerformanceFactor) Predicted PerformanceFactor is the average of past optimum settings, weighted by the corresponding episode lengths. Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 22 Performance-setting algorithm Periodic activity detected • Enter period-sampling mode. • Switch to maximum performance. • Establish base performance level. • Exit period-sampling mode. Start of interactive episode • If not in period-sampling mode, apply interactive episode performance-setting policy. End of interactive episode • Update interactive episode statistics. • Switch to base performance level, if there is periodic activity on the machine. Krisztián Flautner - [email protected] Automatic Performance Setting for Dynamic Voltage Scaling 23 Performance-setting during the Acrobat Reader benchmark (200ms p.t.) 1 0.8 0.6 0.4 Transitions to maximum performance level are due to Performance factor reaching
Recommended publications
  • Green Destiny: a 240-Node Compute Cluster in One Cubic Meter
    Green Destiny: A 240-Node Compute Cluster in One Cubic Meter Wu-chun (Wu) Feng Research & Development in Advanced Network Technology (RADIANT) Computer & Computational Sciences Division Los Alamos National Laboratory LA-UR 02-6127 Outline Where is Supercomputing? Architectures from the Top 500. Evaluating Supercomputers Metrics: Performance & Price/Performance An Alternative Flavor of Supercomputing Supercomputing in Small Spaces Æ Bladed Beowulf Architecture of a Bladed Beowulf Performance Metrics Benchmark Results Discussion & Status Conclusion Acknowledgements & Media Coverage Wu-chun Feng http://www.lanl.gov/radiant [email protected] http://sss.lanl.gov Flavors of Supercomputing (Picture Source: Thomas Sterling, Caltech & NASA JPL) Wu-chun Feng http://www.lanl.gov/radiant [email protected] http://sss.lanl.gov 500 400 SIMD Architectures from the 300 Top 500 Supercomputer List 200 100 0 ProcessorSingle Wu-chun Feng [email protected] Jun-93 Nov-93 Jun-94 MPP Nov-94 Jun-95 Nov-95 Jun-96 Constellation SMP Nov-96 Cluster Jun-97 http://www.lanl.gov/radiant Nov-97 http://sss.lanl.gov Jun-98 Nov-98 Jun-99 Nov-99 Jun-00 Nov-00 Jun-01 Nov-01 Jun-02 Metrics for Evaluating Supercomputers Performance Metric: Floating-Operations Per Second (FLOPS) Example: Japanese Earth Simulator Price/Performance Æ Cost Efficiency Metric: Cost / FLOPS Examples: SuperMike, GRAPE-5, Avalon. Wu-chun Feng http://www.lanl.gov/radiant [email protected] http://sss.lanl.gov Performance (At Any Cost) Japanese Earth Simulator ($400M) Performance Price/Perf Peak 40.00 Tflop $10.00/Mflop Linpack 35.86 Tflop $11.15/Mflop n-Body 29.50 Tflop $13.56/Mflop Climate 26.58 Tflop $15.05/Mflop Turbulence 16.40 Tflop $24.39/Mflop Fusion 14.90 Tflop $26.85/Mflop Wu-chun Feng http://www.lanl.gov/radiant [email protected] http://sss.lanl.gov Price/Performance Cost Efficiency LSU’s SuperMike Performance Price/Perf (2002: $2.8M) Linpack 2210 Gflops $1.27/Mflop U.
