Exchange of Small Regulatory Rnas Between Plants and Their Pests1[OPEN]

Total Page:16

File Type:pdf, Size:1020Kb

Exchange of Small Regulatory Rnas Between Plants and Their Pests1[OPEN] Update on Small Regulatory RNA Exchanges Exchange of Small Regulatory RNAs between Plants and Their Pests1[OPEN] Collin Hudzik,a,2 Yingnan Hou,b,2 Wenbo Ma,b,3 and Michael J. Axtella,3,4 aDepartment of Biology, Intercollege Ph.D. Program in Plant Biology, and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802 bDepartment of Microbiology and Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521 Downloaded from https://academic.oup.com/plphys/article/182/1/51/6116263 by guest on 01 October 2021 ORCID IDs: 0000-0001-5569-639X (W.M.); 0000-0001-8951-7361 (M.J.A.). Regulatory small RNAs are well known as antiviral agents, regulators of gene expression, and defenders of genome integrity in plants. Several studies over the last decade have also shown that some small RNAs are exchanged between plants and their pathogens and parasites. Naturally occurring trans-species small RNAs are used by host plants to silence mRNAs in pathogens. These gene-silencing events are thought to be detrimental to the pathogen and beneficial to the host. Conversely, trans-species small RNAs from pathogens and parasites are deployed to silence host mRNAs; these events are thought to be beneficial for the pests. The natural ability of plants to exchange small RNAs with invading eukaryotic organisms can be exploited to provide disease resistance. This review gives an overview of the current state of trans-species small RNA research in plants and discusses several outstanding questions for future research. SMALL REGULATORY RNA BACKGROUND of the primary transcript forms an imperfect hairpin structure that is recognized by the DCL1 endonucle- Small regulatory RNAs (sRNAs) are numerous in ase. DCL1, along with several accessory proteins, plants. They usually range in size from 21 to 24 nucle- liberates a miRNA/miRNA* duplex. The duplex is otides and serve as key regulators of gene expression. disassembled, with the mature miRNA becoming sRNAs are involved in myriad processes, including bound to an Argonaute (AGO) protein, most frequently development, cell type designation, responses to abi- AGO1. Once the mature miRNA is bound to an AGO otic stress, and silencing of repetitive elements. sRNAs protein, the miRNA* is typically separated from the are processed from longer precursor RNAs (either the complex and degraded (for a more detailed review of helical stem regions of self-complementary single- plant miRNA biogenesis, see Rogers and Chen, 2013). stranded RNAs or double-stranded RNAs [dsRNAs]) The resulting miRNA/AGO complex directs post- by endonucleases in the Dicer-like (DCL) protein fam- transcriptional regulation of mRNAs and long non- ily. DCL endonucleases produce an initial short duplex coding RNAs. Target selection is primarily based on RNA. One of the two short RNA strands forms a com- complementarity between the miRNA and target RNA plex with a protein in the Argonaute (AGO) family. The AGO-sRNA complex then identifies target RNAs based on complementarity between target and sRNA. sRNAs can be categorized based on differences in their biogen- esis and differences in their modes of targeting (Fig. 1). MicroRNAs (miRNAs) in plants are processed from RNA polymerase II-transcribed primary RNAs. A region 1This work was supported by the U.S. Department of Agriculture- National Institute of Food and Agriculture (award nos. 2018-67013- 28514 and 2018-67014-28488) and by the National Science Foundation (grant nos. IOS-1340001 and IOS-1758889). 2These authors contributed equally to the article. 3Senior authors. 4Author for contact: [email protected]. C.H. and M.J.A. wrote sections on small RNA biology and para- site-to-host transfer of small RNAs; W.M. and Y.H. wrote sections on HIGS and host-to-pathogen transfer of small RNAs; figures were made by M.J.A.; all authors cooperatively merged and polished the final draft. [OPEN]Articles can be viewed without a subscription. www.plantphysiol.org/cgi/doi/10.1104/pp.19.00931 Plant PhysiologyÒ, January 2020, Vol. 182, pp. 51–62, www.plantphysiol.org Ó 2020 American Society of Plant Biologists. All Rights Reserved. 