Design, Synthesis and Cannabinoid Receptor Activity of Benzofuran Ligands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Cannabinor, a Novel Selective Cannabinoid 2 Receptor Agonist, on Bladder Function in Normal Rats
EURURO-3374; No. of Pages 8 EUROPEAN UROLOGY XXX (2010) XXX–XXX available at www.sciencedirect.com journal homepage: www.europeanurology.com Voiding Dysfunction Effects of Cannabinor, a Novel Selective Cannabinoid 2 Receptor Agonist, on Bladder Function in Normal Rats Christian Gratzke a,b,f, Tomi Streng c, Christian G. Stief b, Thomas R. Downs d, Iris Alroy e, Jan S. Rosenbaum d, Karl-Erik Andersson f,*, Petter Hedlund a,g a Department of Clinical and Experimental Pharmacology, Lund University, Lund, Sweden b Department of Urology, Ludwig-Maximilians-University, Munich, Germany c Department of Pharmacology, Turku University, Finland d Women’s Health, Procter & Gamble Health Care, Cincinnati, OH, USA e Pharmos Limited, Rehovot, Israel f Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA g Urological Research Institute, San Raffaele University Hospital, Milan, Italy Article info Abstract Article history: Background: Cannabinoid (CB) receptors may be involved in the control of bladder Accepted February 19, 2010 function; the role of CB receptor subtypes in micturition has not been established. Published online ahead of Objectives: Our aim was to evaluate the effects of cannabinor, a novel CB2 receptor print on March 1, 2010 agonist, on rat bladder function. Design, setting, and participants: Sprague Dawley rats were used. Distribution of Keywords: CB2 receptors in sensory and cholinergic nerves of the detrusor was studied. Cannabinoid Selectivity of cannabinor for human and rat CB receptors was evaluated. Effects Urothelium of cannabinor on rat detrusor and micturition were investigated. Sensory Measurements: Immunohistochemistry, radioligand binding, tritium outflow Detrusor assays, organ bath studies of isolated bladder tissue, and cystometry in awake Cystometry rats were used. -
PDF of the Full Text
Clinical Pharmacokinetics of Cannabinoids Franjo Grotenhermen ABSTRACT. Absorption and metabolism of tetrahydrocannabinol (THC) vary as a function of route of administration. Pulmonary assimilation of in- haled THC causes a maximum plasma concentration within minutes, while psychotropic effects start within seconds to a few minutes, reach a maxi- mum after 15 to 30 minutes, and taper off within 2 to 3 hours. Following oral ingestion, psychotropic effects set in with a delay of 30 to 90 minutes, reach their maximum after 2 to 3 hours, and last for about 4 to 12 hours, de- pending on dose and specific effect. The initial volume of distribution of THC is small for a lipophilic drug, equivalent to the plasma volume of about 2.5-3 L, reflecting high protein binding of 95-99%. The steady state volume of distribution has been esti- mated to be about 100 times larger, in the range of about 3.5 L per kg of body weight. The lipophility of THC with high binding to tissue and in par- ticular to fat, the major long-term storage site, causes a change of distribu- tion pattern over time. Only about 1% of THC administered IV is found in the brain at the time of peak psychoactivity. THC crosses the placenta and small amounts penetrate into the breast milk. Metabolism of THC occurs mainly in the liver by microsomal hydroxylation and oxidation catalyzed by enzymes of the cytochrome P-450 complex. In man, the C-11 carbon is the major site attacked. Hydroxylation results in 11-hydroxy-THC (11-OH-THC) and further oxi- dation to 11-nor-9-carboxy-THC (THC-COOH), which may be glucuronated to THC-COOH beta-glucuronide. -
Introduction
