<<

Modeling of of Complex Mixtures

Katrien Fret

Promotoren: prof. dr. Marie-Françoise Reyniers, prof. dr. ir. Guy Marin Begeleider: dr. ir. Kevin Van Geem

Masterproef ingediend tot het behalen van de academische graad van Master in de ingenieurswetenschappen: chemische technologie

Vakgroep Chemische proceskunde en technische chemie Voorzitter: prof. dr. ir. Guy Marin Faculteit Ingenieurswetenschappen Academiejaar 2008-2009

Modeling of Steam Cracking of Complex Hydrocarbon Mixtures

Katrien Fret

Promotoren: prof. dr. Marie-Françoise Reyniers, prof. dr. ir. Guy Marin Begeleider: dr. ir. Kevin Van Geem

Masterproef ingediend tot het behalen van de academische graad van Master in de ingenieurswetenschappen: chemische technologie

Vakgroep Chemische proceskunde en technische chemie Voorzitter: prof. dr. ir. Guy Marin Faculteit Ingenieurswetenschappen Academiejaar 2008-2009 VOORWOORD

Deze masterproef was waarschijnlijk nooit uitgegroeid tot wat ze uiteindelijk is geworden zonder de hulp van een aantal mensen die ik hiervoor graag wil bedanken.

Allereerst wil ik mijn promotoren, prof. dr. ir. Guy Marin en prof. dr. Marie-Françoise Reyniers, bedanken omdat zij mij de mogelijkheid hebben gegeven dit project uit te werken. Ik zou hen ook willen bedanken voor de opvolging van mijn werk en de belangstelling voor het onderwerp.

Verder ben ik mijn begeleider, dr. ir. Kevin Van Geem, enorm dankbaar voor alle hulp en de grondige verbetering van mijn tekst. Zonder zijn kennis en inzet was ik niet in staat geweest om dit werk tot een goed einde te brengen.

Bovendien wil ik Steven Pyl bedanken voor het beantwoorden van mijn vele vragen en al zijn hulp. Mijn dank gaat ook uit naar het technisch personeel, en in het bijzonder Michael Lottin, om voor alle problemen met de installaties een oplossing te bedenken en ook steeds klaar te staan bij moeilijkheden.

Vervolgens wil ik al mijn medestudenten en iedereen van het LCT bedanken voor de leuke momenten tussen het werken door. In het bijzonder bedank ik Yuri, Michael, Wim en Sam voor de fijne momenten en ook om steeds een luisterend oor te zijn.

Tenslotte wil ik ook mijn ouders en mijn twee zussen bedanken voor al hun steun gedurende de voorbije jaren en de kans die ik kreeg om in Gent te studeren en te wonen.

Katrien Fret 1 juni 2009

FACULTEIT TOEGEPASTE WETENSCHAPPEN

Vakgroep Chemische Proceskunde & Technische Chemie Laboratorium voor Chemische Technologie Directeur: Prof. Dr. Ir. Guy B. Marin

Laboratorium voor Chemische Technologie

Verklaring in verband met de toegankelijkheid van de scriptie

Ondergetekende, Katrien Fret afgestudeerd aan de UGent in het academiejaar 2008-2009 en auteur van de scriptie met als titel: Modeling of Steam Cracking of Complex Hydrocarbon Mixtures verklaart hierbij: 1. dat hij/zij geopteerd heeft voor de hierna aangestipte mogelijkheid in verband met de consultatie van zijn/haar scriptie:

 de scriptie mag steeds ter beschikking gesteld worden van elke aanvrager

 de scriptie mag enkel ter beschikking gesteld worden met uitdrukkelijke, schriftelijke goedkeuring van de auteur

 de scriptie mag ter beschikking gesteld worden van een aanvrager na een wachttijd van…………jaar

 de scriptie mag nooit ter beschikking gesteld worden van een aanvrager

2. dat elke gebruiker te allen tijde gehouden is aan een correcte en volledige bronverwijzing Gent, 1 juni 2009

Krijgslaan 281 S5, B -9000 Gent (Belgium) tel. +32 (0)9 264 45 16 • fax +32 (0)9 264 49 99 • GSM +32 (0)475 83 91 11 e-mail: Petra.Vereecken@UGent http://www.lct.ugent.be/start/pages/1/en MODELING OF STEAM CRACKING OF COMPLEX

HYDROCARBON MIXTURES

Katrien Fret

Promotoren: prof. dr. Marie-Françoise Reyniers, prof. dr. ir. Guy Marin Begeleider: dr. ir. Kevin Van Geem

Masterproef ingediend tot het behalen van de academische graad van Master in de ingenieurswetenschappen: chemische technologie

Vakgroep Chemische proceskunde en technische chemie Voorzitter: prof. dr. ir. Guy Marin Faculteit Ingenieurswetenschappen Universiteit Gent

Academiejaar: 2008 – 2009

Abstract

Currently there is an increasing tendency to use heavy hydrocarbon feedstocks such as light gas oils, vacuum gas oils (VGO) and kerosenes as steam cracker feed. Another trend is the growing use of butane as feedstock. For the simulation of steam cracking of certain hydrocarbon fractions, including heavy fractions, a few shortcomings exist in the simulation model developed at the LCT i.e. COILSIM1D. One of them is the small or nearly non- existing experimental database, which is used to verify the simulation results. Another insufficiency is the lack of complete characterization of the heavy feedstock. The solution to this problem is the new GCxGC at the LCT, which has a ‘time of flight’ mass spectrometer (Tof MS) and a flame ionization detector (FID). This GCxGC makes it possible to analyze the feed and the cracker effluent qualitatively and quantitatively. An extension of the experimental database is obtained by a pilot plant study of the cracking behavior of two C4 fractions, a bio-derived naphtha and two heavy condensates (Chapter 3). Both quantitative and qualitative GCxGC analyses of a FT naphtha, a petroleum naphtha and a kerosene fraction are performed to provide a complete characterization of these complex feedstocks (Chapter 2). These results will make it possible to create more detailed and accurate fundamental simulation models for complex hydrocarbon fractions. Finally, simulations are performed with COILSIM1D (Chapter 4). The steam cracking process is simulated under different experimental conditions for pure naphtha, pure ethane and mixtures of naphtha and ethane. Based on the limited set of simulation results it seems that improvements to the reaction network for steam cracking are still possible.

