View This Volume's Front and Back Matter

Total Page:16

File Type:pdf, Size:1020Kb

View This Volume's Front and Back Matter http://dx.doi.org/10.1090/surv/148 Ordering Braids Mathematical Surveys and Monographs Volume 148 Ordering Braids Patrick Dehornoy with Ivan Dynnikov Dale Rolfsen Bert Wiest American Mathematical Society Providence, Rhode Island Editorial Committee Jerry L. Bona Michael G. Eastwood Ralph L. Cohen Benjamin Sudakov J. T. Stafford, Chair The original edition of this work was published under the title Why Are Braids Order- able? by Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, 2002, by the Soci´et´eMath´ematique de France, Paris, France. 2000 Mathematics Subject Classification. Primary 20F36; Secondary 06F05, 06F15, 20B30, 20F34, 20F38, 57M25, 57M50, 68Q25, 68Q70. For additional information and updates on this book, visit www.ams.org/bookpages/surv-148 Library of Congress Cataloging-in-Publication Data Dehornoy, Patrick. Ordering braids / Patrick Dehornoy ; with Ivan Dynnikov, Dale Rolfsen, Bert Wiest. p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 148) Includes bibliographical references and index. ISBN 978-0-8218-4431-1 (alk. paper) 1. Braid theory. 2. Linear orderings. I. Dynnikov, Ivan, 1971– II. Rolfsen, Dale. III. Wiest, Bert. IV. Title. QA612.23.D445 2008 514.224—dc22 2008009859 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgmentofthesourceisgiven. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. c 2008 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 131211100908 Contents Preface ix Introduction 1 A meeting of two classical subjects 1 A convergence of approaches 3 Organization of the text 5 Guidelines to the reader 7 Acknowledgements 8 Chapter I. Braid Groups 9 1. The Artin presentation 9 2. Isotopy classes of braid diagrams 10 3. Mapping class groups 12 4. Positive braids 14 Chapter II. A Linear Ordering of Braids 19 1. The σ-ordering of Bn 19 2. Local properties of the σ-ordering 26 3. Global properties of the σ-ordering 29 4. The σ-ordering of positive braids 35 Chapter III. Applications of the Braid Ordering 43 1. Consequences of orderability 44 2. Applications of more specific properties 46 3. Application of well-orderability 50 Chapter IV. Self-distributivity 55 1. Colouring positive braids 56 2. Colouring arbitrary braids 66 3. The group of left self-distributivity 76 4. Normal forms in free LD-systems 81 5. Appendix: Iterations of elementary embeddings in set theory 84 Chapter V. Handle Reduction 87 1. Description of handle reduction 87 2. Convergence of handle reduction 92 3. Special cases and variants 102 Chapter VI. Connection with the Garside Structure 107 1. The degree of a positive braid 108 2. Proving Property C using a counting argument 113 v vi CONTENTS d 3. The increasing enumeration of Div(∆n) 117 Chapter VII. Alternating Decompositions 129 + 1. The Φn-splitting of a braid in Bn 130 2. The Φ -normal form 135 3. Burckel’s approach 143 4. Applications 148 Chapter VIII. Dual Braid Monoids 153 1. Dual braid monoids 154 +∗ 2. The φ -normal form on Bn 159 3. Connection between orders 163 Chapter IX. Automorphisms of a Free Group 173 1. Artin representation of σ-positive braids 173 2. From an automorphism back to a braid 178 3. Pulling back orderings of free groups 182 Chapter X. Curve Diagrams 185 1. A braid ordering using curve diagrams 185 2. Proof of Properties A, C,andS 189 Chapter XI. Relaxation Algorithms 195 1. Bressaud’s regular language of relaxation braids 196 2. The transmission-relaxation normal form of braids 204 Chapter XII. Triangulations 221 1. The coordinates of a braid 222 2. Triangulations and laminations 225 3. The Mosher normal form 236 Chapter XIII. Hyperbolic Geometry 247 1. Uncountably many orderings of the braid group 248 2. The classification of orderings induced by the action on R 256 3. The subword property for all Nielsen–Thurston type orderings 263 Chapter XIV. The Space of all Braid Orderings 265 1. The spaces of orderings on a group 265 2. The space of left-orderings of the braid groups 268 Chapter XV. Bi-ordering the Pure Braid Groups 273 1. Lower central series 273 2. Artin coordinates and Magnus expansion 274 3. The Magnus ordering of PBn 279 4. The ordering of positive pure braids 283 5. Incompatibility of the orderings 286 Chapter