51 Hudzik et al. Downloaded from https://academic.oup.com/plphys/article/182/1/51/6116263 by guest on 01 October 2021 Figure 1. Schematic overview of endogenous small RNA biogenesis and molecular functions in plants. The rounded rectangle with the mRNA represents the open reading frame. Figures are not drawn to scale; miRNA and siRNA duplexes have two- nucleotide 39 overhangs. DRM, Domains rearranged methyltransferase. For brevity, many details are omitted; see Rogers and Chen (2013), Matzke and Mosher (2014), and Borges and Martienssen (2015) for detailed discussions of plant small RNA bio- genesis. (Mallory et al., 2004; Liu et al., 2014). Plant AGO pro- Two major classes of plant siRNAs have been widely teins are endonucleases that cut target RNAs. (Tang recognized: secondary siRNAs and RNA polymerase et al., 2003; Baumberger and Baulcombe, 2005; Qi IV-dependent siRNAs (p4-siRNAs; Fig. 1). et al., 2005). This target slicing destabilizes the RNA. Secondary siRNA biogenesis depends on an initial The association of AGO/miRNA complexes with mRNAs AGO-miRNA or AGO-siRNA interaction with a target can also cause translational repression and in certain RNA. This interaction stimulates the activity of a spe- cases trigger the biogenesis of secondary short inter- cific RNA-dependent RNA polymerase (RDR6) on the fering RNAs (siRNAs; Fig. 1). Most plant miRNAs are target,creatingdsRNA.Typically,thedsRNAispro- 21 nucleotides long. miRNAs of 22 nucleotides also cessed into siRNA duplexes by both DCL4 (which sometimes occur, but sizes other than 21 or 22 nucle- makes 21-nucleotide-long duplexes) and DCL2 (which otides are much less common. makes 22-nucleotide-long duplexes). The resulting Besides miRNAs, many other sRNAs are produced population of 21- to 22-nucleotide secondary siRNAs and used by the plant DCL/AGO system. These are can be bound to AGO proteins and target additional collectively termed siRNAs. Plant siRNAs are typically copies of the original transcript as well as other tran- generated from dsRNA and can be processed by mul- scripts with sufficient complementarity. The result is a tiple DCLs. They are distinguished from miRNAs by positive feedback loop where an initial miRNA or the absence of a precisely processed stem-loop precur- siRNA trigger can amplify its effects and cause potent sor. Also, unlike miRNAs, which target RNAs distinct gene silencing. Not all AGO/miRNA or AGO/siRNA from their own precursors, plant siRNAs typically tar- targets spawn secondary siRNAs. For reasons that get transcripts from the same loci where they originate. remain murky, targeting by a 22-nucleotide miRNA or 52 Plant Physiol. Vol. 182, 2020 sRNA Exchanges during Plant-Pest Interactions siRNA (Chen et al., 2010; Cuperus et al., 2010) and/or defense (Baulcombe, 2004; Ding, 2010). Plants infected multiple target sites on the same RNA (Axtell et al., with viruses acquire immunity by producing DCL- 2006) promote secondary siRNA biogenesis; in con- dependent and virus-derived siRNAs, which guide trast, targeting at single sites by typical 21-nucleotide AGO proteins to viral RNAs and thus help to arrest the miRNAs does not promote secondary siRNA accumu- infection (Guo et al., 2019). However, it was not until lation. Secondary siRNA biogenesis does not strictly recently that a role of sRNAs was established in plant require AGO-catalyzed slicing of the precursor (Axtell defense during infections by cellular pathogens, especially et al., 2006; Arribas-Hernández et al., 2016), but slicing eukaryotic pathogens including fungi and oomycetes. often occurs. When it does occur at a single predomi- An early example of pathogen gene silencing in- nant site, the resulting dsRNA production will all be- duced by host sRNAs was from the observation that gin at the same position. Because the relevant DCLs native miRNAs produced from human erythrocytes