7. Quantization of the Harmonic Oscillator – Ariadne's Thread In

Total Page:16

File Type:pdf, Size:1020Kb

7. Quantization of the Harmonic Oscillator – Ariadne's Thread In 7. Quantization of the Harmonic Oscillator – Ariadne’s Thread in Quantization Whoever understands the quantization of the harmonic oscillator can un- derstand everything in quantum physics. Folklore Almost all of physics now relies upon quantum physics. This theory was discovered around the beginning of this century. Since then, it has known a progress with no analogue in the history of science, finally reaching a status of universal applicability. The radical novelty of quantum mechanics almost immediately brought a conflict with the previously admitted corpus of classical physics, and this went as far as rejecting the age-old representation of physical reality by visual intuition and common sense. The abstract formalism of the theory had almost no direct counterpart in the ordinary features around us, as, for instance, nobody will ever see a wave function when looking at a car or a chair. An ever-present randomness also came to contradict classical determinism.1 Roland Omn`es, 1994 Quantum mechanics deserves the interest of mathematicians not only be- cause it is a very important physical theory, which governs all microphysics, that is, the physical phenomena at the microscopic scale of 10−10m, but also because it turned out to be at the root of important developments of modern mathematics.2 Franco Strocchi, 2005 In this chapter, we will study the following quantization methods: • Heisenberg quantization (matrix mechanics; creation and annihilation operators), • Schr¨odinger quantization (wave mechanics; the Schr¨odinger partial differential equation), • Feynman quantization (integral representation of the wave function by means of the propagator kernel, the formal Feynman path integral, the rigorous infinite- dimensional Gaussian integral, and the rigorous Wiener path integral), • Weyl quantization (deformation of Poisson structures), 1 From the Preface to R. Omn`es, The Interpretation of Quantum Mechanics, Princeton University Press, Princeton, New Jersey, 1994. Reprinted by permis- sion of Princeton University Press. We recommend this monograph as an intro- duction to the philosophical interpretation of quantum mechanics. 2 F. Strocchi, An Introduction to the Mathematical Structure of Quantum Me- chanics: A Short Course for Mathematicians, Lecture Notes, Scuola Normale, Pisa (Italy). Reprinted by permission of World Scientific Publishing Co. Pte. Ltd. Singapore, 2005. 428 7. Quantization of the Harmonic Oscillator • Weyl quantization functor from symplectic linear spaces to C∗-algebras, • Bargmann quantization (holomorphic quantization), • supersymmetric quantization (fermions and bosons). We will choose the presentation of the material in such a way that the reader is well prepared for the generalizations to quantum field theory to be considered later on. Formally self-adjoint operators. The operator A : D(A) → X on the complex Hilbert space X is called formally self-adjoint iff the operator is linear, the domain of definition D(A) is a linear dense subspace of the Hilbert space X, and we have the symmetry condition χ|Aϕ = Aχ|ϕ for all χ, ψ ∈ D(A). Formally self-adjoint operators are also called symmetric operators. The following two observations are crucial for quantum mechanics: • If the complex number λ is an eigenvalue of A, that is, there exists a nonzero element ϕ ∈ D(A) such that Aϕ = λϕ,thenλ is a real number. This follows from λ = ϕ|Aϕ = Aϕ|ϕ = λ†. • If λ1 and λ2 are two different eigenvalues of the operator A with eigenvectors ϕ1 and ϕ2,thenϕ1 is orthogonal to ϕ2. This follows from (λ1 − λ2)ϕ1|ϕ2 = Aϕ1|ϕ2−ϕ1|Aϕ2 =0. In quantum mechanics, formally self-adjoint operators represent formal observables. For a deeper mathematical analysis, we need self-adjoint operators, which are called observables in quantum mechanics. Each self-adjoint operator is formally self-adjoint. But, the converse is not true. For the convenience of the reader, on page 683 we summarize basic material from func- tional analysis which will be frequently encountered in this chapter. This concerns the following notions: formally adjoint operator, adjoint operator, self-adjoint oper- ator, essentially self-adjoint operator, closed operator, and the closure of a formally self-adjoint operator. The reader, who is not familiar with this material, should have a look at page 683. Observe that, as