Keywords: steam cracking, GCxGC, Fischer-Tropsch naphtha, kerosene, simulation Modeling of Steam Cracking of Complex Hydrocarbon Mixtures

Katrien Fret

Promoters: prof. dr. ir. G.B. Marin, prof. dr. M.F. Reyniers Coach: dr. ir. K.M. Van Geem

Abstract: Currently there is an increasing tendency to several shortcomings exist in the simulation model use heavy hydrocarbon feedstocks such as light gas oils, developed at the “Laboratory for Chemical vacuum gas oils (VGO) and kerosenes as steam cracker Technology” (LCT) of Ghent University i.e. feed. Another trend is the growing use of butane as COILSIM1D (Van Geem, 2006). One of them is the feedstock. However, the experimental database for these small or nearly non-existing experimental database, fractions is limited or non-existing, making the simulation model for modeling this process, which is used to verify the simulation results. Another COILSIM1D, less accurate than desired. Therefore the insufficiency is the lack of complete characterization experimental database, which is used to verify the of the heavy feedstock. The solution to this problem is simulation results, is extended with results obtained from the new GCxGC at the LCT, which has a ‘time of cracking two C4 fractions, a bio-derived naphtha and flight’ mass spectrometer (Tof MS) and a flame two heavy condensates. Quantitative and qualitative ionization detector (FID). This GCxGC makes it GCxGC analyses allowed to determine the detailed possible to analyze the feed and the cracker effluent composition of the FT naphtha, a petroleum naphtha and qualitatively and quantitatively. a kerosene fraction. Extension of this methodology to Both an extension of the experimental database and other fractions and even other processes will make it possible to create more detailed and accurate GCxGC analyses are obtained during this master fundamental simulation models for complex thesis. This will make it possible to create more hydrocarbon fractions. detailed and accurate fundamental simulation models for complex hydrocarbon fractions. Keywords: steam cracking, GCxGC, naphtha, kerosene, C4 fraction, gas condensate, simulation II. COMPREHENSIVE TWO -DIMENSIONAL GAS CHROMATOGRAPHY OF STEAM CRACKING FEEDSTOCKS I. INTRODUCTION GCxGC is a recently developed chromatographic Steam cracking of is one of the most separation technique which is based on separations in important processes of the petrochemical industry. In two distinctly different columns that are placed after this process hydrocarbons are cracked into each other. The 1 st dimension separation is based on commercially more important products such as light volatility, the 2 nd on polarity. One advantage of the olefins and aromatics. Feedstocks ranging from light combination of two independent separation such as ethane and propane up to complex mechanisms is that ordered structures for structurally mixtures such as naphthas and heavy gas oils are related components show up in the GCxGC converted at temperatures ranging from 500 to 900 °C chromatograms, see Figure 1. A detailed group type in tubular reactors suspended in large gas-fired separation is now possible. Between the two columns furnaces. Globally, naphtha is the most commonly an interface, a cryogenic modulator, is present. Its applied feedstock in crackers. main role is to trap adjacent fractions of the analyte A recent trend is the growing use of butane as eluting from the first-dimension column by cryogenic feedstock caused by the application of ethanol as cooling, and heating-up these cold spots rapidly to transportation fuel. In order to meet gasoline vapor pressure specifications, low boiling hydrocarbon components, such as butanes and even pentanes, must be reduced in ethanol/gasoline blends. An alternative use for butane is for example as a steam cracker feed. Currently there is also an increasing tendency to use heavy hydrocarbon feedstocks such as light gas oils, vacuum gas oils (VGO) and kerosenes. Due to a decreasing demand of these heavy fractions as fuel, large amounts of these low cost fuels remain available. Therefore they become more and more interesting as alternative for naphtha. These fractions show however a different cracking behavior compared to the lighter fractions. For the simulation of steam cracking of certain hydrocarbon fractions, including heavy fractions, Figure 1: Group type separation for a kerosene fraction (GCxGC/Tof-MS chromatogram) III. PILOT PLANT EXPERIMEN TS An experimental study of the cracking behavior of aromatics two C4 fractions, a bio -derived naphtha and two heavy condensates was carried out on the pilot plant set -up for steam cracking of hydrocarbons at the LCT of Ghent University, see Figure 3. [2] The effect of the process conditions on the product (iso)paraffins+naphthenes yields was as expected. The yield increased with increasing COT, propylene showed a maximum, and the aromatic fractio n increased. An increased dilution led in general to higher light olefin selectivities, but decreased the selectivity of ethane, methane, and aromatics. Addition of DMDS to the FT naphtha had a detrimental effect on the amount of Figure 2: Group type separation for (iso)paraffins + coke deposited in the reac tor. naphthenes and aromatics present in naphtha feedstock (GCxGC/Tof-MS chromatogram) An alternative position for injection of the internal standard was also tested. Evaluation of the mass release them as refocused analyte pulses into the balances showed that stable results were obtained second-dimension column. [1] when nitrogen was added to the effluent after the First the GCxGC settings were tuned in order to coolers and fluctuations were observed when add ing give an optimal representation of both the FID and the internal standard before the coolers. From these Tof-MS chromatograms. A heating rate of 3°C/min in tests it seems that the optimal position for injection of combination with 5 seconds as modulation time seem the internal standard is after the coolers. A second to be the optimal settings. method for verifying the balances would certainly be a Detailed GCxGC analyses of a Fischer -Tropsch valuable addition to the set -up. naphtha, a petroleum naphtha and a kerosene fraction were performed, both qualitative as quantitative. For each of the studied fractions a detailed PIONA was obtained and c ompared to results from 1D gas chromatography. For the naphtha fractions only small differences were observed and these are mainly due to peak overlap between (iso)paraffins, naphthenes and aromatics. This peak overlap does not occur in GCxGC chromatograms since the components that overlap in 1D GC are further separated in the 2 nd column based on differences in polarity. Greater differences between 1D and 2D results were Figure 4: Parity plot for ethylene and propylene encountered for the kerosene fraction. This is not surprising since this heavier fracti on contains more IV. SIMULATIONS WITH COILSIM1D AND SIM CO aromatics which renders more possibilities for peak Finally, simulations were performed with overlap with (iso)paraffins and naphthenes , compare COILSIM1D. The steam cracking process was Figure 1 and Figure 2. simulated under different experimental conditions for GCxGC is thus preferred over 1D GC to obtain pure naphtha, pure ethane and mixtures of naphtha and accurate molecular feedstock compositions, especially ethane. In general the simulation results are in for heavier fractions like kerosenes . GCxGC can reasonable agreement with the experimental yields, further be used to obtain a more complete see Figure 4, but based on the limited set of simulation characterization of also gas condensates and other results it seems that improvements to the reaction heavier fractions. An adjusted temperature program network for steam cracking are still possible. The and the combination of FID and Tof -MS make agreement between the simulated and experimental GCxGC also suitable for providing accurate and more yields for the light olefins propylene and acetylene detai led analyses of the cracker effluent. needs first a ttention. Also the simulation results obtained for the aromatics and need improvement. An evaluation with a wider dataset, also looking at minor products is necessary. The data obtained with the Fischer -Tropsch naphtha seem very suited for this purpose.

