Gj273 C ESO 2020 June 18, 2020

Total Page:16

File Type:pdf, Size:1020Kb

Gj273 C ESO 2020 June 18, 2020 Astronomy & Astrophysics manuscript no. dinev_gj273 c ESO 2020 June 18, 2020 GJ 273: On the formation, dynamical evolution and habitability of a planetary system hosted by an M dwarf at 3.75 parsec Francisco J. Pozuelos1; 2;y, Juan C. Suárez3; 4, Gonzalo C. de Elía5; 6, Zaira M. Berdiñas7, Andrea Bonfanti1; 10, Agustín Dugaro5; 6, Michaël Gillon2, Emmanuël Jehin1, Maximilian N. Günther8; 9, Valérie Van Grootel1, Lionel J. Garcia2, Antoine Thuillier1; 11, Laetitia Delrez1; 2, and Jose R. Rodón4 1 Space sciences, Technologies & Astrophysics Research (STAR) Institute, Université de Liège, 4000 Liège, Belgium 2 EXOTIC Lab, UR Astrobiology, AGO Department, University of Liège, 4000 Liège, Belgium 3 Dpt. Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain 4 Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008, Granada, Spain 5 Instituto de Astrofísica de La Plata, La Plata , Argentina 6 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata. LaPlata, Argentina 7 Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile, Casilla 36-D 8 Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cam- bridge, MA 02139, USA 9 Juan Carlos Torres Fellow 10 Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria 11 Observatoire de Paris, 61 Avenue de l’Observatoire 75014 Paris, France y e-mail: [email protected] Received ; accepted ABSTRACT Context. Planets orbiting low-mass stars such as M dwarfs are now considered a cornerstone in the search for life-harbouring planets. GJ 273 is a planetary system orbiting an M dwarf only 3.75 pc away, composed of two confirmed planets, GJ 273b and GJ 273c, and two promising candidates, GJ 273d and GJ 273e. Planet GJ 273b resides in the habitable zone. Currently, due to a lack of observed planetary transits, only the minimum masses of the planets are known: Mb sin ib=2.89 M⊕,Mc sin ic=1.18 M⊕,Md sin id=10.80 M⊕, and Me sin ie=9.30 M⊕. Despite being an interesting system, the GJ 273 planetary system is still poorly studied. Aims. We aim at precisely determine the physical parameters of the individual planets, in particular to break the mass–inclination degeneracy to accurately determine the mass of the planets. Moreover, we present thorough characterisation of planet GJ 273b in terms of its potential habitability. Methods. First, we explored the planetary formation and hydration phases of GJ 273 during the first 100 Myr. Secondly, we analysed the stability of the system by considering both the two- and four-planet configurations. We then performed a comparative analysis between GJ 273 and the Solar System, and searched for regions in GJ 273 which may harbour minor bodies in stable orbits, i.e. main asteroid belt and Kuiper belt analogues. Results. From our set of dynamical studies, we obtain that the four-planet configuration of the system allows us to break the mass– inclination degeneracy. From our modelling results, the masses of the planets are unveiled as: 2:89 ≤ Mb ≤ 3:03 M⊕, 1:18 ≤ Mc ≤ 1:24 M⊕, 10:80 ≤ Md ≤ 11:35 M⊕ and 9:30 ≤ Me ≤ 9:70 M⊕. These results point to a system likely composed of an Earth-mass planet, a super-Earth and two mini-Neptunes. From planetary formation models, we determine that GJ 273b was likely an efficient water captor while GJ 273c is probably a dry planet. We found that the system may have several stable regions where minor bodies might reside. Collectively, these results are used to comprehensively discuss the habitability of GJ 273b. Key words. GJ 273 – M dwarfs – Planetary systems – Planetary dynamics – Tides – Minor-body reservoir analogues – Habitability 1. Introduction a rate of at least one planet per star (e. g., Bonfils et al. 2013; Dressing & Charbonneau 2013, 2015; Tuomi et al. 2014). This arXiv:2006.09403v1 [astro-ph.EP] 16 Jun 2020 In the last decade, interest in planetary systems around M-type fact is also highlighted by the number of dedicated surveys tar- stars has significantly grown. The scientific interest is twofold. geting M dwarfs, notably in the search of rocky planets in their On one side, M-type stars are the most abundant star type in habitable zones (HZs). Some examples are the SPECULOOS the Solar neighbourhood, and indeed the Universe (see e. g., (Gillon 2018; Burdanov et al. 2018; Delrez et al. 2018; Je- Henry et al. 1994; Chabrier & Baraffe 2000; Winters et al. 2015). hin et al. 2018), CARMENES (Quirrenbach et al. 2010; Rein- However, their physical properties are poorly known since they ers et al. 2018), and MEarth (Nutzman & Charbonneau 2008) are