liberate secondary siRNA duplexes sequentially from translocate into the malaria-causing parasite Plasmo- the dsRNA terminus, the resulting siRNA population has dium falciparum and inhibit pathogen gene expression Downloaded from https://academic.oup.com/plphys/article/182/1/51/6116263 by guest on 01 October 2021 59 and 39 ends at regularly defined 21- to 22-nucleotide (LaMonte et al., 2012). Whether endogenous sRNAs in intervals. This property is known as phasing, and the plants could mediate trans-species RNAi remained resulting secondary siRNAs are thus known as phased unknown until the report from Zhang et al. (2016b), siRNAs (Fei et al., 2013). In some cases, secondary which described two cotton (Gossypium hirsutum) siRNAs can also target mRNAs that are distinct from miRNAs, miR159 and miR166, that conferred resistance their precursor RNA; these siRNAs have been called to the fungal pathogen Verticillium dahliae (Fig. 2). trans-acting siRNAs (tasiRNAs; Vazquez et al., 2004). miR159 and miR166 are induced upon the fungal in- We regard tasiRNAs and phased siRNAs as subsets fection. Importantly, they were detected in fungal within the more general class of secondary siRNAs. hyphae isolated from the infected cotton tissues and The third major type of plant sRNAs are the predicted to target specific transcripts encoding p4-siRNAs. Both the biogenesis and function of p4- virulence-related proteins in the fungus. As a result, siRNAs are distinct from miRNAs and secondary siR- these miRNAs promoted resistance to V. dahliae.This NAs. RDR2 is attached to RNA polymerase IV and defense mechanism seems to be conserved in Arabi- generates a short (;40 nucleotides) dsRNA. This dsRNA dopsis (Arabidopsis thaliana), in which miR159 and is in turn processed into a 24-nucleotide-long siRNA miR166 were also induced by V. dahliae infection (Zhang duplex by DCL3. A mature 24-nucleotide p4-siRNA is et al., 2016b). Furthermore, knockdown mutants of then loaded onto a specialized AGO in the AGO4 clade.
Recommended publications
  • Pollen Evolution and Its Taxonomic Significance in Cuscuta (Dodders, Convolvulaceae)
    Plant Syst Evol (2010) 285:83–101 DOI 10.1007/s00606-009-0259-4 ORIGINAL ARTICLE Pollen evolution and its taxonomic significance in Cuscuta (dodders, Convolvulaceae) Mark Welsh • Sasˇa Stefanovic´ • Mihai Costea Received: 12 June 2009 / Accepted: 28 December 2009 / Published online: 27 February 2010 Ó Springer-Verlag 2010 Abstract The pollen morphology of 148 taxa (135 spe- unknown in other Convolvulaceae, has evolved in Cuscuta cies and 13 varieties) of the parasitic plant genus Cuscuta only in two lineages (subg. Monogynella, and clade O of (dodders, Convolvulaceae) was examined using scanning subg. Grammica). Overall, the morphology of pollen electron microscopy. Six quantitative characters were supports Cuscuta as a sister to either the ‘‘bifid-style’’ coded using the gap-weighting method and optimized Convolvulaceae clade (Dicranostyloideae) or to one of the onto a consensus tree constructed from three large-scale members of this clade. Pollen characters alone are insuf- molecular phylogenies of the genus based on nuclear ficient to reconstruct phylogenetic relationships; however, internal transcribed spacer (ITS) and plastid trn-LF palynological information is useful for the species-level sequences. The results indicate that 3-zonocolpate pollen is taxonomy of Cuscuta. ancestral, while grains with more colpi (up to eight) have evolved only in two major lineages of Cuscuta (subg. Keywords Convolvulaceae Á Cuscuta Á Dodders Á Monogynella and clade O of subg. Grammica). Complex Evolution Á Phylogeny Á Pollen morphology Á morphological intergradations occur between species when Scanning electron microscopy Á Taxonomy their tectum is described using the traditional qualitative types—imperforate, perforate, and microreticulate. This continuous variation is better expressed quantitatively as Introduction ‘‘percent perforation,’’ namely the proportion of perforated area (puncta or lumina) from the total tectum surface.