a rule, in the physics literature one does not distinguish between formally self-adjoint operators and self-adjoint operators. Peter Lax writes:3 The theory of self-adjoint operators was created by John von Neumann to fashion a framework for quantum mechanics. The operators in Schr¨odin- ger’s theory from 1926 that are associated with atoms and molecules are partial differential operators whose coefficients are singular at certain points; these singularities correspond to the unbounded growth of the force between two electrons that approach each other. I recall in the summer of 1951 the excitement and elation of von Neumann when he learned that Kato (born 1917) has proved the self-adjointness of the Schr¨odinger oper- ator associated with the helium atom.4 3 P. Lax, Functional Analysis, Wiley, New York, 2003 (reprinted with permis- sion). This is the best modern textbook on functional analysis, written by a master of this field who works at the Courant Institute in New York City. For his fundamental contributions to the theory of partial differential equations in mathematical physics (e.g., scattering theory, solitons, and shock waves), Peter Lax (born 1926) was awarded the Abel prize in 2005. 4 J. von Neumann, General spectral theory of Hermitean operators, Math. Ann. 102 (1929), 49–131 (in German). 429 And what do the physicists think of these matters? In the 1960s Friedrichs5 met Heisenberg and used the occasion to express to him the deep gratitude of the community of mathematicians for having created quantum mechan- ics, which gave birth to the beautiful theory of operators in Hilbert space. Heisenberg allowed that this was so; Friedrichs then added that the math- ematicians have, in some measure, returned the favor. Heisenberg looked noncommittal, so Friedrichs pointed out that it was a mathematician, von Neumann, who clarified the difference between a self-adjoint operator and one that is merely symmetric.“What’s the difference,” said Heisenberg. As a rule of thumb, a formally self-adjoint (also called symmetric) differential op- erator can be extended to a self-adjoint operator if we add appropriate boundary conditions. The situation is not dramatic for physicists, since physics dictates the ‘right’ boundary conditions in regular situations. However, one has to be careful. In Problem 7.19, we will consider a formally self-adjoint differential operator which cannot be extended to a self-adjoint operator. The point is that self-adjoint operators possess a spectral family which al- lows us to construct both the probability measure for physical observables and the functions of observables (e.g., the propagator for the quantum dy- namics). In general terms, this is not possible for merely formally self-adjoint operators. The following proposition displays the difference between formally self-adjoint and self-adjoint operators. Proposition 7.1 The linear, densely defined operator A : D(A) → X on the com- plex Hilbert space X is self-adjoint iff it is formally self-adjoint and it always follows from ψ|Aϕ = χ|ϕ for fixed ψ, χ ∈ X and all ϕ ∈ D(A) that ψ ∈ D(A). Therefore, the domain of definition D(A) of the operator A plays a critical role. The proof will be given in Problem 7.7. Unitary operators. As we will see later on, for the quantum dynamics, unitary operators play the decisive role. Recall that the operator U : X → X is called unitary iff it is linear, bijective, and it preserves the inner product, that is, Uχ|Uϕ = χ|ϕ for all χ, ϕ ∈ X. This implies ||Uϕ|| = ||ϕ|| for all ϕ ∈ X. Hence ||U|| := sup ||Uϕ|| =1 ||ϕ||≤1 if we exclude the trivial case X = {0}. The shortcoming of the language of matrices noticed by von Neu- mann. Let A : D(A) → X and B : D(B) → X be linear, densely defined, formally J. von Neumann, Mathematical Foundations of Quantum Mechanics (in Ger- man), Springer, Berlin, 1932. English edition: Princeton University Press, 1955. T. Kato, Fundamental properties of the Hamiltonian operators of Schr¨odinger type, Trans. Amer. Math. Soc. 70 (1951), 195–211. 5 Schr¨odinger (1887–1961), Heisenberg (1901–1976), Friedrichs (1902–1982), von Neumann (1903–1957), Kato (born 1917). 