REFERENCES [1] Adahchour M., Beens J. et al., Recent development in comprehensive two -dimensional gas chromatography. Trends in Analytical Chemistry, 2006, Vol. 25 , 5, 438-454. Figure 3: Schematic overview of the pilot plant set -up for [2] Wang J., Re yniers M.F., Marin G.B., Influence of dimethyl disulfide on coke formation during steam cracking of steam cracking hydrocarbons. Ind. Eng. Chem. Res., 46, 4134 -4148, 2007. TABLE OF CONTENTS

Samenvatting ...... i

1. Inleiding ...... i

1. GCxGC van stoomkraker voedingen ...... ii

1.1. Een nieuwe analytische methode ...... ii

1.2. GCxGC analyses en optimale instellingen ...... iii

1.3. Toepassingen van GCxGC ...... v

2. Experimenten pilootinstallatie ...... vi

2.1. Beschrijving opstelling ...... vi

2.2. Testen positie inwendige standaard ...... viii

2.3. Pilootcampagne ...... viii

3. Simulaties met COILSIM1D en SimCo ...... x

4. Conclusies en toekomstig werk ...... xi

1. INTRODUCTION ...... 1

2. COMPREHENSIVE TWO -DIMENSIONAL GAS CHROMATOGRAPHY OF STEAM CRACKING

FEEDSTOCKS ...... 7

2.1. A new analytical method ...... 7

2.2. GCxGC analyses & optimal settings ...... 10

2.2.1. Qualitative analysis ...... 10

2.2.2. Quantitative analysis ...... 16 2.2.3. Tuning of FID and Tof-MS GCxGC ...... 19

2.2.4. Influence of the GCxGC settings ...... 23

2.3. GCxGC applications ...... 27

2.3.1. Complex feedstock characterization ...... 27

2.3.2. Pilot effluent analysis ...... 41

2.4. Conclusions ...... 43

3. PILOT PLANT EXPERIMENTS ...... 45

3.1. Description of the pilot plant unit for steam cracking of hydrocarbons ...... 45

3.1.1. Feed section ...... 45

3.1.2. Reaction section ...... 47

3.1.3. Analysis section ...... 50

3.2. Testing the internal standard injection position ...... 53

3.2.1. Operating conditions ...... 54

3.2.2. Experimental results ...... 54

3.2.3. Conclusions ...... 57

3.3. Pilot plant campaign ...... 58

3.3.1. Experimental program ...... 58

3.3.2. Operating conditions and analysis procedures ...... 60

3.3.3. Cracking of C4 fractions ...... 72

3.3.4. Cracking of Fischer-Tropsch naphtha ...... 77

3.3.5. Coke formation during cracking of heavy condensates ...... 91

3.3.6. Conclusions ...... 96

4. SIMULATIONS WITH COILSIM1D AND SIM CO ...... 99

4.1. COILSIM1D ...... 99 4.1.1. Reactor simulation ...... 99

4.2. SimCo ...... 101

4.3. Co-cracking of ethane with naphtha ...... 104

4.3.1. Feedstock specification ...... 104

4.3.2. Experimental conditions...... 106

4.3.3. Results and discussion ...... 107

4.4. Conclusions ...... 116

5. CONCLUSIONS AND FUTURE WORK ...... 118

Annex A ...... I

Annex B ...... XV

Annex C ...... LIV

Annex D ...... LXVI

Annex E ...... LXXII

LIST OF SYMBOLS AND ABBREVIATIONS

Roman symbols A Peak surface area 0.1 V s C Carbon - COP Coil Outlet Pressure bar abs COT Coil Outlet Temperature °C F Flow rate kg s -1 H Hydrogen - M Mass kg m Mass kg MW Molecular Weight g/mol N Number of theoretical plates - P Pressure bar abs P/E Propylene/Ethylene - t Time s t0 Dead time s T Temperature °C TBP True Boiling Point °C z Charge -

