<<

LLeeccttuurree 1133 SSyymmmmeettrriieess ooff QCD

WS2010/11: ‚Introduction to Nuclear and ‘ 1 SSyymmmmeettrriieess aanndd ccoonnsseerrvvaattiioonn llaawwss

° The interactions are defined by symmetry principles

° Symmetries imply conservation laws, in particular conserved currents

From the invariance with respect to

1) continuous transformations, i.e. shifts in space, Ï momentum conservation

2) time shift transformations Ï energy conservation

3) rotations in space Ï angular momentum conservation

2 SSyymmmmeettrriieess aanndd ccoonnsseerrvvaattiioonn llaawwss

Consider the free fermion Lagrangian µ (1) L = i ψ γ ∂ µψ − m ψψ

° I) This Lagrangian has the global U(1) invariance: i.e. an invariance under global phase transformations ψ ( x) → e iαψ ( x) (2) α – arbitrary real constant

iα Phases transformations U (α ) ≡ e with α=const and real Ï (3) correspond to the unitary abelian group U(1)

Abelian means that the commutative multiplication low holds:

U (α1 ) U (α 2 ) = U (α 2 ) U (α1 ) (4) since the complex numbers (3) commute.

3 SSyymmmmeettrriieess aanndd ccoonnsseerrvvaattiioonn llaawwss

Consider now an infinitely small transformation of the U(1) group: ψ ( x) → e iαψ ( x) → (1 + iα + ...) ψ ( x) iα (5) ∂ µψ ( x) → e ∂ µψ ( x) → (1 + iα + ...) ∂ µψ ( x) ψ ( x) → e −iαψ ( x) → (1 − iα + ...) ψ ( x)

Keep only the first term in the Taylor expansion: ψ ( x) → (1 + iα ) ψ ( x) (6)

The invariance of the Lagrangian under the transformation (6) means that δ L = 0 (7)

µ δ L = δ (i ψ γ ∂ µψ − m ψψ ) Ω (8) δ L(ψ ,∂ µψ ,ψ ,∂ µψ )

∂L Note: δ L( f ) = δf ∂f 4 SSyymmmmeettrriieess aanndd ccoonnsseerrvvaattiioonn llaawwss

∂L ∂L ∂L ∂L δ L = δψ + δ (∂ µψ ) + δψ + δ (∂ µψ ) (9) ∂ψ ∂(∂ µψ ) ∂ψ ∂(∂ µψ )

Substitute (6) in (9) : ∂L ∂L (10) δ L = (iαψ ) + (iα∂ µψ ) + [conjugated ψ ] ∂ψ ∂(∂ µψ )

≈ ’ ≈ ’ use that ∆ ∂L ÷ ∂L ∆ ∂L ÷ (11) ∂ µ ∆ ψ ÷ = ∂ µψ + ∂ µ ∆ ÷ψ « ∂(∂ µψ ) ◊ ∂(∂ µψ ) « ∂(∂ µψ ) ◊

Substitute (11) in (10) :

» ∂ ≈ ∂ ’ÿ ≈ ∂ ’ … L ∆ L ÷Ÿ ∆ L ÷ δ L = iα − ∂ µ ∆ ÷ ψ + iα ∂ µ ∆ ψ ÷ + ... (12) …∂ψ « ∂(∂ µψ ) ◊⁄Ÿ « ∂(∂ µψ ) ◊ || due to the Euler-Lagrange equation! 0 5 SSyymmmmeettrriieess aanndd ccoonnsseerrvvaattiioonn llaawwss

To fulfill δ L = 0 ≈ ’ ∆ ∂L ∂L ÷ µ (13) iα ∂ µ ∆ ψ −ψ ÷ ≡ ∂ µ j = 0 « ∂(∂ µψ ) ∂(∂ µψ ) ◊ ∂L = iψγ µ ∂(∂ µψ ) ∂L = −iγ µψ ∂(∂ µψ ) substitute in (13) => ≈ ’ ∆ ∂L ∂L ÷ µ µ iα ∂ µ ∆ ψ −ψ ÷ = ∂ µ (− αψγ ψ − αψγ ψ ) « ∂(∂ µψ ) ∂(∂ µψ ) ◊ µ µ µ = ∂ µ (−2αψγ ψ ) = ∂ µ (eψγ ψ ) = ∂ µ j = 0

using e.g. –e for the real constant α ‰e/ 2

Introduce the charge 4-current: j µ = −eψγ µψ

6 SSyymmmmeettrriieess aanndd ccoonnsseerrvvaattiioonn llaawwss C °charge 4-current: j µ : ( j 0 , j ) with j µ = −eψγ µψ

