Costs and Benfits of Group Living in an Unusual Social Spider

Total Page:16

File Type:pdf, Size:1020Kb

Costs and Benfits of Group Living in an Unusual Social Spider COSTS AND BENFITS OF GROUP LIVING IN AN UNUSUAL SOCIAL SPIDER, DELENA CANCERIDES A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Eric Chun-Ngam Yip August, 2012 i ii COSTS AND BENFITS OF GROUP LIVING IN AN UNUSUAL SOCIAL SPIDER, DELENA CANCERIDES Eric Chun-Ngam Yip, Ph.D. Cornell University 2012 Virtually all spiders are predators, and many are cannibalistic. Of the handful of species that tolerate conspecifics and sustain long-term associations, nearly all spin a web or silken retreat. Previous research on these social spiders showed that many of the benefits they derive from group living depend on these silken structures. The social huntsman spider of Australia, Delena cancerides, is the exception and only lives under the bark of trees. I studied the costs and benefits of group living in this species, given that many of the benefits ascribed to other species are impossible without a web, in three contexts: (1) predator defense, (2) foraging, and (3) dispersal. I examined predator defense by introducing potential predators into field colonies that had been manipulated to allow observations and into captive colonies in the laboratory. The single adult female of the colony was the primary defender of the colony, while younger spiders were ineffective at repelling predators. I examined foraging by observing natural prey capture in the field, introducing prey into field colonies, and recording the condition of field spiders at the time of collection. Spiders predominantly foraged individually; however, some prey captured inside the retreat was shared, and younger iii spiders benefited from sharing prey captured by their older siblings. I examined dispersal into neighboring colonies through a combination of allozyme analyses and direct observations in the field and laboratory. Young spiders can and do immigrate into foreign colonies; however, older spiders were usually attacked in foreign colonies, and thus their dispersal options are constrained. Through the use of nest boxes, I showed that competition for a new bark retreat is intense and that spiders should wait in their natal retreat until they are larger and better competitors for a new retreat. Together, these data show that the bark retreat is indeed critical to the social biology of D. cancerides. Without the web some forms of cooperation found in other social spiders never evolved, yet the reliance on a rare bark retreat also promotes group cohesion, as is found in many social vertebrates. iv BIOGRAPHICAL SKETCH In May of 2005, Eric C. Yip graduated with a B.S. in Ecology and Evolutionary Biology from the University of Arizona, summa cum laude and with honors. His honors thesis on the relationship between colony size and foraging success in the social spider, Anelosimus eximius, sparked his interest in the evolution of social behavior in spiders and would eventually be published in The Proceedings of the National Academy of Sciences, USA. He chose to continue his work on social spiders with Dr. Linda S. Rayor at Cornell University’s Department of Entomology. From 2005 to 2012, he has studied the costs and benefits of group living in the unusual social spider, Delena cancerides. Eric is grateful to the Fulbright Fellowship, the National Science Foundation’s Graduate Research Fellowship, Cornell University’s Sage Fellowship and Liu Memorial Fund, in addition to smaller awards, that have funded his research. These grants have allowed him to spend three years conducting field work in Australia as a visiting fellow at The Australian National University. He has presented his work at meeting by the American Arachnological Society, the International Arachnology Congress, the International Society for Behavioral Ecology, and the Animal Behavior Society. He was awarded second place Best Student Oral Presentation at two International Arachnology Congresses in 2007 and 2010. He was also selected to compete in the Animal Behavior Society’s Allee Competition in 2012. He has been awarded the Blaustein Fellowship and the Kreitman Fellowship to conduct post-doctoral work at Ben-Gurion University of the Negev with Dr. Yael Lubin. v AKNOWLEGEMENTS Funding for my dissertation research was provided by The Australian-American Fulbright Association, The National Science Foundation Graduate Research Fellowship, Cornell University’s Sage Fellowship, Cornell University’s Liu Memorial Fund, The Rawlins Endowment, and Cornell’s Graduate School. I would like to thank my adviser, Dr. Linda S. Rayor for her guidance on all aspects of this work. I would also like to thank my other co-authors, Shannon Roberts (formerly Shannon Clarke) and Dr. David M. Rowell. Dr. Rowell was also my gracious host at The Australian National University. My work would not have been possible without the help of the faculty and staff of The Australian National University’s School of Research Biology. I thank my committee members Drs. Thomas D. Seeley and Hudson Kern Reeve for their comments on the chapters of this dissertation. Finally, I would like to thank the many undergraduates of the Rayor lab who have provided animal care and stimulating conversation over the years. vi TABLE OF CONTENTS Biographical Sketch v Acknowledgements vi Chapter 1: Aliens among us: Nestmate recognition in the social huntsman spider, Delena cancerides. 