INTRODUCTION 1 1.1 Cannabis The hemp plant Cannabis sativa L., (Cannabaceae), native to Central Asia (probably north Afghanistan) has been used for medicinal purposes for millenia across many cultures. The first evidence of its therapeutic properties dates back to a description of the drug in a Chinese compendium of medicines at the time of the Chinese emperor Shen Nung dated 2737 B.C. In the 19th century the drugs were widely prescribed in the Western world for the treatment of cough, fatigue, rheumatism, asthma, delirium tremens, migraine headache, constipation and dysmenorrhea (Grinspoon, 1969). In addition to its great therapeutic potential, cannabis is known by numerous names such as marijuana, weed, blow, gear, grass and is the most commonly used illicit drugs among recreational substance abusers throughout the world. In many countries statistics quote that more than 50 % of young people have used it at least once (Iversen, 2005). The possession of cannabis was first banned in 1915, in California. Although cannabis became illegal in the USA, it was in the British pharmacopoeia and was occasionally used until 1971 when its use was outlawed in Misuse of Drugs Act (Baker et al., 2003). The most probable reason for the abuse is the action of the main psychoactive component of marijuana, (-)-∆9–tetrahydrocannabinol (∆9–THC), on the central nervous system (CNS), affecting cognition, memory and mood. After long-term cannabis use, mostly at high intake levels there is some evidence about it causing psychosocial harm to the user (lower educational achievement, 2 psychiatric illnesses- schizophrenia, depression, anxiety) but by comparison with other „recreational‟ drugs, cannabis is a relatively safe drug (Iversen, 2005). -
What Is Delta-8 THC?? Cannabinoid Chemistry 101
What is Delta-8 THC?? Cannabinoid Chemistry 101 National Conference on Weights and Measures Annual Meeting - Rochester, NY Matthew D. Curran, Ph.D. July 21, 2021 Disclaimer Just to be clear… • I am a chemist and not a lawyer so: • This presentation will not discuss the legal aspects of Δ8-THC or DEA’s current position. • This presentation will not discuss whether Δ8-THC is considered “synthetic” or “naturally occurring.” • This is not a position statement on any issues before the NCWM. • Lastly, this should only be considered a scientific sharing exercise. Florida Department of Agriculture and Consumer Services 2 Cannabis in Florida Cannabis Syllabus • What is Cannabis? • “Mother” Cannabinoid • Decarboxylation • Relationship between CBD and THC • What does “Total” mean? • Dry Weight vs. Wet Weight • What does “Delta-9” mean? • Relationship between “Delta-8” and “Delta-9” • CBD to Delta-8 THC • Cannabinoid Chemistry 202… Florida Department of Agriculture and Consumer Services 3 Cannabis Cannabis • Cannabis sativa is the taxonomic name for the plant. • The concentration of Total Δ9-Tetrahydrocannabinol (Total Δ9-THC) is critical when considering the varieties of Cannabis sativa. • Hemp – (Total Δ9-THC) 0.3% or less • Not really a controversial term, “hemp” • Marijuana/cannabis – (Total Δ9-THC) Greater than 0.3% • Controversial term, “marijuana” • Some states prohibit the use of this term whereas some states have it in their laws. • Some states use the term “cannabis.” • Not italicized • Lower case “c” Florida Department of Agriculture and -
Kannabinoidlerin Farmakolojisi
KANNABİNOİDLERİN FARMAKOLOJİSİ Prof. Dr. Ahmet ULUGÖL Trakya Üniversitesi Tıp Fakültesi Tıbbi Farmakoloji Anabilim Dalı Kannabis (kenevir) esrar, marijuana, haşiş Kannabinoidler Fitokannabinoidler (doğal kannabinoidler) Sentetik kannabinoidler ve analogları Endokannabinoidler Araşidonil etanolamin (anandamid, AEA) 2-araşidonilgliserol (2-AG), vb. Fitokannabinoidler Δ9-tetrahidrokannabinol (THC) (psikoaktif) Kannabidiol (CB reseptörlere afinite, psikoaktif değil) Kannabinol Δ9-tetrahidrokannabivarin Δ9-tetrahidrokannabiorkol Kannabigerol Kannabikromen, vb. Sentetik kannabinoidler ve analogları Dronabinol (sentetik THC, Marinol) Nabilon (dronabinol analogu, Cesamet) THC + kannabidiol (Nabiximols, Sativex) Levonantradol, metanandamid WIN 55,212-2, HU-210, CP 55,940 CT-3 (ajulemik asit) rimonabant (SR141716A, Acomplia), vb. Endokannabinoidler Endokannabinoi CB1 CB2 TRPV1 d Anandamid +++ + + 2-AG +++ ++ 0 Virodhamin Agonist/parsiyel + 0 agonist N-araşidonil-dopamin +++ 0 +++ Noladin ether +++ + 0 CB1 & CB2 reseptörlerinin dağılımı CB1 CB2 immun sistem: dalak, tonsiller, timus - microglia, makrofaj, mast hücresi, vb. Kannabinoid reseptörlerinin sinyal ileti mekanizmaları Mekanizma Reseptör Gi/O protein aktivasyonu CB1/CB2 Adenilil siklaz inhibisyonu CB1/CB2 Kalsiyum kanallarının blokajı CB1 Potasyum kanallarının aktivasyonu CB1 MAPK aktivasyonu CB1/CB2 Kannabinoid tetradı Lokomotor aktivitede Hipotermi Katalepsi Analjezi Fizyolojik sistemlere etkiler Santral sinir sistemi Öfori-kannabinoid sarhoşluğu İntellektüel ve -
