Proquest Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planetary Geologic Mappers Annual Meeting
Program Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Planetary Geologic Mappers Annual Meeting June 12–14, 2018 • Knoxville, Tennessee Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Science Organizing Committee David Williams, Chair Arizona State University Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Robert Jacobsen Earth and Planetary Sciences Department, University of Tennessee Knoxville Bradley Thomson Earth and Planetary Sciences Department, University of Tennessee Knoxville Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/pgm2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In Planetary Geologic Mappers Annual Meeting, Abstract #XXXX. LPI Contribution No. 2066, Lunar and Planetary Institute, Houston. Guide to Sessions Tuesday, June 12, 2018 9:00 a.m. Strong Hall Meeting Room Introduction and Mercury and Venus Maps 1:00 p.m. Strong Hall Meeting Room Mars Maps 5:30 p.m. Strong Hall Poster Area Poster Session: 2018 Planetary Geologic Mappers Meeting Wednesday, June 13, 2018 8:30 a.m. Strong Hall Meeting Room GIS and Planetary Mapping Techniques and Lunar Maps 1:15 p.m. Strong Hall Meeting Room Asteroid, Dwarf Planet, and Outer Planet Satellite Maps Thursday, June 14, 2018 8:30 a.m. Strong Hall Optional Field Trip to Appalachian Mountains Program Tuesday, June 12, 2018 INTRODUCTION AND MERCURY AND VENUS MAPS 9:00 a.m. Strong Hall Meeting Room Chairs: David Williams Devon Burr 9:00 a.m. -
Curiosity's Candidate Field Site in Gale Crater, Mars
Curiosity’s Candidate Field Site in Gale Crater, Mars K. S. Edgett – 27 September 2010 Simulated view from Curiosity rover in landing ellipse looking toward the field area in Gale; made using MRO CTX stereopair images; no vertical exaggeration. The mound is ~15 km away 4th MSL Landing Site Workshop, 27–29 September 2010 in this view. Note that one would see Gale’s SW wall in the distant background if this were Edgett, 1 actually taken by the Mastcams on Mars. Gale Presents Perhaps the Thickest and Most Diverse Exposed Stratigraphic Section on Mars • Gale’s Mound appears to present the thickest and most diverse exposed stratigraphic section on Mars that we can hope access in this decade. • Mound has ~5 km of stratified rock. (That’s 3 miles!) • There is no evidence that volcanism ever occurred in Gale. • Mound materials were deposited as sediment. • Diverse materials are present. • Diverse events are recorded. – Episodes of sedimentation and lithification and diagenesis. – Episodes of erosion, transport, and re-deposition of mound materials. 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 2 Gale is at ~5°S on the “north-south dichotomy boundary” in the Aeolis and Nepenthes Mensae Region base map made by MSSS for National Geographic (February 2001); from MOC wide angle images and MOLA topography 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 3 Proposed MSL Field Site In Gale Crater Landing ellipse - very low elevation (–4.5 km) - shown here as 25 x 20 km - alluvium from crater walls - drive to mound Anderson & Bell -
Seasonality and Surface Properties of Slope Streaks
51st Lunar and Planetary Science Conference (2020) 2556.pdf SEASONALITY AND SURFACE PROPERTIES OF SLOPE STREAKS. K. M. Primm, R. H. Hoover, H. H. Kaplan, and D. E. Stillman, Dept. of Space Studies, Southwest Research Institute, 1050 Walnut St. #300, Boulder, CO 80302, USA ([email protected]). Background: Slope streaks are large (up to 200 m Methods: We used images from the High wide, up to a few km long), relatively low-albedo Resolution Imagining Science Experiment (HiRISE) to streaks that occur in the dustiest locations on Mars [1]. study the fading rate of slope streaks, Context Camera They are one of the few currently active and (CTX) to create Digital Terrain Models (DTMs) to widespread geologic processes on the surface of Mars. study the slope angles, and lastly the Compact Many slope streaks have persisted for >15 Mars years Reconnaissance Imaging Spectrometer (CRISM) to and others have been observed to form, but many evaluate the mineralogy of slope streaks and the fewer have been seen to