(13) = current conservation law :

µ ∂ µ j = 0

3 0 °Electric charge: Q = — d x j ( x) j 0 = −eψγ 0ψ

From (13) follows dQ = 0 Q = const dt

! Charge should be conserved due to the global U(1) invariance !

7 SSyymmmmeettrriieess aanndd ccoonnsseerrvvaattiioonn llaawwss

Noether Theorem: A global invariance leads to the existance of a conserved current!

Global invariance means that the phase α is a real constant, which is unique for all space and time points Ï one cannot measure the phase α itself !

II) Let‘s now consider symmetry transformations where α can depend on the space-time coordinate α Ω α ( x) (17) ° Local U(1) invariance: i.e. invariance of the Lagrangian under the local gauge group U(1):

iα ( x ) (18) U (α( x)) ≡ e iα ( x ) ψ ( x) → e ψ ( x)

and ψ ( x) → e − iα ( x )ψ ( x) (19)

8 SSyymmmmeettrriieess aanndd ccoonnsseerrvvaattiioonn llaawwss

iα ( x ) iα ( x ) (20) ∂ µψ → e ∂ µψ + ie ψ ∂ µα( x)

This term violates the invariance of the Lagrangian under local U(1) transformations!

•In order to construct a Lagrangian, which is invariant under local U(1) transformations, one has to introduce the covariant derivative:

Dµ ≡ ∂ µ − ieAµ (21)

where Aµ(x) follows the transformation: 1 (22) A ( x) → A ( x) + ∂ α ( x) µ µ e µ Aµ(x) is called a gauge vector field , which interacts with the dirac field ψ(x).

Thus, µ L = i ψ γ Dµψ − m ψψ

µ µ (23) =ψ (iγ ∂ µ − m)ψ + eψγ ψ Aµ

9 SSyymmmmeettrriieess aanndd ccoonnsseerrvvaattiioonn llaawwss

The request for local gauge invariance leads to the introduction of a gauge vector field Aµ(x)

In order to identify the field Aµ(x) with real particles (photons), one has to add the kinetic energy term: 1 − F F µν 4 µν with Fµν = ∂ µ Aν − ∂ν Aµ - field strength tensor

• The local gauge invariance of L requires a massless vector field Aµ(x), 1 2 µ since a mass term m Aµ A violates the local gauge invariance of the Lagrangian 2

10 AAbbeelliiaann aanndd nnoonnaabbeelliiaann llooccaall ssyymmmmeettrriieess

Local symmetry: QED QCD local U(1) gauge transformation local SU(3) color gauge transformtion iα a ψ ( x) → e ψ ( x) ψ ( x) → e iα a ( x )t ψ ( x) Introduce one gauge vector field Introduce 8 gauge vector fields a Aµ(x) (photons) Aµ (x) (gluons) a Aµ(x) – massless Aµ (x) – massless (a=1,…,8) QED – abelian theory QCD – nonabelian theory: = [U(α1),U(α2)]=0 [ta , tb ] = if abc tc a no self-interaction of the field Aµ(x) self-interaction of field Aµ (x) since since the photons do not have a charge the gluons do have a charge Infinite range of interaction, however:

α (r) α S (r)

Thus: Local invariance Ï introduction of gauge fields! 11 SSyymmmmeettrriieess ooff QQCCDD

QCD Lagrangian:

1 µν a L ( x) = ψ ( x) (iγ µ [∂ − igt a Aa ]− Mˆ 0 )ψ ( x) − G a ( x)G ( x) QCD µ µ 4 µν

Gluonic field strength tensor: a a a abc b c Gµν (x) = ∂ µ Aν − ∂ν Aµ + gf Aµ ( x)Aν

ψ(x) - field flavor space Dirac space color space q = u, d , s µ = 0,1,2,3 c = r , b, g