    [Show full text]
  • Minnesota and Federal Prohibited and Noxious Plants List 6-22-2011
    Minnesota and Federal Prohibited and Noxious Plants List 6-22-2011 Minnesota and Federal Prohibited and Noxious Plants by Scientific Name (compiled by the Minnesota DNR’s Invasive Species Program 6-22-2011) Key: FN – Federal noxious weed (USDA–Animal Plant Health Inspection Service) SN – State noxious weed (Minnesota Department of Agriculture) RN – Restricted noxious weed (Minnesota Department of Agriculture) PI – Prohibited invasive species (Minnesota Department of Natural Resources) PS – State prohibited weed seed (Minnesota Department of Agriculture) RS – State restricted weed seed (Minnesota Department of Agriculture) (See explanations of these classifications below the lists of species) Regulatory Scientific Name Common Name Classification Aquatic Plants: Azolla pinnata R. Brown mosquito fern, water velvet FN Butomus umbellatus Linnaeus flowering rush PI Caulerpa taxifolia (Vahl) C. Agardh Mediterranean strain (killer algae) FN Crassula helmsii (Kirk) Cockayne Australian stonecrop PI Eichomia azurea (Swartz) Kunth anchored water hyacinth, rooted water FN hyacinth Hydrilla verticillata (L. f.) Royle hydrilla FN, PI Hydrocharis morsus-ranae L. European frog-bit PI Hygrophila polysperma (Roxburgh) T. Anders Indian swampweed, Miramar weed FN, PI Ipomoea aquatica Forsskal water-spinach, swamp morning-glory FN Lagarosiphon major (Ridley) Moss ex Wagner African oxygen weed FN, PI Limnophila sessiliflora (Vahl) Blume ambulia FN Lythrum salicaria L., Lythrum virgatum L., (or any purple loosestrife PI, SN variety, hybrid or cultivar thereof) Melaleuca quenquinervia (Cav.) Blake broadleaf paper bank tree FN Monochoria hastata (Linnaeus) Solms-Laubach arrowleaf false pickerelweed FN Monochoria vaginalis (Burman f.) C. Presl heart-shaped false pickerelweed FN Myriophyllum spicatum Linnaeus Eurasian water mifoil PI Najas minor All. brittle naiad PI Ottelia alismoides (L.) Pers.
    [Show full text]
  • Physiological and Ecological Warnings That Dodder Pose an Exigent Threat
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.26.355883; this version posted October 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Running title: The Exigent threat of Dodders in Eastern Africa 2 3 Title: Physiological and ecological warnings that Dodder pose an exigent threat to 4 farmlands in Eastern Africa 5 6 Joel Masanga1, Beatrice Njoki Mwangi1, Willy Kibet1, Philip Sagero2, Mark 7 Wamalwa1, Richard Oduor1, Mathew Ngugi1, Amos Alakonya3, Patroba Ojola1, 8 Emily S. Bellis4,5*, and Steven Runo1* 9 1 Department of Biochemistry, Microbiology and Biotechnology. Kenyatta University, Kenya. 10 2 Kenya Meteorological Department, Nairobi, Kenya 11 3 International Maize and Wheat Improvement Center, Mexico 12 4 Arkansas Biosciences Institute and Department of Computer Science, Arkansas State University, USA 13 5 Center for No-Boundary Thinking, Arkansas, USA 14 *Correspondence: [email protected] and [email protected] 15 16 Sentence Summary: Microscopy and habitat suitability modeling provide an early 17 warning that dodder’s invasion in Eastern Africa poses a threat to important cash crops 18 19 Funding information: We acknowledge financial support from Kenyatta University 20 through the Vice Chancellors Research grant number KU/DVCR/VRG/VOL.11/216. 21 JM’s PhD is funded by the National Research Fund (NRF) grant number 22 NRF/PhD/02/76. 23 24 Author contributions: S.R. conceived the study, guided fieldwork and oversaw 25 experimental work.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • Invisible Connections: Introduction to Parasitic Plants Dr
    Invisible Connections: Introduction to Parasitic Plants Dr. Vanessa Beauchamp Towson University What is a parasite? • An organism that lives in or on an organism of another species (its host) and benefits by deriving nutrients at the other's expense. Symbiosis https://www.superpharmacy.com.au/blog/parasites-protozoa-worms-ectoparasites Food acquisition in plants: Autotrophy Heterotrophs (“different feeding”) • True parasites: obtain carbon compounds from host plants through haustoria. • Myco-heterotrophs: obtain carbon compounds from host plants via Image Credit: Flickr User wackybadger, via CC mycorrhizal fungal connection. • Carnivorous plants (not parasitic): obtain nutrients (phosphorus, https://commons.wikimedia.org/wiki/File:Pin nitrogen) from trapped insects. k_indian_pipes.jpg http://www.welivealot.com/venus-flytrap- facts-for-kids/ Parasite vs. Epiphyte https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ By © Hans Hillewaert /, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6289695 True Parasitic Plants • Gains all or part of its nutrition from another plant (the host). • Does not contribute to the benefit of the host and, in some cases, causing extreme damage to the host. • Specialized peg-like root (haustorium) to penetrate host plants. https://www.britannica.com/plant/parasitic-plant https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ Diversity of parasitic plants Eudicots • Parasitism has evolved independently at least 12 times within the plant kingdom. • Approximately 4,500 parasitic species in Monocots 28 families. • Found in eudicots and basal angiosperms • 1% of the dicot angiosperm species • No monocot angiosperm species Basal angiosperms Annu. Rev. Plant Biol. 2016.67:643-667 True Parasitic Plants https://www.alamy.com/parasitic-dodder-plant-cuscuta-showing-penetration-parasitic-haustor The defining structural feature of a parasitic plant is the haustorium.