Greek symbols δ Dilution kg/kg Σ Sum -

Subscripts i Component HC Hydrocarbon

Abbreviations ARO Aromatics ASTM American Society for Testing and Materials BTL Biomass to liquids CF Calibration Factor CMAI Chemical Market Associates, Inc. CPD Cyclopropadiene CTL Coal to liquids DMDS Dimethyl disulfide FID Flame Ionization Detector FT Fischer-Tropsch GC Gas Chromatography GCxGC Comprehensive two-dimensional gas chromatography GTL Gas to liquids GUI Graphical user interface HPLC High performance liquid chromatography iPar Iso-paraffins IR Infrared IS Internal Standard KRI Kovats retention indices LCT Laboratory for Chemical Technology LPG Liquefied Petroleum Gas MS Mass Spectrometry NAP Naphthenes NMR Nuclear magnetic resonance NPG Natural Petroleum Gas nPar normal-paraffins PIONA Paraffins, Iso-paraffins, Olefins, Naphthenes and Aromatics PIONA m Mono-naphthenes PIONA d Di-naphthenes PIONA a Naphtheno-aromatics PIONA o Olefin-naphthenes PIONA b PIONA n PIONA i Indenes RF Response factor RT 1D Retention time first dimension RT 2D Retention time second dimension SA Sample Amount SEMK Single Event Micro kinetic Model SPK Synthetic paraffinic kerosene TCD Thermal conductivity detector TIC Total ion current TLE Transfer Line Exchanger TOF-MS Time-Of-Flight Mass Spectrometer ULSD Ultra-low-sulfur diesel VGO Vacuum Gas Oil XF Dilution factor

Samenvatting i

SAMENVATTING

1. Inleiding

Stoomkraken van koolwaterstoffen is één van de belangrijkste processen in de petrochemische industrie. De koolwaterstofvoeding wordt bij hoge temperatuur (500 tot 900°C) onder toevoeging van stoom gekraakt tot voornamelijk kleinere moleculen. Dit proces gebeurt in een tubulaire reactor die in een oven wordt verhit met branders. De commercieel interessante producten die zo worden gevormd zijn lichte olefines zoals ethyleen en propyleen, maar ook aromaten en zwaardere bijproducten. Olefines en aromaten zijn onmisbare componenten voor de chemische industrie omdat ze de bouwstenen zijn voor allerhande producten die we gebruiken in het dagelijkse leven. De gebruikte voedingen gaan van lichte alkanen zoals ethaan en propaan tot complexe koolwaterstofmengsels zoals nafta en gasolie. Klassiek wordt vooral gebruik gemaakt van ethaan of nafta.

Een recente trend die wordt waargenomen is het stijgende gebruik van C4 fracties als voeding. Dit is een gevolg van de toepassing van ethanol als transport brandstof. Een nadeel aan het gebruik van ethanol als benzine additief is de hoge Reid dampspanning. Om aan de benzine specificaties betreffende de dampspanning te kunnen voldoen, moet het aandeel aan laagkokende koolwaterstof componenten zoals butanen en zelfs pentanen sterk gereduceerd worden. Daarom gaan ondernemingen op zoek naar een alternatief gebruik van butaan, bijvoorbeeld als stoomkraker voeding. [1] Eén van de voordelen van het gebruik van butaan als voeding is de grote hoeveelheid propyleen die wordt geproduceerd in vergelijking met bijvoorbeeld het kraken van nafta. In Europa heeft propyleen de positie van ethyleen als meest gevraagde en waardevolste product overgenomen. In Hoofdstuk 3 wordt het kraakgedrag van twee C4 fracties bestudeerd.

Naast de trend van een stijgend gebruik van butaan als voeding, is er ook een trend om steeds zwaardere voedingen te kraken (kerosine, lichte gasolie of vacuüm gasolie) die echter aanleiding geven tot een lagere opbrengst aan lichtere olefines. De reden voor het gebruik van deze zwaardere voedingen is hun overschot op de markt doordat ze steeds minder gebruikt Samenvatting ii worden als brandstof. Zwaardere voedingen zoals gasolies en vacuüm gasolies (VGO) kraken makkelijker dan lichte koolwaterstoffen maar veroorzaken meer cokesvorming. Dit verschil in kraakgedrag is klaarblijkelijk te wijten aan de typische verschillen in chemische samenstelling. Zware fracties bevatten bijvoorbeeld meer di-, tri- en poly-aromatische componenten die niet aanwezig zijn in de lichtere fracties. [2]

Vanuit het standpunt van modellering, is het een enorme uitdaging het kraakgedrag van deze zware fracties nauwkeurig te beschrijven. De meest geavanceerde modellen zijn niet alleen geschikt voor het modelleren van het stoomkraken van lichte voedingen maar ook van het kraakgedrag van zwaardere voedingen. In het Laboratorium voor Chemische Technologie is zo een fundamenteel simulatie model ontwikkeld, namelijk COILSIM1D [4], dat het stoomkraken van koolwaterstofmengsels reikend tot de gascondensaten accuraat beschrijft. Voor sommige fracties kunnen de simulatieresultaten echter nog verbeterd worden, bijvoorbeeld voor C4 fracties die een grote hoeveelheid olefines bevatten en nafta’s waarin veel aromaten aanwezig zijn. Voor de modellering van het stoomkraken van zwaardere fracties bestaan er ook enkele tekortkomingen. Eén daarvan is de kleine of nagenoeg onbestaande experimentele database die wordt gebruikt om de simulatieresultaten te verifiëren. Een tweede gebrek is een volledige karakterisering van de zware voeding. Een oplossing voor dit probleem is de nieuwe GCxGC die zowel een ‘time of flight’ massa spectrometer (Tof MS) als een vlamionisatiedetector (FID) bevat. Deze GCxGC maakt het mogelijk om voedingen en kraakeffluenten zowel kwalitatief als kwantitatief te analyseren. Zowel een uitgebreide experimentele database als GCxGC analyses zullen het mogelijk maken om meer gedetailleerde en accurate fundamentele simulatiemodellen voor zware koolwaterstoffracties te ontwikkelen. In Hoofdstuk 2 worden de GCxGC analyses uitvoerig besproken. Hoofdstuk 3 beschrijft de experimenten die op de pilootinstallatie voor stoomkraken worden uitgevoerd ter uitbreiding van de database. Zwaardere fracties, C4 fracties en een nafta gemaakt uit biomassa worden gebruikt als voeding. In Hoofdstuk 4 worden de simulaties met COILSIM1D behandeld.

