Paraconsistency: Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Paraconsistency: Introduction Chapter 1 Paraconsistency: Introduction Koji Tanaka, Francesco Berto, Edwin Mares, and Francesco Paoli 1.1 Logic It is a natural view that our intellectual activities should not result in positing contradictory theories or claims: we ought to keep our theories and claims as consistent as possible. The rationale for this comes from the venerable Law of Non- Contradiction, to be found already in Aristotle’s Metaphysics, and which can be formulated by stating: for any truth-bearer A, it is impossible for both A and :A to be true. Dialetheism, the view that some true truth-bearers have true negations, challenges this orthodoxy.1 If some contradictions can be true, as dialetheists have argued, then it may well be rational to accept and assert them. For example, one may think that the naïve account of truth, based on the unrestricted T -schema: hAi is true 1Dialetheism itself has a venerable tradition in the history of Western philosophy: Heraclitus and other pre-Socratic philosophers were arguably dialetheists, for instance; and so were Hegel and Marx, who placed the obtaining and overcoming (Aufhebung) of contradictions at the core of their ‘dialectical method’. For an introduction to dialetheism, see Berto and Priest (2008). A notable collection of essays on the Law of Non-Contradiction is Priest et al. (2004). K. Tanaka () University of Auckland, Auckland, New Zealand e-mail: [email protected] F. Berto University of Aberdeen, Aberdeen, UK e-mail: [email protected] E. Mares Victoria University of Wellington, Wellington, New Zealand e-mail: [email protected] F. Paoli University of Cagliari, Cagliari, Italy e-mail: [email protected] K. Tanaka et al. (eds.), Paraconsistency: Logic and Applications, Logic, Epistemology, 1 and the Unity of Science 26, DOI 10.1007/978-94-007-4438-7__1, © Springer Science+Business Media Dordrecht 2013 2 K. Tanaka et al. if and only if A, should be accepted on a rational ground because of its virtues of adequacy to the data, simplicity, and explanatory power. However, the account is inconsistent, due to its delivering semantic paradoxes, such as the Liar.2 A dialetheist had better not be a classical logician. Classical logical conse- quence supports the principle often called ex contradictione quodlibet (ECQ): fA; :AgˆB for any A and B. We are licensed by classical logic to infer anything whatsoever when we end up with a contradiction. To use a lively expression, classical logic is explosive: the truth of everything—a view often called trivialism— is classically entailed by the obtaining of a single contradiction; and trivialism is rationally unacceptable if anything is.3 A necessary condition for a logic to be paraconsistent is that its logical consequence relation, ˆ, is not explosive, invalidating ECQ. Although there is no general consensus on a definition of paraconsistent logic among researchers in the area, more often than not this necessary condition is taken to be a sufficient one too. Some logicians,4 on the other hand, have argued that this ‘negative’ constraint should be supplemented by appropriate additional ‘positive’ properties. Be it as it may, since paraconsistent logics do not allow us to infer anything arbitrarily from a contradiction, their treatment of inconsistencies appears more sensible than the one in classical logic. But whereas a dialetheist should go paraconsistent, one does not need to accept that there are true contradictions to adopt a paraconsistent logic.5 Dialetheism is a controversial view and many people find it counterintuitive. But, regardless of whether there are some true contradictions, it may be that in most cases when we find that we hold inconsistent beliefs or make inconsistent claims, we should revise them to be consistent.6 Whether or not there are no true contradictions, inconsistency is pervasive in our rational life. We often find that we have inconsistent beliefs or make inconsistent claims, and we are often subject to inconsistent information. Any philosopher who thinks that we may use a logic to make inferences from, determine commitments of, or otherwise logically examine the contents of people’s beliefs, theories, or stories, should therefore think twice before being committed to explosion. For example, telling someone who has contradictory beliefs that they are committed to believing every proposition would be a very unproductive move in most debates, and do little more than merely pointing out that the person has inconsistent beliefs. Such considerations provide independent motivations for the development of paraconsistent logics: we need subtle, non-classical logical techniques to analyse the features of inconsistent theories and beliefs. 2See Priest (2005), Chap. 7. 3Trivialism finds, however, a recent, brilliant defence in Kabay (2010). 4See Béziau (2000). 5See Berto (2007) Chap. 5 and Priest and Tanaka (2009). 