430 7. Quantization of the Harmonic Oscillator self-adjoint operators on the infinite-dimensional Hilbert space X.Letϕ0,ϕ1,ϕ2,... be a complete orthonormal system in X with ϕk ∈ D(A) for all k.Set ajk := ϕj |Aϕk j, k =0, 1, 2,... The way, we assign to the operator A the infinite matrix (ajk). Similarly, for the operator B, we define bjk := ϕj |Bϕk j, k =0, 1, 2,... Suppose that the operator B is a proper extension of the operator A.Then ajk = bjk for all j, k =0, 1, 2,..., but A = B. Thus, the matrix (ajk) does not completely reflect the properties of the operator A. In particular, the matrix (ajk) does not see the crucial domain of definition D(A) of the operator A. Jean Dieudonn´ewrites:6 Von Neumann took pains, in a special paper, to investigate how Hermitean (i.e., formally self-adjoint) operators might be represented by infinite ma- trices (to which many mathematicians and even more physicists were sen- timentally attached) . Von Neumann showed in great detail how the lack of “one-to-oneness” in the correspondence of matrices and operators led to their weirdest pathology, convincing once for all the analysts that matrices were a totally inadequate tool in spectral theory. 7.1 Complete Orthonormal Systems A complete orthonormal system of eigenstates of an observable (e.g., the energy operator) cannot be extended to a larger orthonormal system of eigenstates.
Recommended publications
  • Introduction to the Many-Body Problem
    INTRODUCTION TO THE MANY-BODY PROBLEM UNIVERSITY OF FRIBOURG SPRING TERM 2010 Dionys Baeriswyl General literature A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Prentice-Hall 1963. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill 1971. G. D. Mahan, Many-Particle Physics, Plenum Press 1981. J. W. Negele and H. Orland, Quantum Many Particle Systems, Perseus Books 1998. Ph. A. Martin and F. Rothen, Many-Body Problems and Quantum Field Theory, Springer-Verlag 2002. H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics, Oxford University Press 2004. Contents 1 Second quantization 2 1.1 Many-particlestates ......................... 2 1.2 Fockspace............................... 3 1.3 Creationandannihilationoperators . 5 1.4 Quantumfields ............................ 7 1.5 Representationofobservables . 10 1.6 Wick’stheorem ............................ 16 2 Many-boson systems 19 2.1 Bose-Einstein condensation in a trap . 19 2.2 TheweaklyinteractingBosegas. 20 2.3 TheGross-Pitaevskiiequation . 23 3 Many-electron systems 26 3.1 Thejelliummodel........................... 26 3.2 Hartree-Fockapproximation . 27 3.3 TheWignercrystal .......................... 28 3.4 TheHubbardmodel ......................... 29 4 Magnetism 34 4.1 Exchange ............................... 34 4.2 Magnetic order in the Heisenberg model . 36 5 Electrons and phonons 39 5.1 Theharmoniccrystal.. .. .. 39 5.2 Electron-phononinteraction . 41 5.3 Phonon-inducedattraction
    [Show full text]
  • Arxiv:1512.08882V1 [Cond-Mat.Mes-Hall] 30 Dec 2015
    Topological Phases: Classification of Topological Insulators and Superconductors of Non-Interacting Fermions, and Beyond Andreas W. W. Ludwig Department of Physics, University of California, Santa Barbara, CA 93106, USA After briefly recalling the quantum entanglement-based view of Topological Phases of Matter in order to outline the general context, we give an overview of different approaches to the classification problem of Topological Insulators and Superconductors of non-interacting Fermions. In particular, we review in some detail general symmetry aspects of the "Ten-Fold Way" which forms the foun- dation of the classification, and put different approaches to the classification in relationship with each other. We end by briefly mentioning some of the results obtained on the effect of interactions, mainly in three spatial dimensions. I. INTRODUCTION Based on the theoretical and, shortly thereafter, experimental discovery of the Z2 Topological Insulators in d = 2 and d = 3 spatial dimensions dominated by spin-orbit interactions (see [1,2] for a review), the field of Topological Insulators and Superconductors has grown in the last decade into what is arguably one of the most interesting and stimulating developments in Condensed Matter Physics. The field is now developing at an ever increasing pace in a number of directions. While the understanding of fully interacting phases is still evolving, our understanding of Topological Insulators and Superconductors of non-interacting Fermions is now very well established and complete, and it serves as a stepping stone for further developments. Here we will provide an overview of different approaches to the classification problem of non-interacting Fermionic Topological Insulators and Superconductors, and exhibit connections between these approaches which address the problem from very different angles.