1. GCxGC van stoomkraker voedingen

1.1. Een nieuwe analytische methode

GCxGC is een recent ontwikkelde chromatografische analysetechniek gebaseerd op scheiding in twee dimensies. Er wordt gebruik gemaakt van twee kolommen die na elkaar de voeding scheiden. De scheiding in de eerste dimensie verloopt op basis van vluchtigheid terwijl de Samenvatting iii scheiding in de tweede dimensie gebaseerd is op verschillen in polariteit. Figuur 1 toont een typische GCxGC opstelling en verklaart de werking van de cryogene modulator die zich tussen de twee kolommen bevindt.

Figuur 1: Typische GCxGC opstelling (links) en werking cryogene modulator (rechts) (S1) rechter jet vangt het eluent van de 1 e kolom op door cryogene koeling; (S2) het koude deel warmt op, wordt in de 2 e kolom vrijgelaten en linker jet begint te koelen; (S3) start volgende modulatiecyclus [3]

Doordat de scheidingen in de twee kolommen gebaseerd zijn op twee statistisch onafhankelijke mechanismen (zogenaamd orthogonale scheidingen) worden geordende structuren voor structuurgerelateerde componenten waargenomen in de chromatogrammen. Een gedetailleerde scheiding op basis van groep type is nu mogelijk, zie Figuur 2.

1.2. GCxGC analyses en optimale instellingen

Kwalitatieve analyses worden uitgevoerd met behulp van de ‘time of flight’ massaspectrometer waarmee de GCxGC is uitgerust. Interpretatie van de individuele massaspectra gecombineerd met opzoekwerk in de bibliotheek van de XCalibur software laat identificatie van de pieken in het chromatogram toe. De Kovats retentie-indices vormen een controle aangezien zij de correcte volgorde weergeven waarin de componenten elueren uit de kolom. De vlamionisatiedetector wordt gebruikt voor kwantitatieve analyses waarbij de piekoppervlakken evenredig zijn met de massafracties. Er wordt hierbij gecorrigeerd met een calibratiefactor die afhangt van de component.

De GCxGC-FID en GCxGC-Tof-MS instellingen werden geoptimaliseerd en op elkaar afgestemd zodat de verkregen chromatogrammen hetzelfde voorkomen hebben. Op deze Samenvatting iv manier is de interpretatie minder omslachtig. De optimalisatie is gebaseerd op een maximalisatie van het theoretisch aantal platen als functie van de inlaatdruk. Het afstemmen van beide detectoren op elkaar gebeurt door dezelfde waarde voor de gemiddelde lineaire snelheid in de eerste kolom te beschouwen.

naphthalenes

naphtheno-aromatics

alkylbenzenes

di-naphthenes mono-naphthenes

(iso)paraffines

Figuur 2: Groep type scheiding voor een kerosine fractie (GCxGC/Tof-MS chromatogram)

De optimale opwarmsnelheid wordt gevonden door 10 te delen door de dode tijd (de tijd dat het duurt vooraleer een niet-interagerende component elueert), zie Tabel 1. De optimale modulatietijd wordt gekozen zodat naftaleen (die meestal de component met de grootste 2D retentietijd vormt) net geen ‘wrap around’ vertoont bij de optimale opwarmsnelheid en dus niet in een latere modulatie optreedt dan diegene waarin hij werd geïnjecteerd.

Tabel 1: Optimale GCxGC instellingen Temperatuur programma Modulatie Effluent analyse Tinitiee l = -40°C 4 min vast modulatie tijd 5 seconden snelheid = 5°C/min uitstel bij effluent analyse 20 minuten T = 40°C 0 min vast snelheid = 3°C/min Tfina al = 300°C 0 min vast Voeding analyse Helium debiet Tiniti ee l = 30°C 0 min vast snelheid = 3°C/min FID 1.2 ml/min Tfina al = 300°C variërend Tof-MS 8 ml/min Samenvatting v

De opwarmsnelheid en de modulatietijd zijn sterk gekoppeld en hebben een significante invloed op de verkregen chromatogrammen. Bij grotere opwarmsnelheden verlopen de scheidingen in de tweede dimensie bij hogere temperaturen en daardoor worden ze sneller uitgevoerd. De componenten elueren hierdoor bij kleinere 2D retentietijden en bijgevolg wordt een kleinere modulatietijd verkozen waarbij meer modulaties per 1D piek mogelijk worden ten gunste van de scheiding. Kleinere opwarmsnelheden hebben dan weer als voordeel dat de scheiding in de eerste dimensie verbetert. De scheidingen in de tweede kolom gaan hierdoor wel trager verlopen (want bij lagere temperatuur) waardoor de pieken uitrekken in de tweede dimensie en componenten elueren bij grotere 2D retentietijden. Aangezien ‘wrap around’ moet vermeden worden, wordt een grotere modulatietijd verkozen waardoor echter minder modulaties per 1D piek mogelijk zijn.