completely fade/disappear surrounding terrain. (e.g., [2]). This inconsistency leads us to believe Results: Preliminary observations show that hypothesize that slope streaks might have different within one area (within a few kms), there are slope formation and fading mechanisms depending on their streaks that completely fade within 1 Mars Year and environment. some that form within that same time frame (Fig. 1). There have been several studies of slope streaks The green circles in Fig. 1B shows the newly formed that examine a combination of parameters: slope angles [1,3], mineralogy [4-6], environmental factors, slope streaks and the red circle show the areas where and seasonality [2,7,8] but none have combined all the slope streaks have completely disappeared. -
Formation of Mangala Valles Outflow Channel, Mars: Morphological Development and Water Discharge and Duration Estimates Harald J
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, E08003, doi:10.1029/2006JE002851, 2007 Click Here for Full Article Formation of Mangala Valles outflow channel, Mars: Morphological development and water discharge and duration estimates Harald J. Leask,1 Lionel Wilson,1 and Karl L. Mitchell1,2 Received 24 October 2006; revised 3 April 2007; accepted 24 April 2007; published 4 August 2007. [1] The morphology of features on the floor of the Mangala Valles suggests that the channel system was not bank-full for most of the duration of its formation by water being released from its source, the Mangala Fossa graben. For an estimated typical 50 m water depth, local slopes of sin a = 0.002 imply a discharge of 1 Â 107 m3 sÀ1, a water flow speed of 9msÀ1, and a subcritical Froude number of 0.7–0.8. For a range of published estimates of the volume of material eroded from the channel system this implies a duration of 17 days if the sediment carrying capacity of the 15,000 km3 of water involved had been 40% by volume. If the sediment load had been 20% by volume, the duration would have been 46 days and the water volume required would have been 40,000 km3. Implied bed erosion rates lie in the range 1to12 m/day. If the system had been bank-full during the early stages of channel development the discharge could have been up to 108 m3 sÀ1, with flow speeds of 15 m sÀ1 and a subcritical Froude number of 0.4–0.5. -
911 Buscará Reducir Bromas
EL CLIMA, HOY San Luis Potosí 21°C · 8°C Lluvioso www.planoinformativo.com DIARIO DÓLAR VENTANILLA Sábado 4 de marzo de 2017 // Año II - Número 450 COMPRA VENTA Una producción de 19.00 19.80 COMBUSTIBLES MAGNA PREMIUM 15.76 17.67 DIÉSEL 16.83 Escanea el código y visita nuestro SLP, CON LA MEJOR COBERTURA MÉDICA DEL PAÍS > P. 9 portal. UN HECHO, FUTBOL EN SLP > P. 28 Más Hay final rutas aéreas Con el propósito de incrementar el número de pasajeros, se gestiona ampliar los vuelos en el Aeropuerto Ponciano Arriaga. Ya existen propuestas para nuevos destinos > P. 3 > P. 29 911 BUSCARÁ INFONAVIT REDUCIR SUPERA BROMAS METAS EN CON GEOLOCALIZADOR LA ENTIDAD DE LLAMADAS > > P. 6 P. 5 2 Sábado 4 de marzo de 2017 Resumen Secretario de Interior de EU, al estilo cowboy Ryan Zinke, el nuevo secretario de en su cuenta de Twitter se apre- en Interior en Estados Unidos, llegó cia al recién nombrado secretario a su oficina en Washington el pri- llevando un sombrero y pantalo- mer día de trabajo montado a ca- nes vaqueros, montado a caballo minuto ballo e indumentaria de vaquero. junto varios miembros de la Poli- En las fotografías publicadas cía de Parques. VESTIGIOS MARCIANOS Revelan el destino turístico que provoca más separaciones La agencia de turismo británica Sunshine ha determinado qué destino turístico es el más devastador para las relaciones de pareja que lo visitaron. Para ello, la firma ha llevado a cabo una encuesta a más de 2 mil personas. El estudio determinó que el 21% de los participantes que eligieron México fueron los más propensos a romper su noviazgo tras el viaje. -
DID MARS EVER HAVE a LIVELY UNDERGROUND SCENE? Joseph
