7. Quantization of the Harmonic Oscillator – Ariadne's Thread In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to the Many-Body Problem
INTRODUCTION TO THE MANY-BODY PROBLEM UNIVERSITY OF FRIBOURG SPRING TERM 2010 Dionys Baeriswyl General literature A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Prentice-Hall 1963. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill 1971. G. D. Mahan, Many-Particle Physics, Plenum Press 1981. J. W. Negele and H. Orland, Quantum Many Particle Systems, Perseus Books 1998. Ph. A. Martin and F. Rothen, Many-Body Problems and Quantum Field Theory, Springer-Verlag 2002. H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics, Oxford University Press 2004. Contents 1 Second quantization 2 1.1 Many-particlestates ......................... 2 1.2 Fockspace............................... 3 1.3 Creationandannihilationoperators . 5 1.4 Quantumfields ............................ 7 1.5 Representationofobservables . 10 1.6 Wick’stheorem ............................ 16 2 Many-boson systems 19 2.1 Bose-Einstein condensation in a trap . 19 2.2 TheweaklyinteractingBosegas. 20 2.3 TheGross-Pitaevskiiequation . 23 3 Many-electron systems 26 3.1 Thejelliummodel........................... 26 3.2 Hartree-Fockapproximation . 27 3.3 TheWignercrystal .......................... 28 3.4 TheHubbardmodel ......................... 29 4 Magnetism 34 4.1 Exchange ............................... 34 4.2 Magnetic order in the Heisenberg model . 36 5 Electrons and phonons 39 5.1 Theharmoniccrystal.. .. .. 39 5.2 Electron-phononinteraction . 41 5.3 Phonon-inducedattraction -
Arxiv:1512.08882V1 [Cond-Mat.Mes-Hall] 30 Dec 2015
Topological Phases: Classification of Topological Insulators and Superconductors of Non-Interacting Fermions, and Beyond Andreas W. W. Ludwig Department of Physics, University of California, Santa Barbara, CA 93106, USA After briefly recalling the quantum entanglement-based view of Topological Phases of Matter in order to outline the general context, we give an overview of different approaches to the classification problem of Topological Insulators and Superconductors of non-interacting Fermions. In particular, we review in some detail general symmetry aspects of the "Ten-Fold Way" which forms the foun- dation of the classification, and put different approaches to the classification in relationship with each other. We end by briefly mentioning some of the results obtained on the effect of interactions, mainly in three spatial dimensions. I. INTRODUCTION Based on the theoretical and, shortly thereafter, experimental discovery of the Z2 Topological Insulators in d = 2 and d = 3 spatial dimensions dominated by spin-orbit interactions (see [1,2] for a review), the field of Topological Insulators and Superconductors has grown in the last decade into what is arguably one of the most interesting and stimulating developments in Condensed Matter Physics. The field is now developing at an ever increasing pace in a number of directions. While the understanding of fully interacting phases is still evolving, our understanding of Topological Insulators and Superconductors of non-interacting Fermions is now very well established and complete, and it serves as a stepping stone for further developments. Here we will provide an overview of different approaches to the classification problem of non-interacting Fermionic Topological Insulators and Superconductors, and exhibit connections between these approaches which address the problem from very different angles. -
Second Quantization
Chapter 1 Second Quantization 1.1 Creation and Annihilation Operators in Quan- tum Mechanics We will begin with a quick review of creation and annihilation operators in the non-relativistic linear harmonic oscillator. Let a and a† be two operators acting on an abstract Hilbert space of states, and satisfying the commutation relation a,a† = 1 (1.1) where by “1” we mean the identity operator of this Hilbert space. The operators a and a† are not self-adjoint but are the adjoint of each other. Let α be a state which we will take to be an eigenvector of the Hermitian operators| ia†a with eigenvalue α which is a real number, a†a α = α α (1.2) | i | i Hence, α = α a†a α = a α 2 0 (1.3) h | | i k | ik ≥ where we used the fundamental axiom of Quantum Mechanics that the norm of all states in the physical Hilbert space is positive. As a result, the eigenvalues α of the eigenstates of a†a must be non-negative real numbers. Furthermore, since for all operators A, B and C [AB, C]= A [B, C] + [A, C] B (1.4) we get a†a,a = a (1.5) − † † † a a,a = a (1.6) 1 2 CHAPTER 1. SECOND QUANTIZATION i.e., a and a† are “eigen-operators” of a†a. Hence, a†a a = a a†a 1 (1.7) − † † † † a a a = a a a +1 (1.8) Consequently we find a†a a α = a a†a 1 α = (α 1) a α (1.9) | i − | i − | i Hence the state aα is an eigenstate of a†a with eigenvalue α 1, provided a α = 0. -