6Even dialetheists accept this. See, for example, Priest (2005) Chap. 8. For paraconsistent belief revision, see Mares (2002)andTanaka (2005). 1 Paraconsistency: Introduction 3 The history of paraconsistent logic has taught us that just taking classical logic and barring ECQ is not sufficient to produce an interesting non-explosive logic. In fact, a number of distinct logical techniques to invalidate ECQ have been proposed. As the interest in paraconsistent logic has grown, different people at different times and places have developed different non-explosive perspectives independently of each other. As a result, the development of paraconsistent logics has somewhat a regional flavour. This book is not a technical survey of the variety of paraconsistent logics7: it aims at illustrating their philosophical motivations, applications, and spin-offs. Since these logics are little known to non-specialists, though, in what follows we briefly summarise the most prominent logical strategies to achieve paraconsistency which feature in, or are presupposed by, the essays in this volume. 1.1.1 Discursive Logic The first formal paraconsistent logic was developed in 1948 by the Polish logician Jaskowski,´ in the form of discussive (or discursive) logic.8 Jaskowski’s´ approach addressed situations involving distinct cognitive agents each putting forth her own beliefs, opinions, or reports on some event or other. Each participant’s opinions may be self-consistent. However, the resultant discourse or set of data as a whole, taken as the sum of the assertions put forward by the participants, may be inconsistent. Jaskowski´ formalised this idea by modelling the inconsistent dialogical situation in a modal logic. For simplicity, Jaskowski´ chose S5. We think of each participant’s belief set (or set of opinions, assertions, etc.) as the set of sentences true at a world in a S5 model M . Thus, a sentence A asserted by a participant in a discourse is interpreted as “It is possible that A”(ÞA). That is, a sentence A of discussive logic can be translated into a sentence ÞA of S5. Then A holds in a discourse iff A is true at some world in M .SinceA may hold in one world but not in another, both A and :A may hold in a discourse. In this volume, however, Marek Nasieniewski and Andrzej Pietruszczak show how Jaskowksi’s´ discussive logic can also be expressed via normal and regular modal logics weaker than S5 in their essay On Modal Logics Defining Ja´skowski’s D2-Consequence. 1.1.2 Preservationism In a discursive logic, a consequence relation can be thought of as defined over maxi- mally consistent subsets of the premises. Given a set of premises, we can measure its degree of (in)consistency in terms of the number of its maximally consistent subsets. 7For surveys, besides Priest and Tanaka (2009), see Priest (2002)andBrown (2002). 8See Jaskowski´ (1948). 4 K. Tanaka et al. For example, the level of fp; qg is 1 since the maximally consistent subset is the set itself. The level of fp; :pg is 2 since there are two maximally consistent subsets. If we define a consequence relation over some maximally consistent subset, then the relation can be thought of as preserving the level of consistent fragments. This is the approach which has come to be called preservationism. It was first developed by the Canadian logicians Ray Jennings and Peter Schotch.9 In this volume, Bryson Brown’s essay Consequence as Preservation: Some Refinements moves within this tradition, but proposes a more general view of the features a logical consequence relation can be seen as preserving. 1.1.3 Adaptive Logics One may think that we should treat a sentence or a theory as consistently as possible. However, once we encounter a contradiction in reasoning, we should adapt to the situation. Adaptive logics, developed by Diderik Batens and his collaborators in Belgium, are logics that ‘adapt’ themselves to the (in)consistency of a set of premises available at the time of application of inference rules. As new information becomes available expanding the premise set, consequences inferred previously may have to be withdrawn. However, as our reasoning proceeds from a premise set, we may encounter a situation where we infer a consequence provided that no abnormality, in particular no contradiction, obtains at some stage of the reasoning process. If we are forced to infer a contradiction at a later stage, our reasoning has to adapt itself so that an application of the previously used inference rules is withdrawn. Adaptive logics model the dynamics of our reasoning as it may encounter contradictions in its temporal development.10 In this volume, Diderik Batens’ essay New Arguments for Adaptive Logics presents four new arguments vindicating the utility of the adaptive approach. 1.1.4 Logics of Formal Inconsistency The approaches to paraconsistency we have referred to so far retain as much classical machinery as possible (many paraconsistent logicians believe that the full inferential power of classical logic ought to be retained as much as possible, insofar as we find ourselves in consistent contexts).