generally quite faint, as compared with other stellar types, projects. and have only recently become the cornerstone in the detec- More interestingly, the huge number of M-type stars has tion of low-mass planets. Indeed, recent studies based on radial– significantly increased the chances of finding Earth-mass rocky velocity (RV) and transit photometry surveys have hinted at the planets in temperate orbits, i.e. within the host star’s HZ. Never- high occurrence of low-mass planets orbiting M dwarfs, with theless, planets in the HZs of M dwarfs are close to the star and Article number, page 1 of 20 A&A proofs: manuscript no. dinev_gj273 thus are generally exposed to intense radiation and magnetic ful- etary parameters and the general system architecture, while in gurations. Whether a planet can remain habitable in the presence Section 5 we explore the similarities of GJ 273 with the Solar of UV and X-ray flares is still a matter of debate: while a single System while searching for minor-body reservoir analogues. In flare probably does not compromise a planet’s habitability, plan- Section 6, we discuss on the habitability of planet GJ 273b, and ets orbiting M dwarfs may suffer frequent and strong flares at finally, in Section 7 we present our conclusions. younger ages (Armstrong et al. 2016). Among all the planets discovered so far orbiting M dwarfs, some of the most interesting are also the closest to Earth. One 2. Formation and evolution of the planetary system such example is the temperate Earth-mass planet orbiting Prox- GJ 273: N-body experiments ima Centauri-b, which is located only 1.2 pc away (Anglada- In the present section, we analyse the processes of formation and Escudé et al. 2016), while the seven Earth-size planets orbit- evolution of the planetary system GJ 273 using N-body simula- ing the TRAPPIST-1 system at a distance of 12.1 pc, where at tions. To do this, we first describe the properties of the proto- least three of them are in the HZ (Gillon et al. 2016, 2017) are planetary disk and then determine the physical and orbital initial equally tantalizing. In this context, GJ 273 is a highly interesting conditions to be used in our model. Then, we define the differ- M dwarf (also known as Luyten’s star) hosting a multi-planet ent scenarios to be modelled and finally, we discuss the results system, which is one of the closest stars to the Sun located at obtained from our N-body experiments. only 3.75 pc (Gatewood 2008). Compared with other M-type stars, GJ 273 is a bright star (9.87 Vmag, Koen et al. 2010), with a main-sequence spectral 2.1. Protoplanetary disk: properties type of M3.5V (Hawley et al. 1996), which shows a small pro- −1 An important parameter that determines the distribution of the jected rotational velocity (v sin i < 2:5 kms , Browning et al. material in a protoplanetary disk is the surface density. The gas- 2010). In the work by Astudillo-Defru et al. (2017b), the au- surface density profile Σg(R) adopted in the present research is thors made use of a data set of 280 RVs measured with HARPS given by (mounted on ESO’s 3.5-m La Silla telescope in Chile) which !−γ covered 12 years of intense monitoring of GJ 273. Astudillo- R 2−γ −(R=Rc) Defru et al. (2017b) reported the presence of two short-period Σg(R) = Σ0g e ; (1) R planets, GJ 273b and GJ 273c, with minimum masses of 2.89 c and 1.18 M⊕ and orbital periods of 18.6 and 4.7 d, respectively. where R is the radial coordinate in the disk mid-plane, Σ0g a nor- Planet GJ 273b was shown to be located in the HZ of GJ 273, malization constant, Rc the characteristic radius, and γ an expo- which along with its close proximity to Earth, sparked interest nent that determines the density gradient. At the same way, the in this particular system. In addition, in the recent study pre- solid-surface density profile Σs(R) is written by sented by Tuomi et al. (2019) the authors made use of a data !−γ R 2−γ set that combined HARPS, HIRES (Keck), PFS (Subaru) and −(R=Rc) Σs(R) = Σ0sηice e ; (2) APF (Lick), for a total of 466 RVs measurements, and fully Rc confirmed the existence of the two planets previously detected by Astudillo-Defru et al. (2017b) and suggested the presence of where Σ0s is a normalization constant and parameter ηice repre- two extra planets at larger heliocentric distances: GJ 273d with a sents the change in the amount of solid material due to the con- minimum mass of 10.8 M⊕ and an orbital period of 413.9 d, and densation of water beyond the snow line, which is assumed to be GJ 273e with a minimum mass of 9.3 M⊕ and an orbital period initially located at Rice.