1 Chapter 2: Do social spiders cooperate in predator defense and foraging without a web? 28 Chapter 3: Molecular and behavioural evidence for selective immigration and group regulation in the social huntsman spider, Delena cancerides. 67 Chapter 4: The influence of siblings on body condition in a social spider: Is prey sharing cooperation or competition? 106 Chapter 5: Saturated habitats promote philopatry in a social huntsman spider. 137 Chapter 6: Maternal care and subsocial behavior in spiders 159 vii CHAPTER 1 Aliens among us: Nestmate recognition in the social huntsman spider, Delena cancerides E.C. Yip, S. Clarke, L.S. Rayor Published in Insectes Sociaux/ Received: 22 May 2008/ Revised: 28 January 2009/ Accepted 21 April 2009/ Published online: 13 May 2009 © Birkhäuser Verlag, Basel/Switzerland 2009 Abstract. Unlike all other social spiders, the social huntsman spider, Delena cancerides has been reported to rapidly respond to non-nestmates with lethal aggression, similar to the behavior of some eusocial insects. We tested for the presence of nestmate recognition in D. cancerides under laboratory conditions by introducing 105 unrelated alien conspecifics into foreign colonies and comparing their behavior to 60 control spiders removed and returned to their natal colony. Spiders demonstrated nestmate recognition by investigating alien spiders far more than nestmates and by resting closer to nestmates than to aliens. Serious attacks or deaths occurred in 23% of all trials; however, aggression was not directed significantly more toward aliens than to nestmates. Most notably, aggression was largely mediated by the adult females (resident or alien), who were most likely to attack or kill other subadult or mature individuals. Young individuals (resident or alien) were largely immune from serious aggression. Spiders recently collected from the field tended to be more 1 aggressive than spiders born and raised in the laboratory, possibly due to blurring of recognition cues related to laboratory husbandry. Our findings support the prediction that nestmate recognition should evolve when there is a benefit to discriminating against non-kin, as in this social spider system where foraging individuals may enter a foreign colony and the colony retreat is a limited resource. Key words: Social spiders, Nestmate recognition, aggression Introduction The ability to discriminate kin from other conspecifics is a common trait among social animals, as it allows altruistic behaviors to be preferentially directed toward kin (Hamilton 1964; Hölldobler & Wilson 1990; Holmes 2004). Most eusocial insects recognize their nestmates, with the resolution of kin discrimination at the level of the colony (Breed et al. 1994; Clément & Bagnères 1998; Strassmann et al. 2000; Tarpy et al. 2004). While nestmate recognition is common among the eusocial insects (Wilson 1971; Singer & Espelie 1992; Clément & Bagnères 1998; Vander Meer & Morel 1998) nestmate recognition is rare or absent in the subsocial and social arachnids (Lubin & Bilde 2007). There is a continuum of social behavior in the spiders from small subsocial mother-offspring-sibling groups to complex, cooperative societies of thousands of individuals (Buskirk 1981; Avilés 1997; Lubin & Bilde 2007). Most social spiders, despite multiple evolutionary origins, share a suite of traits that includes the acceptance of alien spiders (unrelated and unfamiliar conspecifics) into the group without overt 2 aggression (Lubin & Bilde 2007). These social spider species do not appear to differentiate between conspecific aliens and members of their own colony (Pasquet et al. 1997), silk from kin or non-kin (Bilde et al. 2002; Buser 2002), or even heterospecific from conspecific spiders in the same genus (Seibt & Wickler 1988a). Most social spiders may have never evolved nestmate recognition because the costs of sharing resources are relatively small, and non-relatives are encountered only rarely. While there is undoubtedly competition for resources within social spider colonies (Ward 1986; Seibt & Wickler 1988b; Avilés & Tufiño 1998; Bilde et al. 2007), the benefits
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • Biogeography of the Caribbean Cyrtognatha Spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J
    www.nature.com/scientificreports OPEN Biogeography of the Caribbean Cyrtognatha spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J. Binford3 & Matjaž Kuntner 1,4,5,6 Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene fow and Received: 23 July 2018 diversifcation of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha Accepted: 1 November 2018 (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine Published: xx xx xxxx its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifcally, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversifed on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event.