Recommended publications
  • Dialetheists' Lies About the Liar
    PRINCIPIA 22(1): 59–85 (2018) doi: 10.5007/1808-1711.2018v22n1p59 Published by NEL — Epistemology and Logic Research Group, Federal University of Santa Catarina (UFSC), Brazil. DIALETHEISTS’LIES ABOUT THE LIAR JONAS R. BECKER ARENHART Departamento de Filosofia, Universidade Federal de Santa Catarina, BRAZIL [email protected] EDERSON SAFRA MELO Departamento de Filosofia, Universidade Federal do Maranhão, BRAZIL [email protected] Abstract. Liar-like paradoxes are typically arguments that, by using very intuitive resources of natural language, end up in contradiction. Consistent solutions to those paradoxes usually have difficulties either because they restrict the expressive power of the language, orelse because they fall prey to extended versions of the paradox. Dialetheists, like Graham Priest, propose that we should take the Liar at face value and accept the contradictory conclusion as true. A logical treatment of such contradictions is also put forward, with the Logic of Para- dox (LP), which should account for the manifestations of the Liar. In this paper we shall argue that such a formal approach, as advanced by Priest, is unsatisfactory. In order to make contradictions acceptable, Priest has to distinguish between two kinds of contradictions, in- ternal and external, corresponding, respectively, to the conclusions of the simple and of the extended Liar. Given that, we argue that while the natural interpretation of LP was intended to account for true and false sentences, dealing with internal contradictions, it lacks the re- sources to tame external contradictions. Also, the negation sign of LP is unable to represent internal contradictions adequately, precisely because of its allowance of sentences that may be true and false.
    [Show full text]
  • “The Church-Turing “Thesis” As a Special Corollary of Gödel's
    “The Church-Turing “Thesis” as a Special Corollary of Gödel’s Completeness Theorem,” in Computability: Turing, Gödel, Church, and Beyond, B. J. Copeland, C. Posy, and O. Shagrir (eds.), MIT Press (Cambridge), 2013, pp. 77-104. Saul A. Kripke This is the published version of the book chapter indicated above, which can be obtained from the publisher at https://mitpress.mit.edu/books/computability. It is reproduced here by permission of the publisher who holds the copyright. © The MIT Press The Church-Turing “ Thesis ” as a Special Corollary of G ö del ’ s 4 Completeness Theorem 1 Saul A. Kripke Traditionally, many writers, following Kleene (1952) , thought of the Church-Turing thesis as unprovable by its nature but having various strong arguments in its favor, including Turing ’ s analysis of human computation. More recently, the beauty, power, and obvious fundamental importance of this analysis — what Turing (1936) calls “ argument I ” — has led some writers to give an almost exclusive emphasis on this argument as the unique justification for the Church-Turing thesis. In this chapter I advocate an alternative justification, essentially presupposed by Turing himself in what he calls “ argument II. ” The idea is that computation is a special form of math- ematical deduction. Assuming the steps of the deduction can be stated in a first- order language, the Church-Turing thesis follows as a special case of G ö del ’ s completeness theorem (first-order algorithm theorem). I propose this idea as an alternative foundation for the Church-Turing thesis, both for human and machine computation. Clearly the relevant assumptions are justified for computations pres- ently known.
    [Show full text]
  • Chapter 5: Methods of Proof for Boolean Logic
    Chapter 5: Methods of Proof for Boolean Logic § 5.1 Valid inference steps Conjunction elimination Sometimes called simplification. From a conjunction, infer any of the conjuncts. • From P ∧ Q, infer P (or infer Q). Conjunction introduction Sometimes called conjunction. From a pair of sentences, infer their conjunction. • From P and Q, infer P ∧ Q. § 5.2 Proof by cases This is another valid inference step (it will form the rule of disjunction elimination in our formal deductive system and in Fitch), but it is also a powerful proof strategy. In a proof by cases, one begins with a disjunction (as a premise, or as an intermediate conclusion already proved). One then shows that a certain consequence may be deduced from each of the disjuncts taken separately. One concludes that that same sentence is a consequence of the entire disjunction. • From P ∨ Q, and from the fact that S follows from P and S also follows from Q, infer S. The general proof strategy looks like this: if you have a disjunction, then you know that at least one of the disjuncts is true—you just don’t know which one. So you consider the individual “cases” (i.e., disjuncts), one at a time. You assume the first disjunct, and then derive your conclusion from it. You repeat this process for each disjunct. So it doesn’t matter which disjunct is true—you get the same conclusion in any case. Hence you may infer that it follows from the entire disjunction. In practice, this method of proof requires the use of “subproofs”—we will take these up in the next chapter when we look at formal proofs.