    [Show full text]
  • Service Manual
    , , , , , www.sonyweb.co.uk , www.sonyweb.co.uk , , www.sonyweb.co.uk , www.sonyweb.co.uk , , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , SERVICE MANUAL www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk Ver 1-2002J www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk www.sonyweb.co.uk , , Revision History www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , PCG-GRV550 www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , , Lineup : PCG-GRV550 www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk For American Area www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk , www.sonyweb.co.uk www.sonyweb.co.uk , www.sonyweb.co.uk
    [Show full text]
  • Memorandum in Opposition to Hewlett-Packard Company's Motion to Quash Intel's Subpoena Duces Tecum
    ORIGINAL UNITED STATES OF AMERICA BEFORE THE FEDERAL TRADE COMMISSION ) In the Matter of ) ) DOCKET NO. 9341 INTEL. CORPORATION, ) a corporation ) PUBLIC ) .' ) MEMORANDUM IN OPPOSITION TO HEWLETT -PACKARD COMPANY'S MOTION TO QUASH INTEL'S SUBPOENA DUCES TECUM Intel Corporation ("Intel") submits this memorandum in opposition to Hewlett-Packard Company's ("HP") motion to quash Intel's subpoena duces tecum issued on March 11,2010 ("Subpoena"). HP's motion should be denied, and it should be ordered to comply with Intel's Subpoena, as narrowed by Intel's April 19,2010 letter. Intel's Subpoena seeks documents necessary to defend against Complaint Counsel's broad allegations and claimed relief. The Complaint alleges that Intel engaged in unfair business practices that maintained its monopoly over central processing units ("CPUs") and threatened to give it a monopoly over graphics processing units ("GPUs"). See CompI. iiii 2-28. Complaint Counsel's Interrogatory Answers state that it views HP, the world's largest manufacturer of personal computers, as a centerpiece of its case. See, e.g., Complaint Counsel's Resp. and Obj. to Respondent's First Set ofInterrogatories Nos. 7-8 (attached as Exhibit A). Complaint Counsel intends to call eight HP witnesses at trial on topics crossing virtually all of HP' s business lines, including its purchases ofCPUs for its commercial desktop, commercial notebook, and server businesses. See Complaint Counsel's May 5, 2010 Revised Preliminary Witness List (attached as Exhibit B). Complaint Counsel may also call HP witnesses on other topics, including its PUBLIC FTC Docket No. 9341 Memorandum in Opposition to Hewlett-Packard Company's Motion to Quash Intel's Subpoena Duces Tecum USIDOCS 7544743\'1 assessment and purchases of GPUs and chipsets and evaluation of compilers, benchmarks, interface standards, and standard-setting bodies.
    [Show full text]
  • The Technology Behind Crusoe™ Processors
    The Technology Behind Crusoe™ Processors Low-power x86-Compatible Processors Implemented with Code Morphing™ Software Alexander Klaiber Transmeta Corporation January 2000 The Technology Behind Crusoe™ Processors Property of: Transmeta Corporation 3940 Freedom Circle Santa Clara, CA 95054 USA (408) 919-3000 http://www.transmeta.com The information contained in this document is provided solely for use in connection with Transmeta products, and Transmeta reserves all rights in and to such information and the products discussed herein. This document should not be construed as transferring or granting a license to any intellectual property rights, whether express, implied, arising through estoppel or otherwise. Except as may be agreed in writing by Transmeta, all Transmeta products are provided “as is” and without a warranty of any kind, and Transmeta hereby disclaims all warranties, express or implied, relating to Transmeta’s products, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose and non-infringement of third party intellectual property. Transmeta products may contain design defects or errors which may cause the products to deviate from published specifications, and Transmeta documents may contain inaccurate information. Transmeta makes no representations or warranties with respect to the accuracy or completeness of the information contained in this document, and Transmeta reserves the right to change product descriptions and product specifications at any time, without notice. Transmeta products have not been designed, tested, or manufactured for use in any application where failure, malfunction, or inaccuracy carries a risk of death, bodily injury, or damage to tangible property, including, but not limited to, use in factory control systems, medical devices or facilities, nuclear facilities, aircraft, watercraft or automobile navigation or communication, emergency systems, or other applications with a similar degree of potential hazard.