    [Show full text]
  • Vibratory Communication in the Black Widow Spider, Latrodectus Hesperus (Araneae: Theridiidae)
    Vibratory Communication in the Black Widow Spider, Latrodectus hesperus (Araneae: Theridiidae) by Senthurran Sivalinghem A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto © Copyright by Senthurran Sivalinghem 2020 Vibratory Communication in the Black Widow Spider, Latrodectus hesperus (Araneae: Theridiidae) Senthurran Sivalinghem Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto 2020 Abstract Several studies have described vibration producing behaviours across many web-building spiders, and vibratory communication is thought to play an integral role during male-female interactions. Despite the presumed ubiquity of vibratory communication in this group of spiders, very little is known about the characteristics and functions of the signals involved, how signals are produced and transmitted through webs, or how vibrations are perceived. In this thesis, I used the western black widow spider, Latrodectus hesperus, as my focal organism, to investigate the details of vibratory communication from sender to the receiver. My results show that male L. hesperus courtship vibration signals comprise three distinct components (abdominal tremulation, bounce and web plucks), each produced using different signal production mechanism. Larger males produced bounce and web pluck signals with high power, which suggests that these signals may carry information about male traits. I found that during the early phase of courtship, males produced these different signal components haphazardly, with little temporal organization among the individual components (unstructured signaling). However, during the later phase of courtship, as males approach females, males intermittently organized signal components into a stereotyped temporal sequence (structured signaling).
    [Show full text]
  • How Non-Nestmates Affect the Cohesion of Swarming Groups in Social Spiders
    Insect. Soc. 55 (2008) 355 – 359 0020-1812/08/040355-5 Insectes Sociaux DOI 10.1007/s00040-008-1011-8 Birkhäuser Verlag, Basel, 2008 Research article How non-nestmates affect the cohesion of swarming groups in social spiders A.-C. Mailleux1, R. Furey2, F. Saffre1, B. Krafft4 and J.-L. Deneubourg1 1 Service dÉcologie Sociale, Campus de la Plaine, CP 231, UniversitØ Libre de Bruxelles, 1050 Brussels, Belgium, e-mail: [email protected], [email protected], [email protected] 2 Harrisburg University of Science and Technology 866, HBG.UNIV 215, Market Street, Harrisburg, Pennsylvania 17101 USA, e-mail: [email protected] 3 UniversitØ Nancy 2, Rue Baron Louis, BP 454 Code postal 54001 Ville Nancy Cedex, France, e-mail: [email protected] Received 30 October 2007; revised 3 April and 19 May 2008; accepted 22 May 2008. Published Online First 17 June 2008 Abstract. In social biology, it is often considered that an Fletcher and Michener, 1987). Unlike most vertebrate organized society cannot exist without exclusion behav- and invertebrate societies (Hepper, 1986; Fletcher and iour towards newcomers from another nest. Unlike most Michener, 1987), social spiders accept artificially intro- vertebrate and invertebrate social species, social spiders duced immigrants without apparent discrimination or such as Anelosimus eximius accept unrelated migrants agonistic behaviour (Evans, 1999). This absence of group without agonistic behaviour. Does it imply that spiders closure prompts some authors to suggest that spiders cannot recognize non-nestmates from nestmates or is cannot identify newcomers (Buskirk, 1981; Howard, there any evidence of recognition without aggression ? In 1982; Darchen and Delage-Darchen, 1986; Pasquet et order to answer this question, we studied behavioural al., 1997).