1.3. Toepassingen van GCxGC

De GCxGC opstelling in het LCT wordt gebruikt voor gedetailleerde karakterisering van complexe stoomkraker voedingen gecombineerd met gedetailleerde effluent analyses. Een gedetailleerde voedingssamenstelling werd bepaald voor een Fischer-Tropsch nafta, een petroleum nafta en een kerosine fractie. Voor verscheidene gascondensaten werden FID chromatogrammen opgenomen. Kwantitatieve resultaten werden verkregen met de vlamionisatiedetector, kwalitatieve met de ‘time of flight’ massaspectrometer. Voor elk van de fracties werd een gedetailleerde PIONA opgesteld en vergeleken met PIONA resultaten verkregen via eendimensionale gaschromatografie. Bij vergelijking van de resultaten voor de nafta’s worden eerder kleine verschillen waargenomen. De verschillen zijn voornamelijk een gevolg van piekoverlap tussen (iso)paraffines en naftenen of aromaten doordat ze bij nagenoeg dezelfde 1D retentietijd elueren. Dit treedt enkel op in het eendimensionale chromatogram aangezien er bij GCxGC een verdere scheiding van die overlappende componenten op basis van polariteit wordt uitgevoerd in de 2e kolom. De moleculaire samenstelling verkregen via GCxGC is daarom accurater. Voor de kerosine fractie worden grotere verschillen tussen 1D en 2D samenstellingen waargenomen. Dit is niet verwonderlijk aangezien het kerosine veel meer aromaten bevat dan de nafta fracties, zie Figuur 3 en Figuur 2, waardoor er meer mogelijkheden bestaan voor piekoverlap met (iso)paraffines en naftenen. GCxGC wordt dan ook verkozen boven 1D GC om accurate moleculaire samenstellingen te verkrijgen.

Samenvatting vi

Figuur 3: GCxGC/Tof-MS chromatogram petroleum nafta – 2D weergave (rechts) en 3D (links)

2. Experimenten pilootinstallatie

Voor het experimenteel onderzoek werd gebruik gemaakt van de pilootopstelling voor stoomkraken van koolwaterstoffen aan het LCT.

2.1. Beschrijving opstelling

De voedingssectie zorgt voor de aanvoer van koolwaterstoffen naar de inlaat van de reactor. Het massadebiet van de voeding wordt gemeten in plaats van het volumedebiet om onnauwkeurigheden verbonden met de temperatuurs- en drukafhankelijkheid van het volume te vermijden. Voor het voeden van C4 fracties is het LCT uitgerust met een nieuwe batterij voor flessen waarbij helium wordt gebruikt om druk te zetten op de flessen zodat er een debiet wordt verzekerd. De massadebietmeter is niet langer gebaseerd op het meten van de thermische conductiviteit maar maakt nu gebruik van een coriolis type massadebiet sensor, een Cori-Flow. Zowel vloeibare gassen, vloeistoffen als gassen kunnen gevoed worden. Stoom wordt toegevoegd aan de reactor zodat de partieeldruk van de koolwaterstoffen daalt. Hierdoor wordt de vorming van ethyleen en propyleen bevorderd en de cokesvorming onderdrukt.

De oven is opgedeeld in zeven secties welke elk afzonderlijk kunnen ingesteld worden om op die manier om het even welk temperatuursprofiel te kunnen verkrijgen (zie Figuur 4). Twintig thermokoppels en vijf manometers langsheen de reactorbuis meten temperatuur en druk van het reactiegas. De reactiesectie van de buis is ongeveer 12 m lang en heeft een inwendige diameter van 9 mm. Op deze manier wordt bij aanvaardbare debieten een turbulente stroming verkregen. Aan de reactor uitlaat wordt stikstof geïnjecteerd dat dienst doet als inwendige standaard en eveneens zorgt voor een eerste koeling van het effluent. Nog voor de koeling van Samenvatting vii

+ het effluent in de TLE plaatsvindt, wordt een staal genomen voor on-line analyse van de C 5 componenten. De druk aan het einde van de reactor wordt geregeld aan de hand van een regelklep. Een deel van het effluent wordt naar de analysesectie gestuurd terwijl de rest onmiddellijk naar de flare gaat. De concentratie aan CO en CO 2 in het effluent wordt via een IR-meter continu geregistreerd. Decoken gebeurt door een stoom/lucht mengsel door de reactor te sturen bij temperaturen van 800-900°C.

Figuur 4: Schematische voorstelling van de reactie en koelsectie van de pilootopstelling voor stoomkraken

- De C 2 componenten worden simultaan geanalyseerd op twee gaschromatografen (GC). Enkel waterstof wordt geen twee maal gedetecteerd. Het gebruik van twee verschillende toestellen voor dezelfde analyse verhoogt de betrouwbaarheid van de resultaten. De eerste GC geeft de componenten van C 1 tot C 4 weer terwijl de tweede stikstof, koolstofmonoxide, koolstofdioxide en koolwaterstoffen tot C 2 waarneemt. Voor de analyse van alle koolwaterstoffen boven C 4 worden twee GC’s afwisselend gebruikt, waaronder de GCxGC. Een aangepast temperatuursprogramma en combinatie van FID en Tof-MS zorgen ervoor dat met GCxGC meer accurate en gedetailleerde effluent analyses kunnen uitgevoerd worden. Piekidentificatie en –integratie gebeurt via aangepaste software (ChromCard en HyperChrom) en de berekeningen zijn gebaseerd op de absolute debieten van de verschillende componenten Samenvatting viii in het effluent. Dit is mogelijk door de injectie van de precies gekende stikstofstroom aan de uitlaat van de reactor.

2.2. Testen positie inwendige standaard

Een alternatieve inlaatpositie voor de inwendige standaard werd getest omdat significante fluctuaties in de massabalansen werden waargenomen wanneer onder constante condities werd gekraakt. Dit lijkt een gevolg te zijn van fluctuaties in de uitlaatdruk die onstabiele stikstof toevoeging met zich meebrengen. Een andere oorzaak kan de aanwezigheid van zekere dode volumes in het effluent analyse gedeelte zijn. Voor deze testen werd n-hexaan gekraakt bij standaard procescondities. Tijdens de eerste test werd N 2 na de reactor toegevoegd voor de koelers en tijdens de tweede test na de koelers. Uit de effluentanalyses volgt dat onstabiele massabalansen worden verkregen wanneer stikstof voor de koelers wordt toegevoegd en dat de massabalansen veel stabieler zijn bij toevoeging van stikstof na de koelers. De optimale positie voor injectie van de inwendige standaard is bijgevolg na de koelers.