    [Show full text]
  • Infestation of Field Dodder (Cuscuta Campestris Yunck.)
    plants Article Infestation of Field Dodder (Cuscuta campestris Yunck.) Promotes Changes in Host Dry Weight and Essential Oil Production in Two Aromatic Plants, Peppermint and Chamomile Marija Sari´c-Krsmanovi´c 1,*, Ana Dragumilo 2, Jelena Gaji´cUmiljendi´c 1, Ljiljana Radivojevi´c 1, Ljiljana Šantri´c 1 and Rada Ðurovi´c-Pejˇcev 1 1 Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade, Serbia; [email protected] (J.G.U.); [email protected] (L.R.); [email protected] (L.Š.); [email protected] (R.Ð.-P.) 2 Institute for Medicinal Plant Research “Dr. Josif Panˇci´c”,Tadeuša Koš´cuška1, 11000 Belgrade, Serbia; [email protected] * Correspondence: [email protected]; Tel.: +38-111-3076-133 Received: 13 July 2020; Accepted: 23 September 2020; Published: 29 September 2020 Abstract: Peppermint (Mentha piperita L.) and chamomile (Chamomilla recutita (L.) Rausch.) are aromatic plants with considerable economic value. These plants and their essential oils are used in medicine, cosmetics, and the food industry. One of the main limiting factors in peppermint and chamomile commercial cultivation is weed competition since weeds are able to decrease both oil amount and biomass yield. The purpose of the present study was to determine the effect of parasitism by field dodder (Cuscuta campestris Yunck.) on peppermint and chamomile dry weight and their essential oil yield and composition. Essential oils from both noninfested and infested peppermint and chamomile plants were obtained by hydrodistillation and characterized chemically by gas chromatography (GC) coupled with mass spectrometry (MS). The amount of dry matter accumulated by peppermint and chamomile plants infested by field dodder was lower (25% and 63%, respectively) compared to noninfested plants.
    [Show full text]
  • Comparative Biology of Seed Dormancy-Break and Germination in Convolvulaceae (Asterids, Solanales)
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) Kariyawasam Marthinna Gamage Gehan Jayasuriya University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jayasuriya, Kariyawasam Marthinna Gamage Gehan, "COMPARATIVE BIOLOGY OF SEED DORMANCY- BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES)" (2008). University of Kentucky Doctoral Dissertations. 639. https://uknowledge.uky.edu/gradschool_diss/639 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kariyawasam Marthinna Gamage Gehan Jayasuriya Graduate School University of Kentucky 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) ABSRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Art and Sciences at the University of Kentucky By Kariyawasam Marthinna Gamage Gehan Jayasuriya Lexington, Kentucky Co-Directors: Dr. Jerry M. Baskin, Professor of Biology Dr. Carol C. Baskin, Professor of Biology and of Plant and Soil Sciences Lexington, Kentucky 2008 Copyright © Gehan Jayasuriya 2008 ABSTRACT OF DISSERTATION COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) The biology of seed dormancy and germination of 46 species representing 11 of the 12 tribes in Convolvulaceae were compared in laboratory (mostly), field and greenhouse experiments.