Recommended publications
  • Cometary Impactors on the TRAPPIST-1 Planets Can Destroy All Planetary Atmospheres and Rebuild Secondary Atmospheres on Planets F, G, H
    Mon. Not. R. Astron. Soc. 000, 1{28 (2002) Printed 4 July 2018 (MN LATEX style file v2.2) Cometary impactors on the TRAPPIST-1 planets can destroy all planetary atmospheres and rebuild secondary atmospheres on planets f, g, h Quentin Kral,1? Mark C. Wyatt,1 Amaury H.M.J. Triaud,1;2 Sebastian Marino, 1 Philippe Th´ebault, 3 Oliver Shorttle, 1;4 1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 2School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 3LESIA-Observatoire de Paris, UPMC Univ. Paris 06, Univ. Paris-Diderot, France 4Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK Accepted 1928 December 15. Received 1928 December 14; in original form 1928 October 11 ABSTRACT The TRAPPIST-1 system is unique in that it has a chain of seven terrestrial Earth-like planets located close to or in its habitable zone. In this paper, we study the effect of potential cometary impacts on the TRAPPIST-1 planets and how they would affect the primordial atmospheres of these planets. We consider both atmospheric mass loss and volatile delivery with a view to assessing whether any sort of life has a chance to develop. We ran N-body simulations to investigate the orbital evolution of potential impacting comets, to determine which planets are more likely to be impacted and the distributions of impact velocities. We consider three scenarios that could potentially throw comets into the inner region (i.e within 0.1au where the seven planets are located) from an (as yet undetected) outer belt similar to the Kuiper belt or an Oort cloud: Planet scattering, the Kozai-Lidov mechanism and Galactic tides.
    [Show full text]
  • Perturbation of the Oort Cloud by Close Stellar Encounter with Gliese 710
    Bachelor Thesis University of Groningen Kapteyn Astronomical Institute Perturbation of the Oort Cloud by Close Stellar Encounter with Gliese 710 August 5, 2019 Author: Rens Juris Tesink Supervisors: Kateryna Frantseva and Nickolas Oberg Abstract Context: Our Sun is thought to have an Oort cloud, a spherically symmetric shell of roughly 1011 comets orbiting with semi major axes between ∼ 5 × 103 AU and 1 × 105 AU. It is thought to be possible that other stars also possess comet clouds. Gliese 710 is a star expected to have a close encounter with the Sun in 1.35 Myrs. Aims: To simulate the comet clouds around the Sun and Gliese 710 and investigate the effect of the close encounter. Method: Two REBOUND N-body simulations were used with the help of Gaia DR2 data. Simulation 1 had a total integration time of 4 Myr, a time-step of 1 yr, and 10,000 comets in each comet cloud. And Simulation 2 had a total integration time of 80,000 yr, a time-step of 0.01 yr, and 100,000 comets in each comet cloud. Results: Simulation 2 revealed a 1.7% increase in the semi-major axis at time of closest approach and a population loss of 0.019% - 0.117% for the Oort cloud. There was no statistically significant net change of the inclination of the comets during this encounter and a 0.14% increase in the eccentricity at the time of closest approach. Contents 1 Introduction 3 1.1 Comets . .3 1.2 New comets and the Oort cloud . .5 1.3 Structure of the Oort cloud .