2.3. Pilootcampagne

Op de pilootinstallatie voor stoomkraken werden 4 verschillende voedingen gekraakt: twee C4 fracties (ARAL en PETRO), een nafta vervaardigd via het Fischer-Tropsch proces en twee zware condensaten (700A en 700B). Voor de C4 fracties en de FT nafta werden de procescondities (COT en dilutie) gevarieerd om de invloed ervan op de productendistributie na te gaan. Bij de gascondensaten werd vooral gekeken naar de cokesvorming in de reactor en de TLE afzonderlijk. Aan de FT nafta werd tenslotte 100ppm DMDS (dimethyldisulfide) toegevoegd om ook hiervan de invloed op de productenopbrengst en cokesvorming te testen.

De experimenten werden uitgevoerd bij verschillende COT (reactor uitlaat temperatuur) waarden en bevestigen de algemeen gekende trends voor de productdistributie. Bij stijgende COT nemen de opbrengsten van methaan, ethyleen, benzeen en naftaleen toe terwijl de propyleenopbrengst een maximum bereikt en de opbrengst van n-butaan daalt (zie Figuur 5). De invloed van de dilutie werd getest tijdens het kraken van de Fischer-Tropsch nafta. Bij hogere dilutie stijgt de selectiviteit voor de lichte olefines ethyleen en propyleen terwijl de selectiviteit voor zwaardere producten zoals benzeen, tolueen en naftaleen daalt, zie Figuur 6 en Figuur 7. De opbrengsten aan methaan en ethaan dalen eveneens.

Samenvatting ix

Effect van COT op productopbrengst 25

20 ethylene 15 propylene

10 benzene

n-butane 5 opbrengst (wt%) opbrengst 0

-5 810 820 830 840 850 860 870 880 890 COT (°C)

Figuur 5: Effect van COT op productopbrengst bij het kraken van de C4 fractie ARAL

Effect van dilutie op productopbrengst 40 35 30 25 ethylene 20 propylene 15 methane ethane

opbrengst (wt%) opbrengst 10 5 0 -5 0 0.5 1 1.5 2 2.5 dilutie (kg/kg)

Figuur 6: Effect van dilutie op productopbrengst bij het kraken van FT nafta

Effect van dilutie op productopbrengst 7 6 5 4 benzene 3 toluene 2 naphthalene

opbrengst (wt%) opbrengst 1 0 -1 -2 0 0.5 1 1.5 2 2.5 dilutie (kg/kg)

Figuur 7: Effect van dilutie op productopbrengst bij het kraken van FT nafta Samenvatting x

Toevoeging van DMDS aan de FT nafta had weinig of geen effect op de waargenomen productopbrengsten. Enig verschil werd waargenomen bij de CO en CO 2 opbrengst namelijk een lagere waarde bij toevoeging van DMDS. Dit is in overeenstemming met wat verwacht wordt aangezien DMDS over het algemeen wordt toegevoegd om de CO en CO 2 productie tijdens stoomkraken te beperken.

Tabel 2: Hoeveelheid cokes gevormd in de reactor en de TLE tijdens 6 uren kraken van de voedingen: FT nafta, FT nafta + 100ppm DMDS, gascondensaat 700B en 700A

Voeding gevormde cokes (g/6hr)

Reactor TLE FT nafta 3.4621 - FT nafta + 100ppm DMDS 6.9682 - Gascondensaat 700B 259.7981 2.4170 Gascondensaat 700A 2.4985 3.4613

Betreffende de cokesvorming in de reactor, zie Tabel 2, heeft de toevoeging van DMDS een nadelig effect. Meer dan een verdubbeling van de gevormde hoeveelheid cokes werd waargenomen. Gascondensaat 700B produceerde een uitzonderlijk grote hoeveelheid cokes.

3. Simulaties met COILSIM1D en SimCo

Simulaties werden uitgevoerd met COILSIM1D en SimCo. COILSIM1D is een single event microkinetisch model (SEMK) dat in staat is het stoomkrakingsproces te simuleren. [4] Voor de reconstructie van de moleculaire samenstelling van de voedingen op basis van commerciële indices of een gedetailleerde PIONA werd de software module SimCo gebruikt. Deze module combineert naast het gebruik van een gedetailleerde PIONA twee reconstructie methoden. De belangrijkste methode is die waarbij de Shannon entropie wordt geoptimaliseerd. Wanneer de moleculaire samenstelling van een nafta gereconstrueerd moet worden, kan het programma ook het beschikbare neurale netwerk gebruiken. [5]

De drie voorgaande methoden werden gebruikt bij het simuleren van het stoomkraken van mengsels van nafta en ethaan, zuivere nafta en zuiver ethaan. Verschillende experimentele condities werden hierbij gesimuleerd. De gesimuleerde productopbrengsten werden vergeleken met experimenteel verkregen resultaten. Hieruit blijkt dat de simulatieresultaten redelijk goed overeenstemmen met de experimentele opbrengsten, zie Figuur 8, maar Samenvatting xi verbetering is mogelijk. Aandacht moet nog verder uitgaan naar de simulatieresultaten voor acetyleen, propyleen, benzeen en tolueen. Verdere evaluatie met een uitgebreidere dataset is hiervoor nodig.

60

50

40

30

20 ethylene propylene gesimuleerde opbrengst(wt%) gesimuleerde 10

0 0 10 20 30 40 50 60 experimentele opbrengst (wt%)

Figuur 8: Pariteitdiagram voor ethyleen en propyleen

4. Conclusies en toekomstig werk

Tijdens deze masterproef werd de experimentele database van stoomkraken uitgebreid en werden er GCxGC analyses van stoomkrakervoedingen en krakereffluent uitgevoerd. Dit samen maakt het mogelijk om meer gedetailleerde en accurate fundamentele simulatiemodellen voor complexe koolwaterstoffracties te ontwikkelen.