    [Show full text]
  • USCOURTS-Ca9-09-35307-1.Pdf
    Case: 09-35307 01/18/2011 ID: 7614842 DktEntry: 67 Page: 1 of 67 FOR PUBLICATION UNITED STATES COURT OF APPEALS FOR THE NINTH CIRCUIT VANESSA SIMMONDS, Plaintiff-Appellant, v. CREDIT SUISSE SECURITIES (USA) LLC; JPMORGAN CHASE & CO., a Delaware corporation, successor in interest to Hambrecht & Quist and Chase Securities Inc.; BANK OF No. 09-35262 AMERICA CORPORATION, a Delaware D.C. No. 2:07-cv- corporation, successor in interest 01549-JLR to Fleetboston Robertson Stephens, Inc.; ONVIA INC., a Delaware corporation formerly known as Onvia.com Inc.; ROBERTSON STEPHENS, INC.; J.P. MORGAN SECURITIES INC., Defendants-Appellees. In Re: SECTION 16(b) LITIGATION 821 Case: 09-35307 01/18/2011 ID: 7614842 DktEntry: 67 Page: 2 of 67 822 SIMMONDS v. CREDIT SUISSE SECURITIES VANESSA SIMMONDS, Plaintiff-Appellant, v. DEUTSCHE BANK SECURITIES INC.; FOUNDRY NETWORKS INC., Nominal No. 09-35280 Defendant, a Delaware D.C. Nos. corporation; MERRILL LYNCH 2:07-cv-01566-JLR PIERCE FENNER & SMITH 2:07-cv-01549-JLR INCORPORATED; J.P. MORGAN SECURITIES INC., Defendants-Appellees. In Re: SECTION 16(b) LITIGATION VANESSA SIMMONDS, Plaintiff-Appellant, v. MERRILL LYNCH & CO. INC., Defendant, and No. 09-35282 D.C. Nos. FINISAR CORPORATION, Nominal Defendant, a Delaware 2:07-cv-01567-JLR 2:07-cv-01549-JLR corporation; MERRILL LYNCH PIERCE FENNER & SMITH INCORPORATED; J.P. MORGAN SECURITIES INC., Defendants-Appellees. In Re: SECTION 16(b) LITIGATION Case: 09-35307 01/18/2011 ID: 7614842 DktEntry: 67 Page: 3 of 67 SIMMONDS v. CREDIT SUISSE SECURITIES 823 VANESSA SIMMONDS, Plaintiff-Appellant, v. MORGAN STANLEY & CO., No. 09-35285 INCORPORATED; LEHMAN BROTHERS, D.C.
    [Show full text]
  • TRANSMETA BREAKS X86 LOW-POWER BARRIER VLIW Chips Use Hardware-Assisted X86 Emulation by Tom R
    MICROPROCESSOR www.MPRonline.com THE REPORTINSIDER’S GUIDE TO MICROPROCESSOR HARDWARE TRANSMETA BREAKS X86 LOW-POWER BARRIER VLIW Chips Use Hardware-Assisted x86 Emulation By Tom R. Halfhill {2/14/00-01} Like moths drawn to a flame, semiconductor startups seem to find the bright but dangerous glow of the x86 market irresistible. Never mind that companies as resourceful as AMD, Cen- taur, Cyrix, IBM, National Semiconductor, and Rise have all charred their wings in the fires of competition with Intel. More than 120 million x86 chips were with a software envelope that translates x86 binaries into sold in the profitable PC market last year, casting off a warmth native code at run time. that lures newly hatched companies from the darkness. While some companies have used the term “emula- The latest newcomer to emerge from its cocoon is tion” to describe the binary-translation process, Transmeta Transmeta. After nearly five years of unprecedented secrecy, founder Dave Ditzel shuns that term, preferring to describe the Santa Clara–based startup finally unveiled its pair of his company’s method of converting x86 instructions into x86-compatible Crusoe processors at a widely covered VLIW instructions as “code morphing” or simply “transla- media event near Silicon Valley last month. The event tion.” Sometimes this process is called dynamic binary received the same sort of overhyped coverage the U.S. Air recompilation. Transmeta’s code-morphing software cer- Force might attract by flinging open the gates to Area 51. A tainly is more advanced than old-fashioned emulators, large crowd of mainstream and business journalists were which slowly convert one type of binary executable into dazzled by marketing claims about “revolutionary” micro- another by translating one instruction at a time.