    [Show full text]
  • Week 5: January 26-February 1, 2020
    5# Ice & Stone 2020 Week 5: January 26-February 1, 2020 Presented by The Earthrise Institute About Ice And Stone 2020 It is my pleasure to welcome all educators, students, topics include: main-belt asteroids, near-Earth asteroids, and anybody else who might be interested, to Ice and “Great Comets,” spacecraft visits (both past and Stone 2020. This is an educational package I have put future), meteorites, and “small bodies” in popular together to cover the so-called “small bodies” of the literature and music. solar system, which in general means asteroids and comets, although this also includes the small moons of Throughout 2020 there will be various comets that are the various planets as well as meteors, meteorites, and visible in our skies and various asteroids passing by Earth interplanetary dust. Although these objects may be -- some of which are already known, some of which “small” compared to the planets of our solar system, will be discovered “in the act” -- and there will also be they are nevertheless of high interest and importance various asteroids of the main asteroid belt that are visible for several reasons, including: as well as “occultations” of stars by various asteroids visible from certain locations on Earth’s surface. Ice a) they are believed to be the “leftovers” from the and Stone 2020 will make note of these occasions and formation of the solar system, so studying them provides appearances as they take place. The “Comet Resource valuable insights into our origins, including Earth and of Center” at the Earthrise web site contains information life on Earth, including ourselves; about the brighter comets that are visible in the sky at any given time and, for those who are interested, I will b) we have learned that this process isn’t over yet, and also occasionally share information about the goings-on that there are still objects out there that can impact in my life as I observe these comets.
    [Show full text]
  • An Exocomet in the Fomalhaut System: Simulating Gas and Dust Emission in a Debris Disk
    EPSC Abstracts Vol. 13, EPSC-DPS2019-1649-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. An exocomet in the Fomalhaut system: simulating gas and dust emission in a debris disk Maria Teresa Capria (1), Diego Turrini (1) and Edoardo Rognini (1) (1) INAF-IAPS, Rome, Italy (mariateresa.capria @inaf.it) Abstract by the sublimation of the ices and undergo the drag exerted by the escaping gas. The model is being used A thermophysical model is being used to simulate the to compute the amount of gas and dust released from behaviour of a cometary nucleus following an orbit the nucleus along an orbit, both in presence and in the Fomlhaut debris disc. We study the amount of absence of gas from the circumstellar disc. The CO gas and dust released during a typical orbit, and chosen orbit has the aphelion at 170 au and the compare them with the ALMA observations. We also perihelion at 140 au. We are willing to study the evaluate the survival of the body on a very long time amount of CO gas and dust released during a typical span. orbit, and compare these emissions with the ALMA observations. We are also willing to derive the total mass lost by the exocomet during an orbit and study 1. Introduction its long-time activity of the comet, in order to A number of debris disks around main sequence stars evaluate the survival of the body on a very long time have are now been identified [1], and in some of span.