XVI. Open Questions and Extensions 291 1. General questions 291 2. More specific questions 293 3. Generalizations and extensions 301 CONTENTS vii Key Definitions 309 Bibliography 311 Index of Notation 319 Index 321 Preface The present volume follows a book, “Why are braids orderable?”, written by the same authors and published in 2002 by the Soci´et´eMath´ematique de France in the series Panoramas et Synth`eses. We emphasize that this is not a new edition of that book. Although this book contains most of the material in the previous book, it also contains a considerable amount of new material. In addition, much of the original text has been completely rewritten, with a view to making it more readable and up-to-date. We have been able not only to include ideas that were unknown in 2002, but we have also benefitted from helpful comments by colleagues and students regarding the contents of the SMF book, and we have taken their advice to heart in writing this book. The reader is assumed to have some basic background in group theory and topology. However, we have attempted to make the ideas in this volume accessible and interesting to students and seasoned professionals alike. In fact, the question “Why are braids orderable?” has not been answered to our satisfaction, either in the book with that title or the present volume. That is, we do not understand precisely what makes the braid groups so special that they enjoy an ordering so easy to describe, so challenging to construct and with such subtle properties as are described in these pages. The best we can offer is some insight into the easier question, “How are braids orderable?” Patrick Dehornoy, Caen Ivan Dynnikov, Moscow Dale Rolfsen, Vancouver Bert Wiest, Rennes December 2007 ix Key Definitions Sigma-ordering: −1 • For β,β in B∞,therelationβ<β is true if β β is σ-positive. Φ −1 Φ • For β,β in B∞,therelationβ< β is true if β β is σ -positive. Sigma-positive braid word: • A braid word is σ-positive if the σi with lowest index occurs positively only. • Φ A braid word is σ -positive if the σi with highest index occurs positively only. Sigma-positive braid: • Abraidisσ-positive if it admits a σ-positive representative word. • AbraidisσΦ-positive if it admits a σΦ-positive representative word. Property A (Acyclicity): • A σ-positive braid is nontrivial. Property C (Comparison): • Every nontrivial braid of Bn can be represented by an n-strandbraidwordthat is σ-positive or σ-negative. Property S (Subword): • −1 Every braid of the form β σiβ is σ-positive. Complementary Definitions • −1 ±1 A braid word is σi-positive if it contains at least one σi,noσi ,noσj with j<i. • −1 ±1 ... id. ... σi-negative if ... at least one σi ,noσi,noσj with j<i. • ±1 ... id. ... σi-free if ... no σj with j i. • A braid is called σi-positive if it admits a σi-positive expression, etc. Property A (second, equivalent form): A σ1-positive braid is nontrivial. Property C (second, equivalent form): Every braid of Bn can be represented by an n-strandbraidwordthatisσ1-positive, σ1-negative, or σ1-free. 309 Bibliography 1. S.I. Adyan, Fragments of the word Delta in a braid group, Mat. Zametki Acad. Sci. SSSR 36 (1984), no. 1, 25–34, (Russian); English translation in Math. Notes of the Acad. Sci. USSR 36 (1984), no. 1, p. 505–510. 2. I. Agol, J. Hass, and W.P. Thurston, The computational complexity of knot genus and spanning area, Trans. Amer. Math. Soc. 358 (2006), no. 9, 3821–3850, (electronic). 3. I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryptography, Math. Res. Lett. 6 (1999), 287–291. 4. E. Artin, Theorie der Z¨opfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47–72. 5. , Theory of braids, Ann. of Math. 48 (1947), 101–126. 6. S. Arworn and Y. Kim, On finitely-determined total orders,preprint. 7. L. Bacardit and W. Dicks, Actions of the braid group, and new algebraic proofs of results of Dehornoy and Larue, arXiv: math.GR/0705.0587. 8. V.G. Bardakov, On the theory of braid groups, Mat. Sb. 183 (1992), no. 6, 3–42, (Russian. English summary); English translation in Acad. Sci. Sb. Math. 76 (1993), no. 1, p. 123–153. 9. H. Bass and A. Lubotzky, Linear-central filtrations on groups, The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992), Contemp. Math., vol. 169, American Mathematical Society, 1994, pp.