    [Show full text]
  • Proclaimed Plant Policy
    Declared Plant Policy This policy relates to natural resources management under section 9(1)(d) of the Landscape South Australia Act 2019 (the Act), enabling co-ordinated implementation and promotion of sound management programs and practices for the use, development or protection of natural resources of the State. Specifically, this policy provides guidance on the use and management of natural resources relating to the prevention or control of impacts caused by pest species of plants that may have an adverse effect on the environment, primary production or the community, as per object s7(1)(f) of the Act. golden dodder (Cuscuta campestris) Dodders are annual parasitic weeds that grow attached to a wide range of host plants. They have thread-like leafless stems that twine around the host, attaching by haustoria through which the dodder draws all its water and nutrients. Golden dodder is established in the Riverland, with occasional incursions in other parts of South Australia. Management Plan for Golden Dodder Outcomes • No golden dodder contamination of vegetable or forage seed produced in South Australia. • No further establishment of golden dodder on uninfested lands. Objectives • Outbreaks of golden dodder in agricultural areas destroyed. • No movement of golden dodder from currently infested areas to new sites. • Golden dodder in amenity areas and accessible riverbanks in the Riverland managed to minimise seed production and infestation density. Best Practice Implementation • Prohibitions on sale and movement of contaminated produce enforced by regional landscape boards, Green Adelaide and the Chief Executive of the Department for Environment and Water. • Regional landscape boards and Green Adelaide to ensure new infestations are located, notified to the Chief Executive, DEW, and destroyed in accordance with regional management plans.
    [Show full text]
  • Fideo, Cabello De Ángel. Cuscuta Spp
    DIRECCIÓN GENERAL DE SANIDAD VEGETAL CENTRO NACIONAL DE REFERENCIA FITOSANITARIA FICHA TÉCNICA Fideo, Cabello de Ángel. Cuscuta sp. Infestando Alstonia scholaris. Créditos: Nikam et al., 2014. Cuscuta spp. DIRECCIÓN GENERAL DE SANIDAD VEGETAL CENTRO NACIONAL DE REFERENCIA FITOSANITARIA CONTENIDO IDENTIDAD ..............................................................................................................................................................1 Nombre científico ..................................................................................................................................................1 Clasificación taxonómica ......................................................................................................................................1 Nombres comunes ................................................................................................................................................1 SITUACIÓN EN MÉXICO .........................................................................................................................................1 DISTRIBUCIÓN ........................................................................................................................................................1 HOSPEDANTES .......................................................................................................................................................2 ASPECTOS BIOLÓGICOS.......................................................................................................................................3
    [Show full text]
  • Cross-Species Translocation of Mrna from Host Plants Into the Parasitic Plant Dodder
    Cross-Species Translocation of mRNA from Host Plants into the Parasitic Plant Dodder Jeannine K. Flagg Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Plant Pathology, Physiology, and Weed Science James H. Westwood, Chair Glenda Gillaspy Jake Tu April 11, 2006 Blacksburg, Virginia Keywords: Cuscuta pentagona, phloem-mobile mRNA, tomato, pumpkin Copyright 2006, Jeannine K. Flagg Cross-Species Translocation of mRNA from Host Plants into the Parasitic Plant Dodder Jeannine K. Flagg (ABSTRACT) Dodders (Cuscuta spp.) are parasitic plants that live by tapping into the vascular tissue of a host plant. Contents of the host phloem translocate readily into the parasite, and shared plasmodesmata have been documented between host cortical cells and dodder searching hyphae. Dodder is known to transmit viruses from one host to another, which is consistent with viral ability to traverse plasmodesmata (PD) with the aid of movement proteins (MPs). Plant endogenous mRNAs may also associate with specific proteins to pass through PD and traffic long distances in the phloem, a process that appears to play a role in coordination of development. We have evaluated the hypothesis that dodder is able to accumulate host phloem-mobile mRNAs by assaying lespedeza dodder (C. pentagona) for the presence of host transcripts. Reverse transcriptase PCR (RT-PCR) and tomato microarrays were used to probe RNA from dodder parasitizing tomato. Transcripts from four tomato genes were detected in dodder grown on tomato, but were not detected in control dodder grown on other hosts.