    [Show full text]
  • Arachnids (Excluding Acarina and Pseudoscorpionida) of the Wichita Mountains Wildlife Refuge, Oklahoma
    OCCASIONAL PAPERS THE MUSEUM TEXAS TECH UNIVERSITY NUMBER 67 5 SEPTEMBER 1980 ARACHNIDS (EXCLUDING ACARINA AND PSEUDOSCORPIONIDA) OF THE WICHITA MOUNTAINS WILDLIFE REFUGE, OKLAHOMA JAMES C. COKENDOLPHER AND FRANK D. BRYCE The Wichita Mountains are located in eastern Greer, southern Kiowa, and northwestern Comanche counties in Oklahoma. Since their formation more than 300 million years ago, these rugged mountains have been fragmented and weathered, until today the highest peak (Mount Pinchot) stands only 756 meters above sea level (Tyler, 1977). The mountains are composed predominantly of granite and gabbro. Forests of oak, elm, and walnut border most waterways, while at elevations from 153 to 427 meters prair­ ies are the predominant vegetation type. A more detailed sum­ mary of the climatic and biotic features of the Wichitas has been presented by Blair and Hubbell (1938). A large tract of land in the eastern range of the Wichita Moun­ tains (now northeastern Comanche County) was set aside as the Wichita National Forest by President McKinley during 1901. In 1905, President Theodore Roosevelt created a game preserve on those lands managed by the Forest Service. Since 1935, this pre­ serve has been known as the Wichita Mountains Wildlife Refuge. Numerous papers on Oklahoma spiders have been published (Bailey and Chada, 1968; Bailey et al., 1968; Banks et al, 1932; Branson, 1958, 1959, 1966, 1968; Branson and Drew, 1972; Gro- thaus, 1968; Harrel, 1962, 1965; Horner, 1975; Rogers and Horner, 1977), but only a single, comprehensive work (Banks et al., 1932) exists covering all arachnid orders in the state. Further additions and annotations to the arachnid fauna of Oklahoma can be found 2 OCCASIONAL PAPERS MUSEUM TEXAS TECH UNIVERSITY in recent revisionary studies.
    [Show full text]
  • Three New Coelotes Spiders (Araneae
    Zoological Studies 40(2): 127-133 (2001) Three New Coelotes Spiders (Araneae: Amaurobiidae) from Taiwan Xinping Wang1,*, I-Min Tso2 and Hai-Yin Wu3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, NY 10024, USA 2Department of Biology, Tunghai University, Taichung, Taiwan 407, R.O.C. 3Institute of Natural Resource Management, Tunghwa University, Hwalian, Taiwan 974, R.O.C. (Accepted January 4, 2001) Xinping Wang, I-Min Tso and Hai-Yin Wu (2001) Three new Coelotes spiders (Araneae: Amaurobiidae) from Taiwan. Zoological Studies 40(2): 127-133. Five species of the spider genus Coelotes were collected from pitfall traps in the Hui-Sun Experimental Forest Station in the central mountains of Taiwan. These include Coelotes xinhuiensis Chen, 1984, Paracoelotes taiwanensis Wang and Ono, 1998; and 3 new species: Coelotes bifida sp. n., C. latus sp. n., and C. longus sp. n. The new species are described and illustrated, and the spinneret morphology and natural history of the new species C. bifida and C. latus are reported. The current number of coelotine spider species in Taiwan is increased to 12. The species, Wadotes primus Fox, 1937, which was described from Hong Kong, is newly transferred to the genus Coelotes (new combination). Key words: Coelotes bifida, Coelotes latus, Coelotes longus, Spinnerets, Hui-Sun Forest Area. Coelotes spiders are widespread and spe- wanese arachnofaunal surveys, many unrecorded cious in East Asia (Yaginuma 1986, Wang et al. species were found in these collections. Among the 1990, Wang and Ono 1998), with currently more than specimens obtained, coelotine spiders were quite 100 described species.
    [Show full text]
  • Arachnida, Solifugae) with Special Focus on Functional Analyses and Phylogenetic Interpretations
    HISTOLOGY AND ULTRASTRUCTURE OF SOLIFUGES Comparative studies of organ systems of solifuges (Arachnida, Solifugae) with special focus on functional analyses and phylogenetic interpretations HISTOLOGIE UND ULTRASTRUKTUR DER SOLIFUGEN Vergleichende Studien an Organsystemen der Solifugen (Arachnida, Solifugae) mit Schwerpunkt auf funktionellen Analysen und phylogenetischen Interpretationen I N A U G U R A L D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Anja Elisabeth Klann geboren am 28.November 1976 in Bremen Greifswald, den 04.06.2009 Dekan ........................................................................................................Prof. Dr. Klaus Fesser Prof. Dr. Dr. h.c. Gerd Alberti Erster Gutachter .......................................................................................... Zweiter Gutachter ........................................................................................Prof. Dr. Romano Dallai Tag der Promotion ........................................................................................15.09.2009 Content Summary ..........................................................................................1 Zusammenfassung ..........................................................................5 Acknowledgments ..........................................................................9 1. Introduction ............................................................................