The Use of Cannabinoids in Animals and Therapeutic Implications for Veterinary Medicine: a Review
Veterinarni Medicina, 61, 2016 (3): 111–122 Review Article doi: 10.17221/8762-VETMED The use of cannabinoids in animals and therapeutic implications for veterinary medicine: a review L. Landa1, A. Sulcova2, P. Gbelec3 1Faculty of Medicine, Masaryk University, Brno, Czech Republic 2Central European Institute of Technology, Masaryk University, Brno, Czech Republic 3Veterinary Hospital and Ambulance AA Vet, Prague, Czech Republic ABSTRACT: Cannabinoids/medical marijuana and their possible therapeutic use have received increased atten- tion in human medicine during the last years. This increased attention is also an issue for veterinarians because particularly companion animal owners now show an increased interest in the use of these compounds in veteri- nary medicine. This review sets out to comprehensively summarise well known facts concerning properties of cannabinoids, their mechanisms of action, role of cannabinoid receptors and their classification. It outlines the main pharmacological effects of cannabinoids in laboratory rodents and it also discusses examples of possible beneficial use in other animal species (ferrets, cats, dogs, monkeys) that have been reported in the scientific lit- erature. Finally, the article deals with the prospective use of cannabinoids in veterinary medicine. We have not intended to review the topic of cannabinoids in an exhaustive manner; rather, our aim was to provide both the scientific community and clinical veterinarians with a brief, concise and understandable overview of the use of cannabinoids in veterinary -
Storozhuk and Zholos-MS CN
Send Orders for Reprints to [email protected] Current Neuropharmacology, 2018, 16, 137-150 137 REVIEW ARTICLE TRP Channels as Novel Targets for Endogenous Ligands: Focus on Endo- cannabinoids and Nociceptive Signalling Maksim V. Storozhuk1,* and Alexander V. Zholos1,2,* 1A.A. Bogomoletz Institute of Physiology, National Academy of Science of Ukraine, 4 Bogomoletz Street, Kiev 01024, Ukraine; 2Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko Kiev National University, 2 Academician Glushkov Avenue, Kiev 03022, Ukraine Abstract: Background: Chronic pain is a significant clinical problem and a very complex patho- physiological phenomenon. There is growing evidence that targeting the endocannabinoid system may be a useful approach to pain alleviation. Classically, the system includes G protein-coupled receptors of the CB1 and CB2 subtypes and their endogenous ligands. More recently, several sub- types of the large superfamily of cation TRP channels have been coined as "ionotropic cannabinoid receptors", thus highlighting their role in cannabinoid signalling. Thus, the aim of this review was to explore the intimate connection between several “painful” TRP channels, endocannabinoids and nociceptive signalling. Methods: Research literature on this topic was critically reviewed allowing us not only summarize A R T I C L E H I S T O R Y the existing evidence in this area of research, but also propose several possible cellular mechanisms Received: January 06, 2017 linking nociceptive and cannabinoid signaling with TRP channels. Revised: April 04, 2017 Accepted: April 14, 2017 Results: We begin with an overview of physiology of the endocannabinoid system and its major DOI: components, namely CB1 and CB2 G protein-coupled receptors, their two most studied endogenous 10.2174/1570159X15666170424120802 ligands, anandamide and 2-AG, and several enzymes involved in endocannabinoid biosynthesis and degradation. -
Analysis of Natural Product Regulation of Cannabinoid Receptors in the Treatment of Human Disease☆