    [Show full text]
  • Vertigo: Automatic Performance-Setting for Linux
    USENIX Association Proceedings of the 5th Symposium on Operating Systems Design and Implementation Boston, Massachusetts, USA December 9–11, 2002 THE ADVANCED COMPUTING SYSTEMS ASSOCIATION © 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. Vertigo: Automatic Performance-Setting for Linux Krisztián Flautner Trevor Mudge [email protected] [email protected] ARM Limited The University of Michigan 110 Fulbourn Road 1301 Beal Avenue Cambridge, UK CB1 9NJ Ann Arbor, MI 48109-2122 Abstract player, game machine, camera, GPS, even the wallet— into a single device. This requires processors that are Combining high performance with low power con- capable of high performance and modest power con- sumption is becoming one of the primary objectives of sumption. Moreover, to be power efficient, the proces- processor designs. Instead of relying just on sleep mode sors for the next generation communicator need to take for conserving power, an increasing number of proces- advantage of the highly variable performance require- sors take advantage of the fact that reducing the clock ments of the applications they are likely to run. For frequency and corresponding operating voltage of the example an MPEG video player requires about an order CPU can yield quadratic decrease in energy use.
    [Show full text]
  • The First International Conference on Mobile Systems, Applications, and Services
    USENIX Association Proceedings of MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services San Francisco, CA, USA May 5-8, 2003 © 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. Operating System Modifications for Task-Based Speed and Voltage Scheduling Jacob R. Lorch Alan Jay Smith Microsoft Research University of California, Berkeley 1 Microsoft Way EECS Department, Computer Science Division Redmond, WA 98052 Berkeley, CA 94720-1776 [email protected] [email protected] Abstract lower voltages mean lower energy consumption. Lower voltages, however, necessitate lower CPU speeds, pre- This paper describes RightSpeed, a task-based speed senting an interesting operating system issue: how to en- and voltage scheduler for Windows 2000. It takes ad- sure that performance remains reasonable while some- vantage of the ability of certain processors, such as those times lowering speed to save energy. from Transmeta and AMD, to dynamically change speed Traditionally, systems use interval-based strategies. and voltage and thus to save energy while running more Such strategies divide time into intervals of fixed length slowly. RightSpeed uses PACE, an algorithm that com- and set the speed for each interval based on recent CPU putes the most energy efficient way to meet task dead- utilization.
    [Show full text]
  • Vol 1-No 2 0801.Qxd
    Antitrust Review Published by the Antitrust and Trade Regulation Practice Group Volume 2, No. 5 May 2004 We are proud to annouce that Robert W. Doyle, Jr. has been nominated to the DC Bar’s Antitrust and Consumer Law Steering Committee. Voting ends on June 4th. In This Issue OUT OF THE ROUGH: PGA “SCORES” ANTITRUST VICTORY An exhibitor of professional golf tournaments successfully defended • Out Of The Rough: PGA “Scores” Antitrust Victory its conduct in refusing to allow a media company to have access to real-time player scores from the PGA's tournaments unless the • Fashion Models Charge company agreed not to sell the information to Internet sites that Price-Fixing: “Ha! Ha! Ha!” compete with the PGA's Internet site. In a decision issued March 31, the 11th Circuit Court of Appeals held that even if the PGA has a • JFTC On Raid Patrol monopoly over the real-time reporting of golf tournament scores, the exhibitor's desire to discourage "free riders" from posting the scores • Gaming Corp. v. Black Hawk Casino Owners on their Internet sites without paying for such information constituted Association: All Roads a lawful "business justification" for PGA's refusal to deal with media Lead To Black Hawk that would not agree to restrict access to the information. Morris Communications Corp. v. PGA Tour, Inc., 2004 WL 627723 (March • District Court Rejects Per 31, 2004). The decision provides an example of where a presumed Se Price-Fixing Analysis monopolist is permitted to engage in a refusal to deal its monopoly For Borders/Amazon products or services in order to protect its economic investment in Websites creating the monopoly.