    [Show full text]
  • The Appearance and Disappearance of Exocomet Gas Absorption
    Hindawi Publishing Corporation Advances in Astronomy Volume 2015, Article ID 980323, 20 pages http://dx.doi.org/10.1155/2015/980323 Research Article The Appearance and Disappearance of Exocomet Gas Absorption Barry Y. Welsh1 and Sharon L. Montgomery2 1 Experimental Astrophysics Group, Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720, USA 2Department of Chemistry, Mathematics & Physics, Clarion University, Clarion, PA 16214, USA Correspondence should be addressed to Barry Y. Welsh; [email protected] Received 30 March 2015; Accepted 9 June 2015 Academic Editor: De-Fu Bu Copyright © 2015 B. Y. Welsh and S. L. Montgomery. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. CaII K-line (3933 A)˚ absorption profiles observed towards 15 A-type and two B-type stars with known (or suspected) debris disks, in addition to archival spectral data for three A-type stars, are presented. Inspection of the extracted CaII K-line absorption lines has determined that one late B-type (HD 58647) and four new A-type (HD 56537, HD 64145, HD 108767, and HD 109573) stellar systems exhibit short-term (night-to-night) absorption variation within these profiles. This variability is due to the liberation of gas from falling evaporating bodies (the so-called FEBs activity) on the grazing approach of exocomets towards their parent star. Also we present archival spectra of the FeI 3860 A˚ and CaII K-lines towards Pictoris (HD 39060) that, for the first time, reveal the absorption signatures of FEB activity at similar velocities in both line profiles.
    [Show full text]
  • XV Congresso Nazionale Di Scienze Planetarie PRESIDENTE DEL CONGRESSO: Giovanni Pratesi
    https://doi.org/10.3301/ABSGI.2019.01 Firenze, 4-8 Febbraio 2019 ABSTRACT BOOK a cura della Società Geologica Italiana XV Congresso Nazionale di Scienze Planetarie PRESIDENTE DEL CONGRESSO: Giovanni Pratesi. COMITATO SCIENTIFICO: Giovanni Pratesi, Emanuele Pace, Marco Benvenuti, John Brucato, Fabrizio Capaccioni, Sandro Conticelli, Aldo Dell’Oro, Carlo Alberto Garzonio, Daniele Gardiol, Monica Lazzarin, Alessandro Marconi, Lucia Mari- nangeli, Giuseppina Micela, Ettore Perozzi, Alessandro Rossi, Alessandra Rotundi. COMITATO ORGANIZZATORE: Cristian Carli, Mario Di Martino, Livia Giacomini, Vanni Moggi Cecchi, Emanuele Pace, Giovanni Pratesi, Giovanni Valsecchi. CURATORI DEL VOLUME Giovanni Pratesi, Fabrizio Capaccioni, Emanuele Pace, John Brucato, Marco Benvenuti, Sandro Conti- celli, Aldo Dell’Oro, Daniele Gardiol, Carlo Alberto Garzonio, Monica Lazzarin, Alessandro Marconi, Lucia Marinangeli, Giuseppina Micela, Ettore Perozzi, Alessandro Rossi, Alessandra Rotundi. Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ABSTRACT INDEX EDUCARE ALLA
    [Show full text]
  • Oumuamua (A/2017U1) – a Confirmation of Links Between Galactic Planetary Systems
    Advances in Astrophysics, Vol. 3, No. 1, February 2018 https://dx.doi.org/10.22606/adap.2018.31003 43 Oumuamua (A/2017U1) – A Confirmation of Links between Galactic Planetary Systems N. Chandra Wickramasinghe1,2,3, Edward J. Steele4,2, Daryl. H. Wallis1, Robert Temple5, Gensuke Tokoro2,3, Janaki T. Wickramasinghe1 1Buckingham Centre for Astrobiology, University of Buckingham, UK 2Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka 3Institute for the Study of Panspermia and Astrobiology, Gifu, Japan 4CY O'Connor ERADE Village Foundation, Piara Waters,WA, Australia 5The History of Chinese Culture Foundation, Conway Hall, London, UK Email: [email protected] Abstract. The detection of an extra-solar asteroid/comet/bolide reaching the inner solar system in a hyperbolic orbit confirms the existence of a continuing material link with alien planetary systems. The Aristotelean view that the Earth and life upon are isolated from the external universe is now further challenged. Keywords: Comets, planets, life 1 Introduction Recent observations from the Kepler Mission have revealed that planetary systems similar to our solar system are exceedingly commonplace in the galaxy. The total tally of habitable exoplanets has been given as upwards of 100 billion (Kopperapu et al., 2013) [1]. Since comets and asteroids form an integral component of our solar system it would be reasonable to infer that they are also common in other planetary systems. The detection of such exocomets is, however, not easy and only in one case, the Kepler star KIC2542116, is there direct evidence of transiting comets (Rappaport et al., 2017) [2]. 2 Long-period Comets Comets belong to the family of minor bodies of the solar system that include asteroids, meteoroids, bodies in the Kuiper Belt and the Oort cloud, small planetary satellites and Trans-Neptunian Objects, including the planetoid Sedna.