Analysis of natural product regulation of cannabinoid receptors in the treatment of human disease☆ S. Badal a,⁎, K.N. Smith b, R. Rajnarayanan c a Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Mona, Jamaica b Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA c Jacobs School of Medicine and Biomedical Sciences, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14228, USA article info abstract Available online 3 June 2017 The organized, tightly regulated signaling relays engaged by the cannabinoid receptors (CBs) and their ligands, G proteins and other effectors, together constitute the endocannabinoid system (ECS). This system governs many Keywords: biological functions including cell proliferation, regulation of ion transport and neuronal messaging. This review Drug dependence/addiction will firstly examine the physiology of the ECS, briefly discussing some anomalies in the relay of the ECS signaling GTPases as these are consequently linked to maladies of global concern including neurological disorders, cardiovascular Gproteins disease and cancer. While endogenous ligands are crucial for dispatching messages through the ECS, there are G protein-coupled receptor also commonalities in binding affinities with copious exogenous ligands, both natural and synthetic. Therefore, Natural products this review provides a comparative analysis of both types of exogenous ligands with emphasis on natural prod- Neurodegenerative disorders ucts given their putative safer efficacy and the role of Δ9-tetrahydrocannabinol (Δ9-THC) in uncovering the ECS. Efficacy is congruent to both types of compounds but noteworthy is the effect of a combination therapy to achieve efficacy without unideal side-effects. -
Cannabis Sativa: a Systematic Review of Plant Analysis
Drug Analytical Research Drug Anal Res, 2017; 01, 1-23 Cannabis sativa: A systematic review of plant analysis Bruna Tassi Borillea*; Marina Gonzáleza; Luiza Steffensa; Rafael Scorsatto Ortizb; Renata Pereira Limbergera a Laboratório de Análises e Pesquisa em Toxicologia, Universidade Federal do Rio Grande do Sul, Departamento de Farmácia, Porto Alegre, 90610-000, RS, Brazil. b Divisão Técnico-Científica do Rio Grande do Sul, Polícia Federal Brasileira, Porto Alegre, 90160-092, RS, Brazil. *Corresponding author e-mail: [email protected] Background: Cannabis has been the most widely used illicit drug worldwide throughout many years. Reports from different countries indicate that the potency of cannabis preparation has been increasing, as well as the ratio of tetrahydrocannabinol/cannabidiol has been changing. The high consumption couple with the variable chemical profile of the drug is increasing gradually the interest in researching the cannabis plant. Methods: This article reviews available literature on the analytical methods currently used for the detection and quantification of cannabinoids in cannabis plant. The papers were screened by two independently researchers and following a pre-specified protocol. Results and Discussion: The systematic review of the literature allowed to include 42 citations on cannabis plant analysis and botanical aspects of cannabis. Conclusions: The analytical methods for cannabis material published in the included articles of this systematic review showed lack of relevant information of the development of methods on GC and LC analysis and the limits of detection and quantification of mass detectors. These information, on the methods of analysis, are essential and extremely important, since in the current scenario the analytical approach should consider the action of modulation CBD with THC, which alters the disruptive effects of the drug and also presents important pharmacological activity. -
Cannabinoids and Zebrafish Issue Date: 2013-05-22