In flavor space (3 flavors): Mass term: ≈ ’ ≈ m 0 0 0 ’ ∆ u ÷ ∆ u ÷ ˆ 0 ∆ 0 ÷ ψ ( x ) = ∆ d ÷ M = 0 m d 0 ∆ ÷ ∆ 0 ÷ « s ◊ « 0 0 m s ◊ 3x3 diagonal matrix in flavor space with the bare quark masses on the diagonal 12 SSyymmmmeettrriieess iinn ffllaavvoorr ssppaaccee Symmetries in flavor space: From the decay of particles we know that the flavor is conserved, i.e. the invariance of the Lagrangian under rotations in flavor space (for the )

++ + e.g. ∆ (uuu) → p(uud)+π (du)

implies the conservation of flavor currents Ï no need to introduce gauge fields in order to construct a conserved current in flavor space.

Thus: the flavor symmetry is a global symmetry

3 flavors u,d,s Ï SU(3) flavor group for 6 flavors Ï SU(6) flavor group

13 SSyymmmmeettrriieess iinn ffllaavvoorr ssppaaccee

°The global flavor symmetry

Ï The QCD Lagrangian is invariant under SU(3) flavor transformations:

≈ 8 ’ ∆ ÷ ψ ( x) → exp∆ − iƒ abtb ÷ψ ( x) (24) « b=1 ◊ flavor space a a a λ t are 8 generators of the SU(3)flavor group t = 2

The parameters ab in (24) are constants, but an arbitrary vector in flavor space

Since the transformation (24) is global, it holds for massless and massive

14 SSyymmmmeettrriieess iinn ffllaavvoorr ssppaaccee

° Furthermore we consider the transformations: ≈ 8 ’ ∆ 5 ÷ ψ ( x) → exp∆ − iƒ abtb γ ÷ψ ( x) (25) « b=1 ◊ act on the flavor, Dirac components

The transformation (25) mixes the upper and lower component of the Dirac spinor

Ï The QCD lagrangian is invariant under the transformation (25) only in case of massless quarks !

15 SSyymmmmeettrriieess iinn ffllaavvoorr ssppaaccee

° Now define right and left-handed quarks by the linear combination: 1 1 ψ = (1 ± γ 5 )ψ ψ =ψ (1 @ γ 5 ) R / L 2 R / L 2 (26)

ψ = ψ R +ψ L , ψ = ψ R +ψ L (27)

• Handedness, or – projection of the spin s on the momentum p (direction of motion)

right-handed quarks left-handed quarks

C C s s C C p p q q

16 SSyymmmmeettrriieess iinn ffllaavvoorr ssppaaccee

° For M ˆ 0 = 0 the left- and right-handed quarks are not mixed dynamically and conserve their handedness (chirality).

0 Ï chiral invariance of QCD in the limit Mˆ = 0 Ω SU (3) flavor SU (3)R × SU (3)L

It expresses the physical effect that the sign of projection of the fermion spin on its momentum direction can not be changed by dynamics if M ˆ 0 = 0 ,

µ a a i.e. the interaction in QCD igψ ( x) γ t Aµ ψ ( x) does not break the left-right symmetry

° A mass term M ˆ 0 ≠ 0 breaks the chiral symmetry of the QCD Lagrangian: ˆ 0 ˆ 0 M ψψ = M (ψ L +ψ R )(ψ L +ψ R ) ˆ 0 ˆ 0 = M (ψ Lψ L +ψ Rψ R ) + M (ψ Lψ R +ψ Rψ L ) the mass term plays the role of an interaction that mixes left- and right-handed quarks 17 SSyymmmmeettrriieess iinn ffllaavvoorr ssppaaccee

°Thus, the global chiral transformations ≈ 8 ’ ∆ 5 ÷ ψ ( x) → exp∆ − iƒ abtb γ ÷ψ ( x) « b=1 ◊ Ω SU (3) flavor SU (3)R × SU (3)L

are valid only for massless quarks (or fermions as neutrinos) !

°A mass term Mˆ 0 ≠ 0 Ï phenomenon of symmetry breaking

As a consequence of chiral symmetry breaking the bound states of QCD, i.e. and with opposite parity do not show the same mass !

A prominent example: the vector ρ and the axial a1 differ in mass by more than 500 MeV !

18