Chapter 7 Second Quantization 7.1 Creation and Annihilation Operators
Chapter 7 Second Quantization Creation and annihilation operators. Occupation number. Anticommutation relations. Normal product. Wick's theorem. One-body operator in second quantization. Hartree- Fock potential. Two-particle Random Phase Approximation (RPA). Two-particle Tamm- Dankoff Approximation (TDA). 7.1 Creation and annihilation operators In Fig. 3 of the previous Chapter it is shown the single-particle levels generated by a double-magic core containing A nucleons. Below the Fermi level (FL) all states hi are occupied and one can not place a particle there. In other words, the A-particle state j0i, with all levels hi occupied, is the ground state of the inert (frozen) double magic core. Above the FL all states are empty and, therefore, a particle can be created in one of the levels denoted by pi in the Figure. In Second Quantization one introduces the y j i creation operator cpi such that the state pi in the nucleus containing A+1 nucleons can be written as, j i y j i pi = cpi 0 (7.1) this state has to be normalized, that is, h j i h j y j i h j j i pi pi = 0 cpi cpi 0 = 0 cpi pi = 1 (7.2) from where it follows that j0i = cpi jpii (7.3) and the operator cpi can be interpreted as the annihilation operator of a particle in the state jpii. This implies that the hole state hi in the (A-1)-nucleon system is jhii = chi j0i (7.4) Occupation number and anticommutation relations One notices that the number y nj = h0jcjcjj0i (7.5) is nj = 1 is j is a hole state and nj = 0 if j is a particle state. -
SECOND QUANTIZATION Lecture Notes with Course Quantum Theory
SECOND QUANTIZATION Lecture notes with course Quantum Theory Dr. P.J.H. Denteneer Fall 2008 2 SECOND QUANTIZATION x1. Introduction and history 3 x2. The N-boson system 4 x3. The many-boson system 5 x4. Identical spin-0 particles 8 x5. The N-fermion system 13 x6. The many-fermion system 14 1 x7. Identical spin- 2 particles 17 x8. Bose-Einstein and Fermi-Dirac distributions 19 Second Quantization 1. Introduction and history Second quantization is the standard formulation of quantum many-particle theory. It is important for use both in Quantum Field Theory (because a quantized field is a qm op- erator with many degrees of freedom) and in (Quantum) Condensed Matter Theory (since matter involves many particles). Identical (= indistinguishable) particles −! state of two particles must either be symmetric or anti-symmetric under exchange of the particles. 1 ja ⊗ biB = p (ja1 ⊗ b2i + ja2 ⊗ b1i) bosons; symmetric (1a) 2 1 ja ⊗ biF = p (ja1 ⊗ b2i − ja2 ⊗ b1i) fermions; anti − symmetric (1b) 2 Motivation: why do we need the \second quantization formalism"? (a) for practical reasons: computing matrix elements between N-particle symmetrized wave functions involves (N!)2 terms (integrals); see the symmetrized states below. (b) it will be extremely useful to have a formalism that can handle a non-fixed particle number N, as in the grand-canonical ensemble in Statistical Physics; especially if you want to describe processes in which particles are created and annihilated (as in typical high-energy physics accelerator experiments). So: both for Condensed Matter and High-Energy Physics this formalism is crucial! (c) To describe interactions the formalism to be introduced will be vastly superior to the wave-function- and Hilbert-space-descriptions. -
Second Quantization∗
Second Quantization∗ Jörg Schmalian May 19, 2016 1 The harmonic oscillator: raising and lowering operators Lets first reanalyze the harmonic oscillator with potential m!2 V (x) = x2 (1) 2 where ! is the frequency of the oscillator. One of the numerous approaches we use to solve this problem is based on the following representation of the momentum and position operators: r x = ~ ay + a b 2m! b b r m ! p = i ~ ay − a : (2) b 2 b b From the canonical commutation relation [x;b pb] = i~ (3) follows y ba; ba = 1 y y [ba; ba] = ba ; ba = 0: (4) Inverting the above expression yields rm! i ba = xb + pb 2~ m! r y m! i ba = xb − pb (5) 2~ m! ∗Copyright Jörg Schmalian, 2016 1 y demonstrating that ba is indeed the operator adjoined to ba. We also defined the operator y Nb = ba ba (6) which is Hermitian and thus represents a physical observable. It holds m! i i Nb = xb − pb xb + pb 2~ m! m! m! 2 1 2 i = xb + pb − [p;b xb] 2~ 2m~! 2~ 2 2 1 pb m! 2 1 = + xb − : (7) ~! 2m 2 2 We therefore obtain 1 Hb = ! Nb + : (8) ~ 2 1 Since the eigenvalues of Hb are given as En = ~! n + 2 we conclude that the eigenvalues of the operator Nb are the integers n that determine the eigenstates of the harmonic oscillator. Nb jni = n jni : (9) y Using the above commutation relation ba; ba = 1 we were able to show that p a jni = n jn − 1i b p y ba jni = n + 1 jn + 1i (10) y The operator ba and ba raise and lower the quantum number (i.e. -