Recommended publications
  • New Publications Offered by the AMS
    New Publications Offered by the AMS appropriate generality waited for the seventies. These early Algebra and Algebraic occurrences were in algebraic topology in the study of (iter- ated) loop spaces and their chain algebras. In the nineties, Geometry there was a renaissance and further development of the theory inspired by the discovery of new relationships with graph cohomology, representation theory, algebraic geometry, Almost Commuting derived categories, Morse theory, symplectic and contact EMOIRS M of the geometry, combinatorics, knot theory, moduli spaces, cyclic American Mathematical Society Elements in Compact cohomology, and, not least, theoretical physics, especially Volume 157 Number 747 string field theory and deformation quantization. The general- Almost Commuting Lie Groups Elements in ization of quadratic duality (e.g., Lie algebras as dual to Compact Lie Groups Armand Borel, Institute for commutative algebras) together with the property of Koszul- Armand Borel Advanced Study, Princeton, NJ, ness in an essentially operadic context provided an additional Robert Friedman computational tool for studying homotopy properties outside John W. Morgan and Robert Friedman and THEMAT A IC M A L N A S O C I C of the topological setting. R I E E T M Y A FO 8 U 88 John W. Morgan, Columbia NDED 1 University, New York City, NY The book contains a detailed and comprehensive historical American Mathematical Society introduction describing the development of operad theory Contents: Introduction; Almost from the initial period when it was a rather specialized tool in commuting N-tuples; Some characterizations of groups of homotopy theory to the present when operads have a wide type A; c-pairs; Commuting triples; Some results on diagram range of applications in algebra, topology, and mathematical automorphisms and associated root systems; The fixed physics.
    [Show full text]
  • Experiments on Growth Series of Braid Groups Jean Fromentin
    Experiments on growth series of braid groups Jean Fromentin To cite this version: Jean Fromentin. Experiments on growth series of braid groups. 2021. hal-02929264v3 HAL Id: hal-02929264 https://hal.archives-ouvertes.fr/hal-02929264v3 Preprint submitted on 14 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EXPERIMENTS ON GROWTH SERIES OF BRAID GROUPS JEAN FROMENTIN In memory of Patrick Dehornoy, a great mentor. Abstract. We introduce an algorithmic framework to investigate spherical and geodesic growth series of braid groups relatively to the Artin’s or Birman– Ko–Lee’s generators. We present our experimentations in the case of three and four strands and conjecture rational expressions for the spherical growth series with respect to the Birman–Ko–Lee’s generators. 1. Introduction Originally introduced as the group of isotopy classes of n-strands geometric braids, the braid group Bn admits many finite presentations by generators and relations. From each finite semigroup generating set S of Bn we can define at least two growth series. The spherical growth series counts elements of Bn by their dis- tance from the identity in the Cayley graph Cay(Bn,S) of Bn with respect to S.
    [Show full text]
  • ORDERING BRAIDS: in MEMORY of PATRICK DEHORNOY with the Untimely Passing of Patrick Dehornoy in September 2019, the World Of
    ORDERING BRAIDS: IN MEMORY OF PATRICK DEHORNOY DALE ROLFSEN With the untimely passing of Patrick Dehornoy in September 2019, the world of mathematics lost a brilliant scholar who made profound contributions to set theory, algebra, topology, and even computer science and cryptography. And I lost a dear friend and a strong influence in the direction of my own research in mathematics. In this article I will concentrate on his remarkable discovery that the braid groups are left-orderable, and its consequences, and its strong influence on my own research. I'll begin by describing how I learned of his work. 1. When I met Patrick In the late 1990's I had been working on a conjecture of Joan Birman [1] regarding the braid groups Bn and the (larger) monoids SBn of singular braids. I remind the reader that Bn has the presentation with generators σ1; : : : ; σn−1 and relations σiσj = σjσi if ji − jj > 1 and σiσjσi = σjσiσj when ji − jj = 1. Figure 1: The Artin generator σi In addition to the usual Artin generators σi in which the i-th strand passes below the next strand, SBn has elements τi in which those strands intersect each other. In the study of SBn and influenced by Vassiliev theory, Birman proposed the following mapping: σi −! σi −1 τi −! σi − σi For this to make sense, the target needs to be not just Bn, but rather the group ring ZBn. She conjectured that this map SBn ! ZBn is injective. Investigating this problem with a student at the time, Jun Zhu, we were making calculations in ZBn, including cancellations such as ab = ac =) b = c.