    [Show full text]
  • Second Quantization
    Chapter 1 Second Quantization 1.1 Creation and Annihilation Operators in Quan- tum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator. Let a and a† be two operators acting on an abstract Hilbert space of states, and satisfying the commutation relation a,a† = 1 (1.1) where by “1” we mean the identity operator of this Hilbert space. The operators a and a† are not self-adjoint but are the adjoint of each other. Let α be a state which we will take to be an eigenvector of the Hermitian operators| ia†a with eigenvalue α which is a real number, a†a α = α α (1.2) | i | i Hence, α = α a†a α = a α 2 0 (1.3) h | | i k | ik ≥ where we used the fundamental axiom of Quantum Mechanics that the norm of all states in the physical Hilbert space is positive. As a result, the eigenvalues α of the eigenstates of a†a must be non-negative real numbers. Furthermore, since for all operators A, B and C [AB, C]= A [B, C] + [A, C] B (1.4) we get a†a,a = a (1.5) − † † † a a,a = a (1.6) 1 2 CHAPTER 1. SECOND QUANTIZATION i.e., a and a† are “eigen-operators” of a†a. Hence, a†a a = a a†a 1 (1.7) − † † † † a a a = a a a +1 (1.8) Consequently we find a†a a α = a a†a 1 α = (α 1) a α (1.9) | i − | i − | i Hence the state aα is an eigenstate of a†a with eigenvalue α 1, provided a α = 0.
    [Show full text]
  • Chapter 7 Second Quantization 7.1 Creation and Annihilation Operators
    Chapter 7 Second Quantization Creation and annihilation operators. Occupation number. Anticommutation relations. Normal product. Wick's theorem. One-body operator in second quantization. Hartree- Fock potential. Two-particle Random Phase Approximation (RPA). Two-particle Tamm- Dankoff Approximation (TDA). 7.1 Creation and annihilation operators In Fig. 3 of the previous Chapter it is shown the single-particle levels generated by a double-magic core containing A nucleons. Below the Fermi level (FL) all states hi are occupied and one can not place a particle there. In other words, the A-particle state j0i, with all levels hi occupied, is the ground state of the inert (frozen) double magic core. Above the FL all states are empty and, therefore, a particle can be created in one of the levels denoted by pi in the Figure. In Second Quantization one introduces the y j i creation operator cpi such that the state pi in the nucleus containing A+1 nucleons can be written as, j i y j i pi = cpi 0 (7.1) this state has to be normalized, that is, h j i h j y j i h j j i pi pi = 0 cpi cpi 0 = 0 cpi pi = 1 (7.2) from where it follows that j0i = cpi jpii (7.3) and the operator cpi can be interpreted as the annihilation operator of a particle in the state jpii. This implies that the hole state hi in the (A-1)-nucleon system is jhii = chi j0i (7.4) Occupation number and anticommutation relations One notices that the number y nj = h0jcjcjj0i (7.5) is nj = 1 is j is a hole state and nj = 0 if j is a particle state.