Casimir-Polder Interaction in Second Quantization
Universitat¨ Potsdam Institut fur¨ Physik und Astronomie Casimir-Polder interaction in second quantization Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) in der Wissen- schaftsdisziplin theoretische Physik. Eingereicht am 21. Marz¨ 2011 an der Mathematisch – Naturwissen- schaftlichen Fakultat¨ der Universitat¨ Potsdam von Jurgen¨ Schiefele Betreuer: PD Dr. Carsten Henkel This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2011/5417/ URN urn:nbn:de:kobv:517-opus-54171 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54171 Abstract The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predic- tions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states. -
Notes on Green's Functions Theory for Quantum Many-Body Systems
Notes on Green's Functions Theory for Quantum Many-Body Systems Carlo Barbieri Department of Physics, University of Surrey, Guildford GU2 7XH, UK June 2015 Literature A modern and compresensive monography is • W. H. Dickhoff and D. Van Neck, Many-Body Theory Exposed!, 2nd ed. (World Scientific, Singapore, 2007). This book covers several applications of Green's functions done in recent years, including nuclear and electroncic systems. Most the material of these lectures can be found here. Two popular textbooks, that cover the almost complete formalism, are • A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Physics (McGraw-Hill, New York, 1971), • A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Dover, New York, 1975). Other useful books on many-body Green's functions theory, include • R. D. Mattuck, A Guide to Feynmnan Diagrams in the Many-Body Problem, (McGraw-Hill, 1976) [reprinted by Dover, 1992], • J. P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge MA, 1986), • J. W. Negele and H. Orland, Quantum Many-Particle Systems (Ben- jamin, Redwood City CA, 1988). 2 Chapter 1 Preliminaries: Basic Formulae of Second Quantization and Pictures Many-body Green's functions (MBGF) are a set of techniques that originated in quantum field theory but have also found wide applications to the many- body problem. In this case, the focus are complex systems such as crystals, molecules, or atomic nuclei. However, many-body Green's functions still share the same language with elementary particles theory, and have several concepts in common. -
Tempered Distributions and the Fourier Transform
CHAPTER 1 Tempered distributions and the Fourier transform Microlocal analysis is a geometric theory of distributions, or a theory of geomet- ric distributions. Rather than study general distributions { which are like general continuous functions but worse { we consider more specific types of distributions which actually arise in the study of differential and integral equations. Distri- butions are usually defined by duality, starting from very \good" test functions; correspondingly a general distribution is everywhere \bad". The conormal dis- tributions we shall study implicitly for a long time, and eventually explicitly, are usually good, but like (other) people have a few interesting faults, i.e. singulari- ties. These singularities are our principal target of study. Nevertheless we need the general framework of distribution theory to work in, so I will start with a brief in- troduction. This is designed either to remind you of what you already know or else to send you off to work it out. (As noted above, I suggest Friedlander's little book [4] - there is also a newer edition with Joshi as coauthor) as a good introduction to distributions.) Volume 1 of H¨ormander'streatise [8] has all that you would need; it is a good general reference. Proofs of some of the main theorems are outlined in the problems at the end of the chapter. 1.1. Schwartz test functions To fix matters at the beginning we shall work in the space of tempered distribu- tions. These are defined by duality from the space of Schwartz functions, also called the space of test functions of rapid decrease. -
Field Formulation of Many-Body Quantum Physics