    [Show full text]
  • Fall 2006 [Pdf]
    Le Bulletin du CRM • www.crm.umontreal.ca • Automne/Fall 2006 | Volume 12 – No 2 | Le Centre de recherches mathématiques A Review of CRM’s 2005 – 2006 Thematic Programme An Exciting Year on Analysis in Number Theory by Chantal David (Concordia University) The thematic year “Analysis in Number The- tribution of integers, and level statistics), integer and rational ory” that was held at the CRM in 2005 – points on varieties (geometry of numbers, the circle method, 2006 consisted of two semesters with differ- homogeneous varieties via spectral theory and ergodic theory), ent foci, both exploring the fruitful interac- the André – Oort conjectures (equidistribution of CM-points tions between analysis and number theory. and Hecke points, and points of small height) and quantum The first semester focused on p-adic analy- ergodicity (quantum maps and modular surfaces) The main sis and arithmetic geometry, and the second speakers were Yuri Bilu (Bordeaux I), Bill Duke (UCLA), John semester on classical analysis and analytic number theory. In Friedlander (Toronto), Andrew Granville (Montréal), Roger both themes, several workshops, schools and focus periods Heath-Brown (Oxford), Elon Lindenstrauss (New York), Jens concentrated on the new and exciting developments of the re- Marklof (Bristol), Zeev Rudnick (Tel Aviv), Wolfgang Schmidt cent years that have emerged from the interplay between anal- (Colorado, Boulder and Vienna), K. Soundararajan (Michigan), ysis and number theory. The thematic year was funded by the Yuri Tschinkel (Göttingen), Emmanuel Ullmo (Paris-Sud), and CRM, NSF, NSERC, FQRNT, the Clay Institute, NATO, and Akshay Venkatesh (MIT). the Dimatia Institute from Prague. In addition to the partici- The workshop on “p-adic repre- pants of the six workshops and two schools held during the sentations,” organised by Henri thematic year, more than forty mathematicians visited Mon- Darmon (McGill) and Adrian tréal for periods varying from two weeks to six months.
    [Show full text]
  • SCIENTIFIC REPORT for the YEAR 1995 ESI, Pasteurgasse 6/7, A-1090 Wien, Austria
    The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria Scientific Report for the year 1995 Vienna, ESI-Report 1995 February 25, 1996 Supported by Federal Ministry of Science and Research, Austria Available via anonymous ftp or gopher from FTP.ESI.AC.AT, URL: http://www.esi.ac.at/ ESI–Report 1995 ERWIN SCHRODINGER¨ INTERNATIONAL INSTITUTE OF MATHEMATICAL PHYSICS, SCIENTIFIC REPORT FOR THE YEAR 1995 ESI, Pasteurgasse 6/7, A-1090 Wien, Austria February 25, 1996 Table of contents General remarks . 2 Winter School in Geometry and Physics . 2 ACTIVITIES IN 1995 . 3 Two-dimensional quantum field theory . 3 Complex Analysis . 3 Noncommutative Differential Geometry . 4 Field theory and differential geometry . 5 Geometry of nonlinear partial differential equations . 5 Gibbs random fields and phase transitions . 5 Reaction-diffusion Equations in Biological Context . 7 Condensed Matter Physics . 7 Semi-Classical Limits and Kinetic Equations . 8 Guests of Walter Thirring . 8 Guests of Klaus Schmidt . 8 Guest of Wolfgang Kummer . 8 CONTINUATIONS OF ACTIVITIES FROM 1994 . 10 Continuation Operator algebras . 10 Continuation Schr¨odinger Operators . 10 Continuation Mathematical Relativity . 10 Continuation Quaternionic manifolds . 10 Continuation Spinor - and twistor theory . 10 List of Preprints . 10 List of seminars and colloquia . 18 List of all visitors in the year 1995 . 21 Impressum: Eigent¨umer, Verleger, Herausgeber: Erwin Schr¨odinger International Institute of Mathematical Physics. Offenlegung nach §25 Mediengesetz: Verlags- und Herstellungsort: Wien, Ziel der Zeitung: Wis- senschaftliche Information, Redaktion: Peter W. Michor Typeset by AMS-TEX Typeset by AMS-TEX 2 Scientific report 1995 General remarks The directors of ESI changed.