    [Show full text]
  • SECOND QUANTIZATION Lecture Notes with Course Quantum Theory
    SECOND QUANTIZATION Lecture notes with course Quantum Theory Dr. P.J.H. Denteneer Fall 2008 2 SECOND QUANTIZATION x1. Introduction and history 3 x2. The N-boson system 4 x3. The many-boson system 5 x4. Identical spin-0 particles 8 x5. The N-fermion system 13 x6. The many-fermion system 14 1 x7. Identical spin- 2 particles 17 x8. Bose-Einstein and Fermi-Dirac distributions 19 Second Quantization 1. Introduction and history Second quantization is the standard formulation of quantum many-particle theory. It is important for use both in Quantum Field Theory (because a quantized field is a qm op- erator with many degrees of freedom) and in (Quantum) Condensed Matter Theory (since matter involves many particles). Identical (= indistinguishable) particles −! state of two particles must either be symmetric or anti-symmetric under exchange of the particles. 1 ja ⊗ biB = p (ja1 ⊗ b2i + ja2 ⊗ b1i) bosons; symmetric (1a) 2 1 ja ⊗ biF = p (ja1 ⊗ b2i − ja2 ⊗ b1i) fermions; anti − symmetric (1b) 2 Motivation: why do we need the \second quantization formalism"? (a) for practical reasons: computing matrix elements between N-particle symmetrized wave functions involves (N!)2 terms (integrals); see the symmetrized states below. (b) it will be extremely useful to have a formalism that can handle a non-fixed particle number N, as in the grand-canonical ensemble in Statistical Physics; especially if you want to describe processes in which particles are created and annihilated (as in typical high-energy physics accelerator experiments). So: both for Condensed Matter and High-Energy Physics this formalism is crucial! (c) To describe interactions the formalism to be introduced will be vastly superior to the wave-function- and Hilbert-space-descriptions.
    [Show full text]
  • Second Quantization∗
    Second Quantization∗ Jörg Schmalian May 19, 2016 1 The harmonic oscillator: raising and lowering operators Lets first reanalyze the harmonic oscillator with potential m!2 V (x) = x2 (1) 2 where ! is the frequency of the oscillator. One of the numerous approaches we use to solve this problem is based on the following representation of the momentum and position operators: r x = ~ ay + a b 2m! b b r m ! p = i ~ ay − a : (2) b 2 b b From the canonical commutation relation [x;b pb] = i~ (3) follows y ba; ba = 1 y y [ba; ba] = ba ; ba = 0: (4) Inverting the above expression yields rm! i ba = xb + pb 2~ m! r y m! i ba = xb − pb (5) 2~ m! ∗Copyright Jörg Schmalian, 2016 1 y demonstrating that ba is indeed the operator adjoined to ba. We also defined the operator y Nb = ba ba (6) which is Hermitian and thus represents a physical observable. It holds m! i i Nb = xb − pb xb + pb 2~ m! m! m! 2 1 2 i = xb + pb − [p;b xb] 2~ 2m~! 2~ 2 2 1 pb m! 2 1 = + xb − : (7) ~! 2m 2 2 We therefore obtain 1 Hb = ! Nb + : (8) ~ 2 1 Since the eigenvalues of Hb are given as En = ~! n + 2 we conclude that the eigenvalues of the operator Nb are the integers n that determine the eigenstates of the harmonic oscillator. Nb jni = n jni : (9) y Using the above commutation relation ba; ba = 1 we were able to show that p a jni = n jn − 1i b p y ba jni = n + 1 jn + 1i (10) y The operator ba and ba raise and lower the quantum number (i.e.
    [Show full text]
  • Casimir-Polder Interaction in Second Quantization
    Universitat¨ Potsdam Institut fur¨ Physik und Astronomie Casimir-Polder interaction in second quantization Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) in der Wissen- schaftsdisziplin theoretische Physik. Eingereicht am 21. Marz¨ 2011 an der Mathematisch – Naturwissen- schaftlichen Fakultat¨ der Universitat¨ Potsdam von Jurgen¨ Schiefele Betreuer: PD Dr. Carsten Henkel This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2011/5417/ URN urn:nbn:de:kobv:517-opus-54171 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54171 Abstract The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predic- tions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states.