    [Show full text]
  • In Defence of Constructive Empiricism: Metaphysics Versus Science
    To appear in Journal for General Philosophy of Science (2004) In Defence of Constructive Empiricism: Metaphysics versus Science F.A. Muller Institute for the History and Philosophy of Science and Mathematics Utrecht University, P.O. Box 80.000 3508 TA Utrecht, The Netherlands E-mail: [email protected] August 2003 Summary Over the past years, in books and journals (this journal included), N. Maxwell launched a ferocious attack on B.C. van Fraassen's view of science called Con- structive Empiricism (CE). This attack has been totally ignored. Must we con- clude from this silence that no defence is possible against the attack and that a fortiori Maxwell has buried CE once and for all, or is the attack too obviously flawed as not to merit exposure? We believe that neither is the case and hope that a careful dissection of Maxwell's reasoning will make this clear. This dis- section includes an analysis of Maxwell's `aberrance-argument' (omnipresent in his many writings) for the contentious claim that science implicitly and per- manently accepts a substantial, metaphysical thesis about the universe. This claim generally has been ignored too, for more than a quarter of a century. Our con- clusions will be that, first, Maxwell's attacks on CE can be beaten off; secondly, his `aberrance-arguments' do not establish what Maxwell believes they estab- lish; but, thirdly, we can draw a number of valuable lessons from these attacks about the nature of science and of the libertarian nature of CE. Table of Contents on other side −! Contents 1 Exordium: What is Maxwell's Argument? 1 2 Does Science Implicitly Accept Metaphysics? 3 2.1 Aberrant Theories .
    [Show full text]
  • Demystifying the Saint
    DEMYSTIFYING THE SAINT: JAY L. GARFIELDʼS RATIONAL RECONSTRUCTION OF NĀGĀRJUNAʼS MĀDHYAMAKA AS THE EPITOME OF CONTEMPORARY CROSS-CULTURAL PHILOSOPHY TIINA ROSENQVIST Tampereen yliopisto Yhteiskunta- ja kulttuuritieteiden yksikkö Filosofian pro gradu -tutkielma Tammikuu 2011 ABSTRACT Cross-cultural philosophy approaches philosophical problems by setting into dialogue systems and perspectives from across cultures. I use the term more specifically to refer to the current stage in the history of comparative philosophy marked by the ethos of scholarly self-reflection and the production of rational reconstructions of foreign philosophies. These reconstructions lend a new kind of relevance to cross-cultural perspectives in mainstream philosophical discourses. I view Jay L. Garfieldʼs work as an example of this. I examine Garfieldʼs approach in the context of Nāgārjuna scholarship and cross-cultural hermeneutics. By situating it historically and discussing its background and implications, I wish to highlight its distinctive features. Even though Garfield has worked with Buddhist philosophy, I believe he has a lot to offer to the meta-level discussion of cross-cultural philosophy in general. I argue that the clarity of Garfieldʼs vision of the nature and function of cross-cultural philosophy can help alleviate the identity crisis that has plagued the enterprise: Garfield brings it closer to (mainstream) philosophy and helps it stand apart from Indology, Buddhology, area studies philosophy (etc). I side with Garfield in arguing that cross- cultural philosophy not only brings us better understanding of other philosophical traditions, but may enhance our self-understanding as well. I furthermore hold that his employment of Western conceptual frameworks (post-Wittgensteinian language philosophy, skepticism) and theoretical tools (paraconsistent logic, Wittgensteinian epistemology) together with the influence of Buddhist interpretative lineages creates a coherent, cogent, holistic and analytically precise reading of Nāgārjunaʼs Mādhyamaka philosophy.