    [Show full text]
  • Coherence Constraints for Operads, Categories and Algebras
    WSGP 20 Martin Markl; Steve Shnider Coherence constraints for operads, categories and algebras In: Jan Slovák and Martin Čadek (eds.): Proceedings of the 20th Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 2001. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 66. pp. 29--57. Persistent URL: http://dml.cz/dmlcz/701667 Terms of use: © Circolo Matematico di Palermo, 2001 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO Serie II, Suppl. 66 (2001) pp. 29-57 COHERENCE CONSTRAINTS FOR OPERADS, CATEGORIES AND ALGEBRAS MARTIN MARKL AND STEVE SHNIDER ABSTRACT. Coherence phenomena appear in two different situations. In the context of category theory the term 'coherence constraints' refers to a set of diagrams whose commutativity implies the commutativity of a larger class of diagrams. In the context of algebra coherence constrains are a minimal set of generators for the second syzygy, that is, a set of equations which generate the full set of identities among the defining relations of an algebraic theory. A typical example of the first type is Mac Lane's coherence theorem for monoidal categories [9, Theorem 3.1], an example of the second type is the result of [2] saying that pentagon identity for the 'associator' $ of a quasi-Hopf algebra implies the validity of a set of identities with higher instances of $.
    [Show full text]
  • SCIENTIFIC REPORT for the 5 YEAR PERIOD 1993–1997 INCLUDING the PREHISTORY 1991–1992 ESI, Boltzmanngasse 9, A-1090 Wien, Austria
    The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria Scientific Report for the 5 Year Period 1993–1997 Including the Prehistory 1991–1992 Vienna, ESI-Report 1993-1997 March 5, 1998 Supported by Federal Ministry of Science and Transport, Austria http://www.esi.ac.at/ ESI–Report 1993-1997 ERWIN SCHRODINGER¨ INTERNATIONAL INSTITUTE OF MATHEMATICAL PHYSICS, SCIENTIFIC REPORT FOR THE 5 YEAR PERIOD 1993–1997 INCLUDING THE PREHISTORY 1991–1992 ESI, Boltzmanngasse 9, A-1090 Wien, Austria March 5, 1998 Table of contents THE YEAR 1991 (Paleolithicum) . 3 Report on the Workshop: Interfaces between Mathematics and Physics, 1991 . 3 THE YEAR 1992 (Neolithicum) . 9 Conference on Interfaces between Mathematics and Physics . 9 Conference ‘75 years of Radon transform’ . 9 THE YEAR 1993 (Start of history of ESI) . 11 Erwin Schr¨odinger Institute opened . 11 The Erwin Schr¨odinger Institute An Austrian Initiative for East-West-Collaboration . 11 ACTIVITIES IN 1993 . 13 Short overview . 13 Two dimensional quantum field theory . 13 Schr¨odinger Operators . 16 Differential geometry . 18 Visitors outside of specific activities . 20 THE YEAR 1994 . 21 General remarks . 21 FTP-server for POSTSCRIPT-files of ESI-preprints available . 22 Winter School in Geometry and Physics . 22 ACTIVITIES IN 1994 . 22 International Symposium in Honour of Boltzmann’s 150th Birthday . 22 Ergodicity in non-commutative algebras . 23 Mathematical relativity . 23 Quaternionic and hyper K¨ahler manifolds, . 25 Spinors, twistors and conformal invariants . 27 Gibbsian random fields . 28 CONTINUATION OF 1993 PROGRAMS . 29 Two-dimensional quantum field theory . 29 Differential Geometry . 29 Schr¨odinger Operators .