A common mistake that people make when trying to design something completely foolproof is to underestimate the ingenuity of complete fools. Douglas Adams (1952-2001) 2 Field Formulation of Many-Body Quantum Physics A piece of matter composed of a large number of microscopic particles is called a many-body system. The microscopic particles may either be all identical or of dif- ferent species. Examples are crystal lattices, liquids, and gases, all of these being aggregates of molecules and atoms. Molecules are composed of atoms which, in turn, consist of an atomic nucleus and electrons, held together by electromagnetic forces, or more precisely their quanta, the photons. The mass of an atom is mostly due to the nucleus, only a small fraction being due to the electrons and an even smaller fraction due to the electromagnetic binding energy. Atomic nuclei are themselves bound states of nucleons, held together by mesonic forces, or more precisely their quanta, the mesons. The nucleons and mesons, finally, consist of the presently most fundamental objects of nuclear material, called quarks, held together by gluonic forces. Quarks and gluons are apparently as fundamental as electrons and photons. It is a wonderful miracle of nature that this deep hierarchy of increasingly funda- mental particles allows a common description with the help of a single theoretical structure called quantum field theory. As a first step towards developing this powerful theory we shall start from the well-founded Schr¨odinger theory of nonrelativistic spinless particles. We show that there exists a completely equivalent formulation of this theory in terms of quantum fields. -
Lecture Notes: Introduction to Microlocal Analysis with Applications
LECTURE NOTES: INTRODUCTION TO MICROLOCAL ANALYSIS WITH APPLICATIONS MIHAJLO CEKIC´ Contents Course Summary2 Notation 4 1. Recap: LCS topologies, distributions, Fourier transforms5 1.1. Topological vector spaces5 1.2. Space of distributions6 1.3. Schwartz kernel theorem8 1.4. Fourier transform9 2. Symbol classes, oscillatory integrals and Fourier Integral Operators 10 2.1. Symbol classes 10 2.2. Oscillatory integrals 13 3. Method of stationary phase 16 4. Algebra of pseudodifferential operators 18 4.1. Changes of variables (Kuranishi trick) 22 5. Elliptic operators and L2-continuity 23 5.1. L2-continuity 25 5.2. Sobolev spaces and PDOs 26 6. The wavefront set of a distribution 29 6.1. Operations with distributions: pullbacks and products 33 7. Manifolds 36 8. Quantum ergodicity 38 8.1. Ergodic theory 39 8.2. Statement and ingredients 41 8.3. Main proof of Quantum Ergodicity 44 9. Semiclassical calculus and Weyl's law 46 9.1. Proof of Weyl's law 48 References 50 1 2 M. CEKIC´ Course Summary Microlocal analysis studies singularities of distributions in phase space, by describing the behaviour of the singularity in both position and direction. It is a part of the field of partial differential equations, created by H¨ormander, Kohn, Nirenberg and others in 1960s and 1970s, and is used to study questions such as solvability, regularity and propagation of singularities of solutions of PDEs. To name a few other classical applications, it can be used to study asymptotics of eigenfunctions for elliptic operators, trace formulas and inverse problems. There have been recent exciting advances in the field and many applications to geometry and dynamical systems. -
Characterizations of Continuous Operators on with the Strict Topology
Tusi Mathematical Ann. Funct. Anal. (2021) 12:28 Research https://doi.org/10.1007/s43034-021-00112-1 Group ORIGINAL PAPER Characterizations of continuous operators on Cb(X) with the strict topology Marian Nowak1 · Juliusz Stochmal2 Received: 2 September 2020 / Accepted: 7 January 2021 / Published online: 16 February 2021 © The Author(s) 2021 Abstract C X Let X be a completely regular Hausdorf space and b( ) be the space of all bounded continuous functions on X, equipped with the strict topology . We study some ⋅ C X important classes of (, ‖ ‖E)-continuous linear operators from b( ) to a Banach E ⋅ space ( , ‖ ‖E) : -absolutely summing operators, compact operators and -nuclear operators. We characterize compact operators and -nuclear operators in terms of their representing measures. It is shown that dominated operators and -absolutely T C X → E summing operators ∶ b( ) coincide and if, in particular, E has the Radon– Nikodym property, then -absolutely summing operators and -nuclear operators coincide. We generalize the classical theorems of Pietsch, Tong and Uhl concern- ing the relationships between absolutely summing, dominated, nuclear and compact operators on the Banach space C(X), where X is a compact Hausdorf space. Keywords Spaces of bounded continuous functions · k-spaces · Radon vector measures · Strict topologies · Absolutely summing operators · Dominated operators · Nuclear operators · Compact operators · Generalized DF-spaces · Projective tensor product Mathematics Subject Classifcation 46G10 · 28A32 · 47B10 Communicated by Raymond Mortini. * Juliusz Stochmal [email protected] Marian Nowak [email protected] 1 Institute of Mathematics, University of Zielona Góra, ul. Szafrana 4A, 65-516 Zielona Gora, Poland 2 Institute of Mathematics, Kazimierz Wielki University, ul.