    [Show full text]
  • Abundance and Community Composition of Arboreal Spiders: the Relative Importance of Habitat Structure
    AN ABSTRACT OF THE THESIS OF Juraj Halaj for the degree of Doctor of Philosophy in Entomology presented on May 6, 1996. Title: Abundance and Community Composition of Arboreal Spiders: The Relative Importance of Habitat Structure. Prey Availability and Competition. Abstract approved: Redacted for Privacy _ John D. Lattin, Darrell W. Ross This work examined the importance of structural complexity of habitat, availability of prey, and competition with ants as factors influencing the abundance and community composition of arboreal spiders in western Oregon. In 1993, I compared the spider communities of several host-tree species which have different branch structure. I also assessed the importance of several habitat variables as predictors of spider abundance and diversity on and among individual tree species. The greatest abundance and species richness of spiders per 1-m-long branch tips were found on structurally more complex tree species, including Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco and noble fir, Abies procera Rehder. Spider densities, species richness and diversity positively correlated with the amount of foliage, branch twigs and prey densities on individual tree species. The amount of branch twigs alone explained almost 70% of the variation in the total spider abundance across five tree species. In 1994, I experimentally tested the importance of needle density and branching complexity of Douglas-fir branches on the abundance and community structure of spiders and their potential prey organisms. This was accomplished by either removing needles, by thinning branches or by tying branches. Tying branches resulted in a significant increase in the abundance of spiders and their prey. Densities of spiders and their prey were reduced by removal of needles and thinning.
    [Show full text]
  • Aglaoctenus (Araneae, Lycosidae)
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA FERNANDA VON HERTWIG MASCARENHAS FONTES ANÁLISE FILOGEOGRÁFICA DE DUAS ESPÉCIES DO GÊNERO AGLAOCTENUS (ARANEAE, LYCOSIDAE) PHYLOGEOGRAPHICAL ANALYSIS OF TWO AGLAOCTENUS SPECIES (ARANEAE, LYCOSIDAE) CAMPINAS 2016 FERNANDA VON HERTWIG MASCARENHAS FONTES ANÁLISE FILOGEOGRÁFICA DE DUAS ESPÉCIES DO GÊNERO AGLAOCTENUS (ARANEAE, LYCOSIDAE) PHYLOGEOGRAPHICAL ANALYSIS OF TWO AGLAOCTENUS SPECIES (ARANEAE, LYCOSIDAE) Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Doutora em Genética e Biologia Molecular, na Área de Genética Animal e Evolução. Thesis presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Doctor in Genetics and Molecular Biology, in the area of Animal Genetics and Evolution. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA FERNANDA VON HERTWIG MASCARENHAS FONTES E ORIENTADA PELA PROFA. DRA. VERA NISAKA SOLFERINI. Orientadora: VERA NISAKA SOLFERINI CAMPINAS 2016 Campinas, 22 de setembro de 2016. COMISSÃO EXAMINADORA Profa. Dra. Vera Nisaka Solferini Dr. Marcos Roberto Dias Batista Prof. Dr. Evandro Marsola de Moraes Profa. Dra. Ana Maria Lima de Azeredo Espin Prof. Dr. Fábio Sarubbi Raposo do Amaral Os membros da Comissão Examinadora acima assinaram a Ata de Defesa, que se encontra no processo de vida acadêmica do aluno. Ao meu querido pai Saudades eternas AGRADECIMENTOS Agradeço especialmente aos meus pais, Tatiana e Antonio Fernando (in memoriam), pelo carinho e dedicação. Todo o esforço que fizeram foi imprescindível para que eu pudesse concluir mais essa etapa na minha vida. Amo vocês! Às minhas queridas irmãs e amigas, Tarsilla e Renata, que sempre estiveram ao meu lado.
    [Show full text]
  • Araneae, Lycosidae, Sosippinae)
    2007. The Journal of Arachnology 35:313–317 A REVIEW OF THE WOLF SPIDER GENUS HIPPASELLA (ARANEAE, LYCOSIDAE, SOSIPPINAE) E´ der S. S. A´ lvares1,2 and Antonio D. Brescovit1: 1Laborato´rio de Artro´podes, Instituto Butantan, Sa˜o Paulo, Sa˜o Paulo, Brazil 2Departamento de Zoologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, Brazil. E-mail: [email protected] ABSTRACT. The monotypic genus Hippasella Mello-Leita˜o 1944 is revised, and its type-species H. nitida Mello-Leita˜o 1944 is considered a junior synonym of Tarentula guaquiensis Strand 1908, from Bolivia. Hippasella guaquiensis (Strand) comb. nov. is redescribed and the female genitalia are illustrated for the first time. This species now is recorded from Peru, Bolivia and Argentina. It appears to prefer vegetation near water. RESUMO. Ogeˆnero monotı´pico Hippasella Mello-Leita˜o 1944 e´ revisado e sua espe´cie-tipo H. nitida Mello-Leita˜o 1944 e´ considerada um sinoˆnimo ju´nior de Tarentula guaquiensis Strand 1908, da Bolı´via. Hippasella guaquiensis (Strand) comb. nov. e´ redescrita e a genita´lia da feˆmea e´ ilustrada pela primeira vez. Esta espe´cie e´ agora conhecida do Peru, Bolı´via e da Argentina, onde parece preferir a vegetac¸a˜o pro´xima a`a´gua. Keywords: Neotropical, taxonomy, redescription The genus Hippasella was proposed by Me- turais, Porto Alegre, and in the Museo de llo-Leita˜o (1944) based on Hippasella nitida Historia Natural San Marcos, Lima, we found Mello-Leita˜o 1944, a species known only some additional specimens of this species, in- from a male specimen collected in La Plata, cluding females.