    [Show full text]
  • Cometary Impactors on the TRAPPIST-1 Planets Can Destroy All Planetary Atmospheres and Rebuild Secondary Atmospheres on Planets F, G, and H
    MNRAS 479, 2649–2672 (2018) doi:10.1093/mnras/sty1677 Advance Access publication 2018 June 26 Cometary impactors on the TRAPPIST-1 planets can destroy all planetary atmospheres and rebuild secondary atmospheres on planets f, g, and h Quentin Kral,1‹ Mark C. Wyatt,1 Amaury H. M. J. Triaud,1,2 Sebastian Marino,1 Philippe Thebault´ 3 and Oliver Shorttle1,4 1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 2School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 3LESIA-Observatoire de Paris, UPMC Univ. Paris 06, Univ. Paris-Diderot, France 4Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK Accepted 2018 June 19. Received 2018 June 13; in original form 2018 February 14 ABSTRACT The TRAPPIST-1 system is unique in that it has a chain of seven terrestrial Earth-like planets located close to or in its habitable zone. In this paper, we study the effect of potential cometary impacts on the TRAPPIST-1 planets and how they would affect the primordial atmospheres of these planets. We consider both atmospheric mass loss and volatile delivery with a view to assessing whether any sort of life has a chance to develop. We ran N-body simulations to investigate the orbital evolution of potential impacting comets, to determine which planets are more likely to be impacted and the distributions of impact velocities. We consider three scenarios that could potentially throw comets into the inner region (i.e. within 0.1 au where the seven planets are located) from an (as yet undetected) outer belt similar to the Kuiper belt or an Oort cloud: planet scattering, the Kozai–Lidov mechanism, and Galactic tides.
    [Show full text]
  • On the Dynamics of Comets in Extrasolar Planetary Systems
    On the Dynamics of Comets in Extrasolar Planetary Systems R. Dvorak ∗ B. Loibnegger ∗ M. Cuntz ∗∗ ∗ Institute of Astronomy, University of Vienna, A-1180 Vienna, Austria ∗∗ Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA Abstract: Since very recently, we acquired knowledge on the existence of comets in extrasolar planetary systems. The formation of comets together with planets around host stars now seems evident. As stars are often born in clusters of interstellar clouds, the interaction between the systems will lead to the exchange of material at the edge of the clouds. Therefore, almost every planetary system should have leftover remnants as a result of planetary formation in form of comets at the edges of those systems. These Oort clouds around stars are often disturbed by different processes (e.g., galactic tides, passing stars, etc.), which consequently scatter bodies from the distant clouds into the system close to the host star. Regarding the Solar System, we observe this outcome in the form of cometary families. This knowledge supports the assumption of the existence of comets around other stars. In the present work, we study the orbital dynamics of hypothetical exocomets, based on detailed computer simulations, in three star-planet systems, which are: HD 10180, 47 UMa, and HD 141399. These systems host one or more Jupiter-like planets, which change the orbits of the incoming comets in characteristic ways. Keywords: astrobiology | comets: general | extrasolar planets | methods: numerical | stars: individual (HD 10180, 47 UMa, HD 141399) 1. INTRODUCTION [e.g., Raymond and Izidoro, 2017] 2 . Considering the large number of comets which entered the inner Solar System For thousands of years the non-predictability of the ap- and collided with the Earth during the last billions of pearance of comets contrary to the motion of the planets, years, it is worth to pursue statistical analyses for these the Sun, and the Moon led astronomers to the assump- events in extrasolar planetary systems as well.