    [Show full text]
  • What Makes a Theory of Infinitesimals Useful? a View by Klein and Fraenkel
    WHAT MAKES A THEORY OF INFINITESIMALS USEFUL? A VIEW BY KLEIN AND FRAENKEL VLADIMIR KANOVEI, KARIN U. KATZ, MIKHAIL G. KATZ, AND THOMAS MORMANN Abstract. Felix Klein and Abraham Fraenkel each formulated a criterion for a theory of infinitesimals to be successful, in terms of the feasibility of implementation of the Mean Value Theorem. We explore the evolution of the idea over the past century, and the role of Abraham Robinson’s framework therein. 1. Introduction Historians often take for granted a historical continuity between the calculus and analysis as practiced by the 17–19th century authors, on the one hand, and the arithmetic foundation for classical analysis as developed starting with the work of Cantor, Dedekind, and Weierstrass around 1870, on the other. We extend this continuity view by exploiting the Mean Value Theo- rem (MVT) as a case study to argue that Abraham Robinson’s frame- work for analysis with infinitesimals constituted a continuous extension of the procedures of the historical infinitesimal calculus. Moreover, Robinson’s framework provided specific answers to traditional preoc- cupations, as expressed by Klein and Fraenkel, as to the applicability of rigorous infinitesimals in calculus and analysis. This paper is meant as a modest contribution to the prehistory of Robinson’s framework for infinitesimal analysis. To comment briefly arXiv:1802.01972v1 [math.HO] 1 Feb 2018 on a broader picture, in a separate article by Bair et al. [1] we ad- dress the concerns of those scholars who feel that insofar as Robinson’s framework relies on the resources of a logical framework that bears little resemblance to the frameworks that gave rise to the early theo- ries of infinitesimals, Robinson’s framework has little bearing on the latter.
    [Show full text]
  • GARSIDE GROUPS and GEOMETRY – in MEMORY of PATRICK DEHORNOY 3 the Curve Graph – See E.G
    GARSIDE GROUPS AND GEOMETRY BERT WIEST Abstract. This article in memory of Patrick Dehornoy (1952 – 2019) is an in- vitation to Garside theory for mainstream geometric group theorists interested in mapping class groups, curve complexes, and the geometry of Artin–Tits groups. 1. Meeting Patrick When I remember Patrick Dehornoy, the first thing that comes to my mind is his humour – he was one of the people who knew how to do serious work and have serious discussions with a smile and even a laugh, always in a way that advanced the work. And his work! His energy and his efficiency at everything he touched were downright scary to me. He was clearly the driving force behind the two book projects [23, 24] he had with me (together with Ivan Dynnikov and Dale Rolfsen). Each time, his plans for these books grew more and more ambitious even during the writing process, and it must have been terribly frustrating to him that his co-authors had trouble following his rhythm. His unbelievable productiveness and efficiency concerned not only his mathematical work, but also his administrative work (as head of his department, but also in French national scientific administration), and his private projects (constructing his house and his garden, and creating humorous little movies, for instance). I remember Patrick’s sometimes startling openness when discussing his private life. I remember his kindness and generosity, in particular with younger mathe- maticians, taking time and sharing his ideas. I remember his patience with less efficient people. When I told him quite frankly that the book on the foundations of Garside theory was too long and abstract for me, he listened patiently and promised to write something short and enjoyable that would at least give a glimpse of the arXiv:2008.08802v1 [math.GR] 20 Aug 2020 book.
    [Show full text]
  • GARSIDE GROUPS and GEOMETRY: SOME THOUGHTS for PATRICK DEHORNOY 1. Meeting Patrick When I Remember Patrick Dehornoy, the First T
    GARSIDE GROUPS AND GEOMETRY: SOME THOUGHTS FOR PATRICK DEHORNOY BERT WIEST Abstract. This article in memory of Patrick Dehornoy (1952 { 2019) is an in- vitation to Garside theory for mainstream geometric group theorists interested in mapping class groups, curve complexes, and the geometry of Artin{Tits groups. 1. Meeting Patrick When I remember Patrick Dehornoy, the first thing that comes to my mind is his humour { he was one of the people who knew how to do serious work and have serious discussions with a smile and even a laugh, always in a way that advanced the work. And his work! His energy and his efficiency at everything he touched were downright scary to me. He was clearly the driving force behind the two book projects [23, 24] he had with me (together with Ivan Dynnikov and Dale Rolfsen). Each time, his plans for these books grew more and more ambitious even during the writing process, and it must have been terribly frustrating to him that his co-authors had trouble following his rhythm. His unbelievable productiveness and efficiency concerned not only his mathematical work, but also his administrative work (as head of his department, but also in French national scientific administration), and his private projects (constructing his house and his garden, and creating humorous little movies, for instance). I remember Patrick's sometimes startling openness when discussing his private life. I remember his kindness and generosity, in particular with younger mathe- maticians, taking time and sharing his ideas. I remember his patience with less efficient people. When I told him quite frankly that the book on the foundations of Garside theory was too long and abstract for me, he listened patiently and promised to write something short and enjoyable that would at least give a glimpse of the book.