    [Show full text]
  • Critical Thinking STARS Handout Finalx
    Critical Thinking "It is the mark of an educated mind to be able to entertain a thought without accepting it." - Aristotle "The important thing is not to stop questioning." - Albert Einstein What is critical thinking? Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. In its exemplary form, it is based on universal intellectual values that transcend subject matter divisions: clarity, accuracy, precision, consistency, relevance, sound evidence, good reasons, depth, breadth, and fairness. A Critical Thinker: Asks pertinent questions Assess statements and arguments Is able to admit a lack of understanding or information Has a sense of curiosity Is interested in finding new solutions Examines beliefs, assumptions and opinions and weighs them against facts Listens carefully to others and can give effective feedback Suspends judgment until all facts have been gathered and considered Look for evidence to support assumptions or beliefs Is able to adjust beliefs when new information is found Examines problems closely Is able to reject information that is irrelevant or incorrect Critical Thinking Standards and Questions: The most significant thinking (intellectual) standards/questions: • Clarity o Could you elaborate further on that point? o Could you give me an example? o Could you express
    [Show full text]
  • Critical Thinking for the Military Professional
    Document created: 17 Jun 04 Critical Thinking For The Military Professional Col W. Michael Guillot “Any complex activity, if it is to be carried on with any degree of virtuosity, calls for appropriate gifts of intellect and temperament …Genius consists in a harmonious combination of elements, in which one or the other ability may predominate, but none may be in conflict with the rest.”1 In a previous article on Strategic leadership I described the strategic environment as volatile, uncertain, complex, and ambiguous (VUCA). Additionally, that writing introduced the concept of strategic competency.2 This article will discuss the most important essential skill for Strategic Leaders: critical thinking. It is hard to imagine a Strategic leader today who does not think critically or at least uses the concept in making decisions. Critical thinking helps the strategic leader master the challenges of the strategic environment. It helps one understand how to bring stability to a volatile world. Critical thinking leads to more certainty and confidence in an uncertain future. This skill helps simplify complex scenarios and brings clarity to the ambiguous lens. Critical thinking is the kind of mental attitude required for success in the strategic environment. In essence, critical thinking is about learning how to think and how to judge and improve the quality of thinking—yours and others. Lest you feel you are already a great critical thinker, consider this, in a recent study supported by the Kellogg Foundation, only four percent of the U.S. organizational
    [Show full text]
  • Recent Work in Relevant Logic
    Recent Work in Relevant Logic Mark Jago Forthcoming in Analysis. Draft of April 2013. 1 Introduction Relevant logics are a group of logics which attempt to block irrelevant conclusions being drawn from a set of premises. The following inferences are all valid in classical logic, where A and B are any sentences whatsoever: • from A, one may infer B → A, B → B and B ∨ ¬B; • from ¬A, one may infer A → B; and • from A ∧ ¬A, one may infer B. But if A and B are utterly irrelevant to one another, many feel reluctant to call these inferences acceptable. Similarly for the validity of the corresponding material implications, often called ‘paradoxes’ of material implication. Relevant logic can be seen as the attempt to avoid these ‘paradoxes’. Relevant logic has a long history. Key early works include Anderson and Belnap 1962; 1963; 1975, and many important results appear in Routley et al. 1982. Those looking for a short introduction to relevant logics might look at Mares 2012 or Priest 2008. For a more detailed but still accessible introduction, there’s Dunn and Restall 2002; Mares 2004b; Priest 2008 and Read 1988. The aim of this article is to survey some of the most important work in the eld in the past ten years, in a way that I hope will be of interest to a philosophical audience. Much of this recent work has been of a formal nature. I will try to outline these technical developments, and convey something of their importance, with the minimum of technical jargon. A good deal of this recent technical work concerns how quantiers should work in relevant logic.
    [Show full text]
  • Dialectic, Rhetoric and Contrast the Infinite Middle of Meaning
    Dialectic, Rhetoric and Contrast The Infinite Middle of Meaning Richard Boulton St George’s, University of London; Kingston University Series in Philosophy Copyright © 2021 Richard Boulton. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Vernon Art and Science Inc. www.vernonpress.com In the Americas: In the rest of the world: Vernon Press Vernon Press 1000 N West Street, Suite 1200 C/Sancti Espiritu 17, Wilmington, Delaware, 19801 Malaga, 29006 United States Spain Series in Philosophy Library of Congress Control Number: 2021931318 ISBN: 978-1-64889-149-6 Cover designed by Aurelien Thomas. Product and company names mentioned in this work are the trademarks of their respective owners. While every care has been taken in preparing this work, neither the authors nor Vernon Art and Science Inc. may be held responsible for any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it. Every effort has been made to trace all copyright holders, but if any have been inadvertently overlooked the publisher will be pleased to include any necessary credits in any subsequent reprint or edition. Table of contents Introduction v Chapter I Method 1 Dialectic and Rhetoric 1 Validating a Concept Spectrum 12 Chapter II Sense 17 Emotion 17 Rationality 23 The Absolute 29 Truth 34 Value 39 Chapter III Essence 47 Meaning 47 Narrative 51 Patterns and Problems 57 Existence 61 Contrast 66 Chapter IV Consequence 73 Life 73 Mind and Body 77 Human 84 The Individual 91 Rules and Exceptions 97 Conclusion 107 References 117 Index 129 Introduction This book is the result of a thought experiment inspired by the methods of dialectic and rhetoric.