    [Show full text]
  • Linux Information Sheet Linux Information Sheet
    Linux Information Sheet Linux Information Sheet Table of Contents Linux Information Sheet....................................................................................................................................1 Michael K. Johnson <[email protected]>.......................................................................................1 1.Introduction to Linux............................................................................................................................1 2.Linux Features......................................................................................................................................1 3.Hardware Issues....................................................................................................................................1 4.An Incomplete List of Ported Programs and Other Software...............................................................1 5.Who uses Linux?...................................................................................................................................1 6.Getting Linux........................................................................................................................................1 7.Legal Status of Linux............................................................................................................................2 8.News About Linux................................................................................................................................2 9.The Future.............................................................................................................................................2
    [Show full text]
  • The Technology Behind Crusoe™ Processors: Low-Power X86-Compatible Processors Implemented with Code-Morphing™ Software”
    “The Technology Behind Crusoe™ Processors: Low-Power x86-Compatible Processors Implemented with Code-Morphing™ Software” Alexander Klaiber Transmeta Corporation January 2000 presented by nick black <[email protected]> for cs8803dc 2010-04-15 watch this space for valuable addenda -- BIG MONEY! BIG PRIZES! YOU LOVE IT!! Motivation ● Commercial processor built around binary translation. ● Anyone remember the M680x0 emulator for PowerPC Macs?(*) ● How about PRISM's Epicode + Mica? VEST/AEST on Alpha?(**) ● One of two major GP-VLIW implementations. ● Yes, I absolutely am discounting Multiflow Computer's 125 sales. ● Integrated design of architecture and translator. ● Interesting design space: ● An attempt to reduce power and size of PC2001/x86. ● Not targeted at embedded space, where cost is a main motivator! “A Microprogrammed Implementation of an Architecture Simulation Language” (1977) (*) Tom Hormby's IBM, Apple, RISC, and the Roots of the PowerPC and Steven Levy's Insanely Great. (**) Paul Bolotoff's Alpha: The History in Facts and Comments. Anti-Motivation (*) 1917-10-23, paraphrased from John Reed's Ten Days That Shook the World (1919) pull over; that table's too fat (woop woop) Sources: Transmeta product datasheets, UIUC CS433 “Processor Presentation Series” notes for Transmeta Crusoe, sandpile.org IA-32 Implementation Guides for Crusoe/Efficeon Initial reactions, pre-paper: ● Anyone can run an x86 translator/emulator ● Why wouldn't Intel just build this instead? ● P6 was doing hardware CISC-to-RISC (CRISC) in 1995 ...though dissipating
    [Show full text]
  • Credit Suisse Securities V. Simmonds (Brief in Opposition).Pdf
    NO. 10-1261 In the Supreme Court of the United States CREDIT SUISSE SECURITIES (USA) LLC, ET AL., Petitioners, v. VANESSA SIMMONDS, Respondent. IN RE SECTION 16(b) LITIGATION On Petition for a Writ of Certiorari to the United States Court of Appeals for the Ninth Circuit BRIEF IN OPPOSITION TO PETITION FOR WRIT OF CERTIORARI* Jeffrey I. Tilden William C. Smart Counsel of Record Ian S. Birk Jeffrey M. Thomas KELLER ROHRBACK L.L.P. Mark A. Wilner 1201 Third Avenue Jessica E. Levin Suite 3200 David M. Simmonds Seattle, WA 98101-3052 GORDON T ILDEN THOMAS (206) 623-1900 & CORDELL L.L.P. 1001 Fourth Avenue *This appeal relates Suite 4000 to the appeal Seattle, WA 98154-1007 previously docketed (206) 467-6477 as No. 10-1218 [email protected] Attorneys for Respondent May 12, 2011 Becker Gallagher · Cincinnati, OH · Washington, D.C. · 800.890.5001 i QUESTION PRESENTED Section 16(b) of the Securities Exchange Act of 1934, 15 U.S.C. § 78p(b) (“Section 16(b)”), is the only statute enacted by Congress that directly targets insider trading. Congress designed Section 16(b) to promote the public’s interest in preserving the integrity of United States financial markets. Section 16(b) is a strict liability scheme. It requires statutory insiders to disgorge profits from short-swing transactions in publicly-traded issuer securities. Congress gave exclusive enforcement authority of Section 16(b) to issuers and their shareholders. It also prescribed a two-year statute of limitations. Section 16(a) of the Securities Exchange Act of 1934, 15 U.S.C.
    [Show full text]