Cover Page The handle http://hdl.handle.net/1887/20899 holds various files of this Leiden University dissertation. Author: Akhtar, Muhammad Tayyab Title: Cannabinoids and zebrafish Issue Date: 2013-05-22 Cannabinoids and zebrafish Muhammad Tayyab Akhtar Muhammad Tayyab Akhtar Cannabinoids and zebrafish ISBN: 978-94-6203-345-0 Printed by: Wöhrmann Print Service Cover art and designed by M khurshid and MT Akhtar Cannabinoids and zebrafish PROEFSCHRIFT ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op woensdag 22 mei 2013 klokke 10:00 uur door Muhammad Tayyab Akhtar geboren te Rahim Yar Khan (Pakistan) in 1984 Promotiecommissie Promotor: Prof. Dr. R. Verpoorte Co-promotores: Dr. F. van der Kooy Dr. Y.H. Choi Overige leden: Prof. Dr. S. Gibbons (The School of Pharmacy, London) Dr. F. Hollmann (TU Delft) Prof. Dr. M.K. Richardson Prof. Dr. P.G.L. Klinkhamer Prof. Dr. C.J. ten Cate To My Father and Family! CONTENTS Chapter 1 General introduction 9 Chapter 2 Biotransformation of cannabinoids 21 Chapter 3 Hydroxylation and further oxidation of Δ9-tetrahydrocannabinol by alkane-degrading bacteria. 53 Chapter 4 Hydroxylation and glycosylation of Δ9-THC by Catharanthus roseus cell suspension culture analyzed by HPLC-PDA and mass spectrometry 73 Chapter 5 Developmental effects of cannabinoids on zebrafish larvae 89 Chapter 6 Metabolic effects of cannabinoids in zebrafish (Danio rerio) embryo determined by 1H NMR metabolomics. 117 Chapter 7 Metabolic effects of carrier solvents and culture buffers in zebrafish embryos determined by 1H NMR metabolomics. -
Acetaminophen Relieves Inflammatory Pain Through CB1 Cannabinoid Receptors in the Rostral Ventromedial Medulla
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Acetaminophen relieves inflammatory pain through CB1 cannabinoid receptors in the rostral ventromedial medulla Klinger-Gratz, Pascal P ; Ralvenius, William T ; Neumann, Elena ; Kato, Ako ; Nyilas, Rita ; Lele, Zsolt ; Katona, István ; Zeilhofer, Hanns Ulrich DOI: https://doi.org/10.1523/JNEUROSCI.1945-17.2017 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-142470 Journal Article Accepted Version Originally published at: Klinger-Gratz, Pascal P; Ralvenius, William T; Neumann, Elena; Kato, Ako; Nyilas, Rita; Lele, Zsolt; Katona, István; Zeilhofer, Hanns Ulrich (2018). Acetaminophen relieves inflammatory pain through CB1 cannabinoid receptors in the rostral ventromedial medulla. Journal of Neuroscience, 38(2):322-334. DOI: https://doi.org/10.1523/JNEUROSCI.1945-17.2017 This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Systems/Circuits Acetaminophen Relieves Inflammatory Pain Through CB1 Cannabinoid Receptors in the Rostral Ventromedial Medulla Pascal P. Klinger-Gratz1, William T. Ralvenius1, Elena Neumann1, Ako Kato2, Rita Nyilas2, Zsolt Lele2, István Katona2 and Hanns Ulrich Zeilhofer1,3 1Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland 2Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, H-1083 Budapest, Hungary 3Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland DOI: 10.1523/JNEUROSCI.1945-17.2017 Received: 9 July 2017 Revised: 27 October 2017 Accepted: 14 November 2017 Published: 22 November 2017 Author contributions: P.P.K.-G., W.T.R., E.N., A.K., R.N., Z.L., and I.K. -
(12) Patent Application Publication (10) Pub. No.: US 2016/0120874 A1 Pérez Simón Et Al
US 2016O120874A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0120874 A1 Pérez Simón et al. (43) Pub. Date: May 5, 2016 (54) AGENTS FOR TREATING MULTIPLE Publication Classification MYELOMA (51) Int. Cl. (71) Applicant: SERVICIO ANDALUZ. DE SALUD, A613 L/5383 (2006.01) Sevilla (ES) A6II 45/06 (2006.01) (72) Inventors: José Antonio Pérez Simón, Sevilla (ES); (52) U.S. Cl. Maria Victoria Barbado González, CPC ............. A6 IK3I/5383 (2013.01); A61K 45/06 Sevilla (ES) (2013.01) (21) Appl. No.: 14/897,333 (57) ABSTRACT (22) PCT Fled: Jun. 13, 2014 The present invention relates to the use of compounds of a (86) PCT NO.: PCT/ES2O14/070491 cannabinoid nature for inhibiting viability with increasing S371 (c)(1), doses of myeloma cell lines. Furthermore, said compounds (2) Date: Dec. 10, 2015 have been shown not to affect CD34+ cells (normal hemato poietic progenitors) in terms of viability and proliferation. (30) Foreign Application Priority Data For this reason, the invention paves the way for the use of compounds of a cannabinoid nature as a promising therapy Jun. 13, 2013 (ES) ................................. P2O133O884 against multiple myeloma and related diseases. Patent Application Publication May 5, 2016 Sheet 1 of 5 US 2016/O120874 A1 : : U266/WN 48 : : CNT O5 A uk Of 2O is 50 in ~. U266/WI N96h ?------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ CN NA 1ONA