    [Show full text]
  • Impact of Field Dodder (Cuscuta Campestris Yunk.) on Physiological and Anatomical Changes in Untreated and Herbicide-Treated Alfalfa Plants
    Pestic. Phytomed. (Belgrade), 31(3-4), 2016, 115–120 UDC 632.5:581.1+581.4:633.31 DOI: 10.2298/PIF1604115S Original scientific paper Impact of field dodder (Cuscuta campestris Yunk.) on physiological and anatomical changes in untreated and herbicide-treated alfalfa plants Marija Sarić-Krsmanović1*, Dragana Božić2, Ljiljana Radivojević1, Jelena Gajić Umiljendić1 and Sava Vrbničanin2 1Institute of Pesticides and Environmental Protection, Banatska 31b, 11080 Belgrade 2University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade * Corresponding author: [email protected] Received: 14 September, 2016 Accepted: 3 November, 2016 SUMMARY T he effects of field dodder on physiological processes and the anatomy of alfalfa plants were examined under controlled conditions. The experiment included the following variants: N - noninfested alfalfa plants (control); I - infested alfalfa plants (untreated); T - infested plants treated with imazethapyr. Imazethapyr application rate was 100 g a.i. ha-1. The following parameters were checked: physiological - pigment content (chlorophyll a, chlorophyll b, total carotenoids); anatomical - stem parameters: thickness of epidermis and cortex, and diameter of stem and central cylinder; leaf parameters: thickness of epidermis, parenchyma and spongy tissue, mesophyll and underside leaf epidermis, and diameter of bundle sheath cells in alfalfa plants. Pigment contents and anatomical parameters were measured: prior to herbicide treatment (0 assessment), then 7 (I assessment), 14 (II assessment), 21 (III assessment), 28 (IV assessment) and 35 (V assessment) days after application (DAA). Field dodder was found to affect the contents of chlorophyll a, chlorophyll a and carotenoids in untreated alfalfa plants, causing significant reductions in pigment content. Conversely, percent reduction in the treated plants decreased 22-5% for chlorophyll a, 25-1%, for chlorophyll b, and 21-11% for carotenoids, while a stimulating effect of 1-6% was observed for the contents of chlorophyll b and carotenoids 35 DAA.
    [Show full text]
  • Compensatory Sequence Variation Between Trans-Species Small Rnas and Their Target Sites Nathan R Johnson1,2, Claude W Depamphilis1,2, Michael J Axtell1,2*
    RESEARCH ARTICLE Compensatory sequence variation between trans-species small RNAs and their target sites Nathan R Johnson1,2, Claude W dePamphilis1,2, Michael J Axtell1,2* 1Intercollege PhD Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, United States; 2Department of Biology, The Pennsylvania State University, University Park, United States Abstract Trans-species small regulatory RNAs (sRNAs) are delivered to host plants from diverse pathogens and parasites and can target host mRNAs. How trans-species sRNAs can be effective on diverse hosts has been unclear. Multiple species of the parasitic plant Cuscuta produce trans- species sRNAs that collectively target many host mRNAs. Confirmed target sites are nearly always in highly conserved, protein-coding regions of host mRNAs. Cuscuta trans-species sRNAs can be grouped into superfamilies that have variation in a three-nucleotide period. These variants compensate for synonymous-site variation in host mRNAs. By targeting host mRNAs at highly conserved protein-coding sites, and simultaneously expressing multiple variants to cover synonymous-site variation, Cuscuta trans-species sRNAs may be able to successfully target multiple homologous mRNAs from diverse hosts. Introduction Small regulatory RNAs (sRNAs) produced in one organism can sometimes function to silence *For correspondence: mRNAs in another organism. These trans-species sRNAs seem especially prominent in plant/ [email protected] pathogen and plant/parasite interactions. Fungal plant pathogens produce sRNAs with comple- mentarity to host mRNAs (Weiberg et al., 2013) and host plants produce trans-species sRNAs Competing interests: The that silence mRNAs in both pathogenic fungi (Zhang et al., 2016; Cai et al., 2018) and oomy- authors declare that no cetes (Hou et al., 2019).
    [Show full text]