    [Show full text]
  • Notes on Green's Functions Theory for Quantum Many-Body Systems
    Notes on Green's Functions Theory for Quantum Many-Body Systems Carlo Barbieri Department of Physics, University of Surrey, Guildford GU2 7XH, UK June 2015 Literature A modern and compresensive monography is • W. H. Dickhoff and D. Van Neck, Many-Body Theory Exposed!, 2nd ed. (World Scientific, Singapore, 2007). This book covers several applications of Green's functions done in recent years, including nuclear and electroncic systems. Most the material of these lectures can be found here. Two popular textbooks, that cover the almost complete formalism, are • A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Physics (McGraw-Hill, New York, 1971), • A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975). Other useful books on many-body Green's functions theory, include • R. D. Mattuck, A Guide to Feynmnan Diagrams in the Many-Body Problem, (McGraw-Hill, 1976) [reprinted by Dover, 1992], • J. P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge MA, 1986), • J. W. Negele and H. Orland, Quantum Many-Particle Systems (Ben- jamin, Redwood City CA, 1988). 2 Chapter 1 Preliminaries: Basic Formulae of Second Quantization and Pictures Many-body Green's functions (MBGF) are a set of techniques that originated in quantum field theory but have also found wide applications to the many- body problem. In this case, the focus are complex systems such as crystals, molecules, or atomic nuclei. However, many-body Green's functions still share the same language with elementary particles theory, and have several concepts in common.
    [Show full text]
  • Tempered Distributions and the Fourier Transform
    CHAPTER 1 Tempered distributions and the Fourier transform Microlocal analysis is a geometric theory of distributions, or a theory of geomet- ric distributions. Rather than study general distributions { which are like general continuous functions but worse { we consider more specific types of distributions which actually arise in the study of differential and integral equations. Distri- butions are usually defined by duality, starting from very \good" test functions; correspondingly a general distribution is everywhere \bad". The conormal dis- tributions we shall study implicitly for a long time, and eventually explicitly, are usually good, but like (other) people have a few interesting faults, i.e. singulari- ties. These singularities are our principal target of study. Nevertheless we need the general framework of distribution theory to work in, so I will start with a brief in- troduction. This is designed either to remind you of what you already know or else to send you off to work it out. (As noted above, I suggest Friedlander's little book [4] - there is also a newer edition with Joshi as coauthor) as a good introduction to distributions.) Volume 1 of H¨ormander'streatise [8] has all that you would need; it is a good general reference. Proofs of some of the main theorems are outlined in the problems at the end of the chapter. 1.1. Schwartz test functions To fix matters at the beginning we shall work in the space of tempered distribu- tions. These are defined by duality from the space of Schwartz functions, also called the space of test functions of rapid decrease.
    [Show full text]
  • Field Formulation of Many-Body Quantum Physics
    A common mistake that people make when trying to design something completely foolproof is to underestimate the ingenuity of complete fools. Douglas Adams (1952-2001) 2 Field Formulation of Many-Body Quantum Physics A piece of matter composed of a large number of microscopic particles is called a many-body system. The microscopic particles may either be all identical or of dif- ferent species. Examples are crystal lattices, liquids, and gases, all of these being aggregates of molecules and atoms. Molecules are composed of atoms which, in turn, consist of an atomic nucleus and electrons, held together by electromagnetic forces, or more precisely their quanta, the photons. The mass of an atom is mostly due to the nucleus, only a small fraction being due to the electrons and an even smaller fraction due to the electromagnetic binding energy. Atomic nuclei are themselves bound states of nucleons, held together by mesonic forces, or more precisely their quanta, the mesons. The nucleons and mesons, finally, consist of the presently most fundamental objects of nuclear material, called quarks, held together by gluonic forces. Quarks and gluons are apparently as fundamental as electrons and photons. It is a wonderful miracle of nature that this deep hierarchy of increasingly funda- mental particles allows a common description with the help of a single theoretical structure called quantum field theory. As a first step towards developing this powerful theory we shall start from the well-founded Schr¨odinger theory of nonrelativistic spinless particles. We show that there exists a completely equivalent formulation of this theory in terms of quantum fields.