    [Show full text]
  • Newsletter Submillimeter Array Newsletter Number 26 | July 2018
    SMA Newsletter Submillimeter Array Newsletter Number 26 | July 2018 CONTENTS FROM THE DIRECTOR 1 From the Director SCIENCE HIGHLIGHTS: Dear SMA Newsletter readers, 2 On the Detection of a Dusty Star-Forming Galaxy in the Early As many readers will know, we are engaged in a major upgrade program, the wSMA, which Universe at Z=6 will dramatically increase the SMA’s bandwidth, polarimetry capability, and operational 4 High-resolution SMA Imaging of Bright Submillimetre Sources efficiency and reliability. Interested readers can find the white paper outlining the science From the SCUBA-2 Cosmology Legacy Survey case for the wSMA as SMA Memo 165 (https://www.cfa.harvard.edu/sma/memos/165.pdf). 8 SMA Observations of Polarized During the past two years, we have conducted a number of engineering studies in support of Dust Emission in Solar-type Class 0 Protostars: Magnetic the wSMA, and have completed the design and prototyping of several critical components Field Properties at Envelope and subsystems. Scales bu Star Formation in a High- pressure Environment: An SMA We recently took a major step towards making the wSMA a reality by awarding the first of View of the Galactic Centre a series of major contracts; this one to High Precision Devices, Inc. Under the terms of this Dust Ridge contract, HPD, working from a conceptual design developed in the Receiver Lab, will produce bn Molecular Reconnaissance of the β Pictoris Exocometary Gas Disk the detailed design, then build and test two prototype cryostat systems including blank bq Resolved Millimeter receiver cartridges to be delivered to SAO next year.
    [Show full text]
  • Exocomets from a Solar System Perspective
    Exocomets from a solar system perspective Strøm, P. A., Bodewits, D., Knight, M. M., Kiefer, F., Jones, G. H., Kral, Q., Matrà, L., Bodman, E., Capria, M. T., Cleeves, I., Fitzsimmons, A., Haghighipour, N., Harrison, J. H. D., Iglesias, D., Kama, M., Linnartz, H., Majumdar, L., de Mooij, E. J. W., Milam, S. N., ... Zieba, S. (2020). Exocomets from a solar system perspective. Publications of the Astronomical Society of the Pacific, 132(1016), 1-19. [101001]. https://doi.org/10.1088/1538- 3873/aba6a0 Published in: Publications of the Astronomical Society of the Pacific Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2020 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected].
    [Show full text]
  • The Little Dippers: Transits of Star-Grazing Exocomets?
    MNRAS 000,1{14 (2018) Preprint 3 December 2018 Compiled using MNRAS LATEX style file v3.0 The Little Dippers: Transits of Star-grazing Exocomets? M. Ansdell,1;2? E. Gaidos,3 T. L. Jacobs,4 A. Mann,5;6 C. F. Manara,7 G. M. Kennedy,8;9 A. Vanderburg,10;11 M. Kenworthy,12 T. Hirano,13;14 D. M. LaCourse15, C. Hedges16, A. Frasca17 1Center for Integrative Planetary Science, University of California at Berkeley, Berkeley, CA 94720, USA 2Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720, USA 3Department of Geology & Geophysics, University of Hawai`i at M¯anoa, Honolulu, HI, USA 4Amateur Astronomer, 12812 SE 69th Place Bellevue, WA 98006 5Columbia University, Department of Astronomy, 550 West 120th Street, New York, NY 10027 6Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA 7European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei Munchen,¨ Germany 8Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK 9Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK 10Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA 11NASA Sagan Fellow 12Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 RA Leiden, the Netherlands 13Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan 14Institute for Astronomy, University of Hawai`i at M¯anoa, Honolulu, HI 96822, USA 15Amateur Astronomer, 7507 52nd Place NE, Marysville, WA, 98270 16NASA Ames Research Center, Moffett Blvd, Mountain View, CA 94035, USA 17INAF - Osservatorio Astrofisico di Catania, via S.
    [Show full text]