    [Show full text]
  • Sand Transport and Burrow Construction in Sparassid and Lycosid Spiders
    2017. Journal of Arachnology 45:255–264 Sand transport and burrow construction in sparassid and lycosid spiders Rainer Foelix1, Ingo Rechenberg2, Bruno Erb3, Andrea Alb´ın4 and Anita Aisenberg4: 1Neue Kantonsschule Aarau, Biology Department, Electron Microscopy Unit, Zelgli, CH-5000 Aarau, Switzerland. Email: [email protected]; 2Technische Universita¨t Berlin, Bionik & Evolutionstechnik, Sekr. ACK 1, Ackerstrasse 71-76, D-13355 Berlin, Germany; 3Kilbigstrasse 15, CH-5018 Erlinsbach, Switzerland; 4Laboratorio de Etolog´ıa, Ecolog´ıa y Evolucio´n, Instituto de Investigaciones Biolo´gicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay Abstract. A desert-living spider sparassid (Cebrennus rechenbergi Ja¨ger, 2014) and several lycosid spiders (Evippomma rechenbergi Bayer, Foelix & Alderweireldt 2017, Allocosa senex (Mello-Leita˜o, 1945), Geolycosa missouriensis (Banks, 1895)) were studied with respect to their burrow construction. These spiders face the problem of how to transport dry sand and how to achieve a stable vertical tube. Cebrunnus rechenbergi and A. senex have long bristles on their palps and chelicerae which form a carrying basket (psammophore). Small balls of sand grains are formed at the bottom of a tube and carried to the burrow entrance, where they are dispersed. Psammophores are known in desert ants, but this is the first report in desert spiders. Evippomma rechenbergi has no psammophore but carries sand by using a few sticky threads from the spinnerets; it glues the loose sand grains together, grasps the silk/sand bundle and carries it to the outside. Although C. rechenbergi and E. rechenbergi live in the same environment, they employ different methods to carry sand.
    [Show full text]
  • Research Article
    z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 11, Issue, 06, pp.4750-4756, June, 2019 DOI: https://doi.org/10.24941/ijcr.35599.06.2019 ISSN: 0975-833X RESEARCH ARTICLE COURTSHIP AND REPRODUCTIVE ISOLATION IN TWO CLOSELY RELATED DESID SPIDERS, BADUMNA LONGINQUA AND BADUMNA INSIGNIS (ARANEIDAE: DESIDAE) *1Marianne W. Robertson and 2Dr. Peter H. Adler 1Department of Biology, Millikin University, Decatur, IL 62522 2Department of Entomology, Clemson University, Clemson, SC 29634 ARTICLE INFO ABSTRACT Article History: We studied the development and reproductive behavior of two sympatric New Zealand spiders, Received 18th March, 2019 Badumna longinqua and Badumna insignis (Araneae: Desidae), in the laboratory. Both species have Received in revised form intersexual size dimorphism and, within each species, males vary up to 35-fold in size. Females of B. 24th April, 2019 longinqua produce up to 12 egg sacs, and those of B. insignis produce up to 18 sacs. Clutch size and Accepted 23rd May, 2019 number of egg sacs is positively correlated with adult female longevity, but not female weight, in both Published online 30th June, 2019 species. Courtship in B. longinqua is longer and entails more acts than in B. insignis. Both species exhibit prolonged copulation. The number of palpal insertions during copulation is not correlated with Key Words: clutch size, length of sperm storage, female longevity, male weight, or female weight in either Development, Courtship, species, but number of insertions is positively correlated with relative male weight in B. longinqua Copulation, Reproductive Isolation, and time until first oviposition in B.
    [Show full text]