Third Conference on Early Mars (2012) 7060.pdf DID MARS EVER HAVE A LIVELY UNDERGROUND SCENE? Joseph. R. Michalski, Natural History Mu- seum, London, UK and Planetary Science Institute, Tucson, AZ, USA. [email protected] Introduction: Prokaryotes comprise more than are investigating environments that might never have 50% of the Earth’s organic carbon, and the amount of been inhabited on a planet that is very much habitable. prokaryote biomass in the deep subsurface is 10-15 Spectroscopic results over the last 5-10 years have times the combined mass of prokaryotes that inhabit revealed significant diversity, abundance, and distribu- the oceans and terrestrial surface combined [1]. We do tion of alteration minerals that formed from aqueous not know when the first life occurred on Earth, but the processes on ancient Mars (recently summarized by first evidence is found in some of the oldest preserved Ehlmann et al. [6]). The mineralogy and context of rocks dating to 3.5 or, as much as 3.8 Ga [2]. While the these altered deposits indicates that deep hydrothermal concept of a “tree of life” breaks down in the Archean processes have operated on Mars, and might have per- [3], it seems likely that the most primitive ancestors of sisted from the Noachian into the Hesperian or later. In all life on Earth correspond to thermophile this work, I consider the implications of recent results chemoautotrophs. Perhaps these are the only life forms for the habitability of the subsurface, the occurrence of that survived intense heat flow during the Late Heavy groundwater, and the possibility to access materials Bombardment or perhaps they actually represent the representing subsurface biological processes. -
GLOBAL HISTORY of WATER and CLIMATE. M. H. Carr, U.S. Geological Survey, 345 Middlefield Road, Menlo Park CA 94025, USA ([email protected])
Fifth International Conference on Mars 6030.pdf GLOBAL HISTORY OF WATER AND CLIMATE. M. H. Carr, U.S. Geological Survey, 345 Middlefield Road, Menlo Park CA 94025, USA ([email protected]). Introduction: Despite acquisition of superb new ages.(05803,08205, 51304). In addition, areas that altimetry and imagery by Mars Global Surveyor, most appear densely dissected in Viking images commonly aspects of the water and climate story are likely to have poorly organized drainage patterns when viewed remain controversial. The relative roles of surface at the MOC scale (04304, 08905, 09306). Through- runoff and groundwater seepage in the formation of going valleys and an ordered set of tributaries are dif- valley networks are yet to be resolved as are the cli- ficult to discern. These areas more resemble terrestrial matic conditions required for their formation. Simi- thermokarst terrains than areas where fluvial proc- larly, the fate of the floodwaters involved in formation esses dominate. A few areas do, have more typical of the outflow channels remains unresolved. While the fluvial erosion patterns. At 26S, 84W numerous MOC images provide little supporting evidence for closely spaced tributaries feed larger valleys to form a proposed shorelines around an extensive global ocean dense, well integrated valley system (07705). Such [1], the altimetry suggests the presence of a bench at examples, are however, rare. constant altitude around the lowest parts of the north- Debates about the origin of valley networks have ern plains [2]. Here I describe some of the attributes of focused mainly on (1) the role of fluvial erosion versus the channels and valleys as seen in the early MOC other processes, (2) the relative roles of groundwaer images, summarize the evidence for climate change sapping and surface runoff, and (3) the climatic con- on Mars, and discuss some processes that might have ditions required for valley formation. -
Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km. -
Physical Properties of Martian Meteorites: Porosity and Density Measurements
Meteoritics & Planetary Science 42, Nr 12, 2043–2054 (2007) Abstract available online at http://meteoritics.org Physical properties of Martian meteorites: Porosity and density measurements Ian M. COULSON1, 2*, Martin BEECH3, and Wenshuang NIE3 1Solid Earth Studies Laboratory (SESL), Department of Geology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada 2Institut für Geowissenschaften, Universität Tübingen, 72074 Tübingen, Germany 3Campion College, University of Regina, Regina, Saskatchewan S4S 0A2, Canada *Corresponding author. E-mail: [email protected] (Received 11 September 2006; revision accepted 06 June 2007) Abstract–Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet’s surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. -