    [Show full text]
  • Truth Definitions and Consistency Proofs
    TRUTH DEFINITIONS AND CONSISTENCY PROOFS BY HAO WANG 1. Introduction. From investigations by Carnap, Tarski, and others, we know that given a system S, we can construct in some stronger system S' a criterion of soundness (or validity) for 5 according to which all the theorems of 5 are sound. In this way we obtain in S' a consistency proof for 5. The consistency proof so obtained, which in no case with fairly strong systems could by any stretch of imagination be called constructive, is not of much interest for the purpose of understanding more clearly whether the system S is reliable or whether and why it leads to no contradictions. However, it can be of use in studying the interconnection and relative strength of different systems. For example, if a consistency proof for 5 can be formalized in S', then, according to Gödel's theorem that such a proof cannot be formalized in 5 itself, parts of the argument must be such that they can be formalized in S' but not in S. Since S can be a very strong system, there arises the ques- tion as to what these arguments could be like. For illustration, the exact form of such arguments will be examined with respect to certain special systems, by applying Tarski's "theory of truth" which provides us with a general method for proving the consistency of a given system 5 in some stronger system S'. It should be clear that the considerations to be presented in this paper apply to other systems which are stronger than or as strong as the special systems we use below.
    [Show full text]
  • Starting the Dismantling of Classical Mathematics
    Australasian Journal of Logic Starting the Dismantling of Classical Mathematics Ross T. Brady La Trobe University Melbourne, Australia [email protected] Dedicated to Richard Routley/Sylvan, on the occasion of the 20th anniversary of his untimely death. 1 Introduction Richard Sylvan (n´eRoutley) has been the greatest influence on my career in logic. We met at the University of New England in 1966, when I was a Master's student and he was one of my lecturers in the M.A. course in Formal Logic. He was an inspirational leader, who thought his own thoughts and was not afraid to speak his mind. I hold him in the highest regard. He was very critical of the standard Anglo-American way of doing logic, the so-called classical logic, which can be seen in everything he wrote. One of his many critical comments was: “G¨odel's(First) Theorem would not be provable using a decent logic". This contribution, written to honour him and his works, will examine this point among some others. Hilbert referred to non-constructive set theory based on classical logic as \Cantor's paradise". In this historical setting, the constructive logic and mathematics concerned was that of intuitionism. (The Preface of Mendelson [2010] refers to this.) We wish to start the process of dismantling this classi- cal paradise, and more generally classical mathematics. Our starting point will be the various diagonal-style arguments, where we examine whether the Law of Excluded Middle (LEM) is implicitly used in carrying them out. This will include the proof of G¨odel'sFirst Theorem, and also the proof of the undecidability of Turing's Halting Problem.
    [Show full text]
  • The Unintended Interpretations of Intuitionistic Logic
    THE UNINTENDED INTERPRETATIONS OF INTUITIONISTIC LOGIC Wim Ruitenburg Department of Mathematics, Statistics and Computer Science Marquette University Milwaukee, WI 53233 Abstract. We present an overview of the unintended interpretations of intuitionis- tic logic that arose after Heyting formalized the “observed regularities” in the use of formal parts of language, in particular, first-order logic and Heyting Arithmetic. We include unintended interpretations of some mild variations on “official” intuitionism, such as intuitionistic type theories with full comprehension and higher order logic without choice principles or not satisfying the right choice sequence properties. We conclude with remarks on the quest for a correct interpretation of intuitionistic logic. §1. The Origins of Intuitionistic Logic Intuitionism was more than twenty years old before A. Heyting produced the first complete axiomatizations for intuitionistic propositional and predicate logic: according to L. E. J. Brouwer, the founder of intuitionism, logic is secondary to mathematics. Some of Brouwer’s papers even suggest that formalization cannot be useful to intuitionism. One may wonder, then, whether intuitionistic logic should itself be regarded as an unintended interpretation of intuitionistic mathematics. I will not discuss Brouwer’s ideas in detail (on this, see [Brouwer 1975], [Hey- ting 1934, 1956]), but some aspects of his philosophy need to be highlighted here. According to Brouwer mathematics is an activity of the human mind, a product of languageless thought. One cannot be certain that language is a perfect reflection of this mental activity. This makes language an uncertain medium (see [van Stigt 1982] for more details on Brouwer’s ideas about language). In “De onbetrouwbaarheid der logische principes” ([Brouwer 1981], pp.
    [Show full text]