    [Show full text]
  • Lecture Notes: Introduction to Microlocal Analysis with Applications
    LECTURE NOTES: INTRODUCTION TO MICROLOCAL ANALYSIS WITH APPLICATIONS MIHAJLO CEKIC´ Contents Course Summary2 Notation 4 1. Recap: LCS topologies, distributions, Fourier transforms5 1.1. Topological vector spaces5 1.2. Space of distributions6 1.3. Schwartz kernel theorem8 1.4. Fourier transform9 2. Symbol classes, oscillatory integrals and Fourier Integral Operators 10 2.1. Symbol classes 10 2.2. Oscillatory integrals 13 3. Method of stationary phase 16 4. Algebra of pseudodifferential operators 18 4.1. Changes of variables (Kuranishi trick) 22 5. Elliptic operators and L2-continuity 23 5.1. L2-continuity 25 5.2. Sobolev spaces and PDOs 26 6. The wavefront set of a distribution 29 6.1. Operations with distributions: pullbacks and products 33 7. Manifolds 36 8. Quantum ergodicity 38 8.1. Ergodic theory 39 8.2. Statement and ingredients 41 8.3. Main proof of Quantum Ergodicity 44 9. Semiclassical calculus and Weyl's law 46 9.1. Proof of Weyl's law 48 References 50 1 2 M. CEKIC´ Course Summary Microlocal analysis studies singularities of distributions in phase space, by describing the behaviour of the singularity in both position and direction. It is a part of the field of partial differential equations, created by H¨ormander, Kohn, Nirenberg and others in 1960s and 1970s, and is used to study questions such as solvability, regularity and propagation of singularities of solutions of PDEs. To name a few other classical applications, it can be used to study asymptotics of eigenfunctions for elliptic operators, trace formulas and inverse problems. There have been recent exciting advances in the field and many applications to geometry and dynamical systems.
    [Show full text]
  • Characterizations of Continuous Operators on with the Strict Topology
    Tusi Mathematical Ann. Funct. Anal. (2021) 12:28 Research https://doi.org/10.1007/s43034-021-00112-1 Group ORIGINAL PAPER Characterizations of continuous operators on Cb(X) with the strict topology Marian Nowak1 · Juliusz Stochmal2 Received: 2 September 2020 / Accepted: 7 January 2021 / Published online: 16 February 2021 © The Author(s) 2021 Abstract C X Let X be a completely regular Hausdorf space and b( ) be the space of all bounded continuous functions on X, equipped with the strict topology . We study some ⋅ C X important classes of (, ‖ ‖E)-continuous linear operators from b( ) to a Banach E ⋅ space ( , ‖ ‖E) : -absolutely summing operators, compact operators and -nuclear operators. We characterize compact operators and -nuclear operators in terms of their representing measures. It is shown that dominated operators and -absolutely T C X → E summing operators ∶ b( ) coincide and if, in particular, E has the Radon– Nikodym property, then -absolutely summing operators and -nuclear operators coincide. We generalize the classical theorems of Pietsch, Tong and Uhl concern- ing the relationships between absolutely summing, dominated, nuclear and compact operators on the Banach space C(X), where X is a compact Hausdorf space. Keywords Spaces of bounded continuous functions · k-spaces · Radon vector measures · Strict topologies · Absolutely summing operators · Dominated operators · Nuclear operators · Compact operators · Generalized DF-spaces · Projective tensor product Mathematics Subject Classifcation 46G10 · 28A32 · 47B10 Communicated by Raymond Mortini. * Juliusz Stochmal [email protected] Marian Nowak [email protected] 1 Institute of Mathematics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Gora, Poland 2 Institute of Mathematics, Kazimierz Wielki University, ul.
    [Show full text]