    [Show full text]
  • Arxiv:1210.7750V1 [Math.HO] 29 Oct 2012 Tsml Ehdo Aiaadmnm;Rfato;Selslaw
    ALMOST EQUAL: THE METHOD OF ADEQUALITY FROM DIOPHANTUS TO FERMAT AND BEYOND MIKHAIL G. KATZ, DAVID M. SCHAPS, AND STEVEN SHNIDER Abstract. We analyze some of the main approaches in the liter- ature to the method of ‘adequality’ with which Fermat approached the problems of the calculus, as well as its source in the παρισoτης´ of Diophantus, and propose a novel reading thereof. Adequality is a crucial step in Fermat’s method of finding max- ima, minima, tangents, and solving other problems that a mod- ern mathematician would solve using infinitesimal calculus. The method is presented in a series of short articles in Fermat’s col- lected works [66, p. 133-172]. We show that at least some of the manifestations of adequality amount to variational techniques ex- ploiting a small, or infinitesimal, variation e. Fermat’s treatment of geometric and physical applications sug- gests that an aspect of approximation is inherent in adequality, as well as an aspect of smallness on the part of e. We question the rel- evance to understanding Fermat of 19th century dictionary defini- tions of παρισoτης´ and adaequare, cited by Breger, and take issue with his interpretation of adequality, including his novel reading of Diophantus, and his hypothesis concerning alleged tampering with Fermat’s texts by Carcavy. We argue that Fermat relied on Bachet’s reading of Diophantus. Diophantus coined the term παρισoτης´ for mathematical pur- poses and used it to refer to the way in which 1321/711 is ap- proximately equal to 11/6. Bachet performed a semantic calque in passing from pariso¯o to adaequo.
    [Show full text]
  • Notes on Contributors
    Notes on Contributors Andreas Blank is Senior Lecturer in Philosophy at the University of Paderborn, Germany. Previously, he has been Visiting Fellow at the Cen- ter for Philosophy of Science at the University of Pittsburgh, the Cohn In- stitute for the History and Philosophy of Science and Ideas at Tel Aviv University, the Herzog August Library in Wolfenbüttel, and the Jacques Loeb Center for the History and Philosophy of the Life Sciences at Ben- Gurion University, Be’er-Sheva, as well as Visiting Associate Professor at the University of Hamburg. His publications include Der logische Aufbau von Leibniz’ Metaphysik (2001), Leibniz: Metaphilosophy and Metaphysics, 1666–1686 (2005), and Biomedical Ontology and the Metaphysics of Composite Substances, 1540–1670 (2010). Martin Campbell-Kelly is emeritus professor in the Department of Com- puter Science at the University of Warwick, where he specializes in the history of computing. His books include Computer: A History of the Informa- tion Machine, co-authored with William Aspray, From Airline Reservations to Sonic the Hedgehog: A History of the Software Industry, and ICL: A Business and Technical History. He is a member of the ACM History Committee and a member of the editorial board of the IEEE Annals of the History of Com- puting. J. L. Heilbron is an emeritus professor of history at the University of Cal- ifornia Berkeley. His most recent book is a biography of Galileo published by Oxford University Press in 2010. Helge Kragh is Professor of History of Science at the Centre for Science Studies, Aarhus University, Denmark. His main research area is the his- tory of the physical sciences since 1850, including the histories of quan- Perspectives on Science 2013, vol.
    [Show full text]