Volcanism on Mars
Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny. -
SPORADIC GROUNDWATER UPWELLING in DEEP MARTIAN CRATERS: EVIDENCE for LACUSTRINE CLAYS and CARBONATES. J. R. Michalski1,2, A. D. Rogers3, S
SPORADIC GROUNDWATER UPWELLING IN DEEP MARTIAN CRATERS: EVIDENCE FOR LACUSTRINE CLAYS AND CARBONATES. J. R. Michalski1,2, A. D. Rogers3, S. P. Wright4, P. Niles5, and J. Cuadros1, 1Natural History Museum, London, UK 2Planetary Science Institute, Tucson, AZ, USA. 3SUNY Stony Brook, Stony Brook, NY, USA. 4University of New Mexico, Albuquerque, NM, USA. 5NASA Johnson Space Cen- ter, Houston, TX, USA. Introduction: While the surface of Mars may eralogy of deep impact craters was investigated using have had an active hydrosphere early in its history [1], TES, THEMIS, and CRISM data. it is likely that this water retreated to the subsurface Results: We identified ~40 craters of interest in the early on due to loss of the magnetic field and early northern hemisphere, the majority of which occur in atmosphere [2]. This likely resulted in the formation of western Arabia Terra – a potential upwelling zone of two distinct aqueous regimes for Mars from the Late interest [4]. Most of these craters do not contain obvi- Noachian onward: one dominated by redistribution of ous evidence for intra-crater aqueous activity, but surface ice and occasional melting of snow/ice [3], and ~10% contain interior channels and possible lacustrine one dominated by groundwater activity [4]. The exca- features. Most of the craters of interest are blanketed vation of alteration minerals from deep in the crust by by dust, which limits the possibilities for investigating impact craters points to an active, ancient, deep hydro- the mineralogy of intracrater deposits. thermal system [5]. Putative sapping features [6] may One clear exception is McLaughlin Crater (338.6 occur where the groundwater breached the surface. -
Magnetite Biomineralization and Ancient Life on Mars Richard B Frankel* and Peter R Buseckt
Magnetite biomineralization and ancient life on Mars Richard B Frankel* and Peter R Buseckt Certain chemical and mineral features of the Martian meteorite with a mass distribution unlike terrestrial PAHs or those from ALH84001 were reported in 1996 to be probable evidence of other meteorites; thirdly, bacterium-shaped objects (BSOs) ancient life on Mars. In spite of new observations and up to several hundred nanometers long that resemble fos interpretations, the question of ancient life on Mars remains silized terrestrial microorganisms; and lastly, 10-100 nm unresolved. Putative biogenic, nanometer magnetite has now magnetite (Fe304), pyrrhotite (Fel_xS), and greigite (Fe3S4) become a leading focus in the debate. crystals. These minerals were cited as evidence because of their similarity to biogenic magnetic minerals in terrestrial Addresses magnetotactic bacteria. *Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407, USA; e-mail: [email protected] The ancient life on Mars hypothesis has been extensively tDepartments of Geology and Chemistry/Biochemistry, Arizona State challenged, and alternative non-biological processes have University, Tempe, Arizona 85287-1404, USA; e-mail: [email protected] been proposed for each of the four features cited by McKay et al. [4]. In this paper we review the current situa tion regarding their proposed evidence, focusing on the Abbreviations putative biogenic magnetite crystals. BCM biologically controlled mineralization BIM biologically induced mineralization BSO bacterium-shaped object Evidence for and against ancient Martian life PAH polycyclic aromatic hydrocarbon PAHs and BSOs Reports of contamination by terrestrial organic materials [5°,6°] and the similarity of ALH84001 PAHs to non-bio genic PAHs in carbonaceous chondrites [7,8] make it Introduction difficult to positively identify PAHs of non-terrestrial, bio A 2 kg carbonaceous stony meteorite, designated genic origin.