Een gedetailleerde samenstelling, zowel kwalitatief als kwantitatief, van een Fischer-Tropsch nafta, een petroleum nafta en een kerosine werden bepaald met de GCxGC. Vergelijking met 1D GC resultaten toonde aan dat GCxGC te verkiezen is om voedingen accuraat te karakteriseren, vooral voor zwaardere fracties zoals kerosines. GCxGC kan verder gebruikt worden om accurate samenstellingen van ook gascondensaten en andere zware fracties te bepalen.

Op de pilootinstallatie werd het kraakgedrag van twee C4 fracties, een FT nafta en twee gascondensaten bestudeerd. De invloed van de procescondities werd uitgebreid bestudeerd. De test met een alternatieve positie voor injectie van de inwendige standaard toonde aan dat injectie na de koelers stabielere resultaten geeft. Een tweede methode voor het testen van de balansen zou zeker een toegevoegde waarde voor de opstelling vormen. Samenvatting xii

Gebaseerd op de beperkte set van verkregen simulatieresultaten lijken er nog verbeteringen aan het reactienetwerk voor stoomkraken mogelijk te zijn. Aandacht moet nog verder uitgaan naar de simulatieresultaten voor acetyleen, propyleen, benzeen en tolueen. Verdere evaluatie met een uitgebreidere dataset is nodig. De resultaten verkregen met de Fischer-Tropsch nafta zien er zeer geschikt uit om hiervoor te gebruiken.

References

[1] Commission on Engineering and Technical Systems (CETS). Review of the Research Strategy for Biomass-Derived Transportation Fuels . 1999.

[2] Van Geem K. M., Reyniers M.-F., Marin G. B. Challenges of Modeling Steam Cracking of Heavy Feedstocks. Oil & Gas Journal Rev. IFP. 2008.

[3] Adahchour M., Beens J., Vreuls R.J.J., Brinkman U.A.Th. Recent developments in comprehensive two-dimensional gas chromatography (GCxGC) I. Introduction and instrumental set-up. Trends in Analytical Chemistry. 2006, Vol. 25, 5, pp. 438-454.

[4] Van Geem K. COILSIM1D Simulation of Steam Cracking Coils - manual. 2006.

[5] Pyl S., Celie I., Van Hecke K., Van Geem K. SimCo manual. 2008.

1. Introduction 1

1. INTRODUCTION

Steam cracking of hydrocarbons is one of the most important processes in the petrochemical industry. The hydrocarbon feedstock is mixed with steam and cracked into mostly smaller molecules in a fired tubular reactor at temperatures ranging from 500 to 900 °C. Commonly used feedstocks range from light alkanes, like ethane or propane (Middle East and USA), to more complex mixtures, such as naphthas (Western Europe) or gas oils, see Table 1.1.

Table 1.1: Raw materials for ethylene production (% of total ethylene produced) (2007) [1]

USA W. Europe Japan Middle East World

LPG, NPG, refinery gas 1 76 16 2 100 44

Naphtha 18 72 98 - 48

Gas oil 6 12 - - 8

In the USA, LPG feeds (ethane, propane and n-butane) accounted for 69% of the total feed in the fourth quarter of 2007. Ethane’s share comprised 49.5%. This high ethane share was the result of economic benefits (lower ethylene production costs due to lower variable production costs) to use ethane as feed instead of propane or n-butane. The average ethylene production costs ranged from 730-748 €/ton, when propane or natural gasoline were used as feed, to only 681 €/ton, when pure ethane was used. [2]

A recent trend is the growing use of butane as feedstock. The latter is caused by the application of ethanol as a transportation fuel. Manufacturers of ethanol-gasoline blends must take into account the dissimilar nature of and the hydrocarbons in which it is blended. One of the disadvantages of using ethanol as a gasoline blend agent is its high Reid vapor pressure. The Reid vapor pressure for ethanol-gasoline blends is about 18 psi for a 10 percent ethanol content. In order to meet gasoline vapor pressure specifications, low boiling

1 LPG: liquefied petroleum gas, NPG: natural petroleum gas 1. Introduction 2 hydrocarbon components, such as butanes and even pentanes, must be reduced. The removal of these low boiling hydrocarbons is expensive because gasoline is their highest value use. A lower gasoline vapor pressure reduces evaporative emissions during tank filling and fuel storage. Because of these environmental benefits, the summer vapor pressure specification for gasoline has been and will continue to be lowered over time. For a vapor pressure specification of less than about 7.6 psi, there is no room for butane in a 10 percent ethanol- gasoline blend. This is the reason why companies are looking for an alternative use for butane, for example as a steam cracker feed. [3] One of the advantages of using n-butane as feed is the high amount of propylene produced compared to the amount when for example naphtha is used. Propylene has overtaken ethylene as the desired and most valuable product in Europe.

The reactor effluent from a steam cracker contains next to light such as ethylene, propylene also and aromatics such as benzene toluene and xylenes. These products are highly valuable for the chemical industry, since they form the building blocks for a variety of derivates used in our daily life. The global ethylene capacity measured 117.6 million tpy as of Jan. 2007, in which the Belgian share made up 1.85%, or 2.18 million tpy. The CMAI (Chemical Market Associates, Inc.) predicts an ethylene capacity increase to a total of 156 million tpy by the year 2011. Figure 1.1 shows the trends in global ethylene operating rate, capacity and demand for the years 2000-2011 (estimate for 2007-2011 and neglecting the current economic crisis). The global operating rates fell in 2006 from a high of about 93% in 2004, because there was surplus global capacity. This is however still a significant rise from the operating levels in 2001-2003, when the rates were less than 90% due to a stagnant growth of the demand. The high rates in 2004 are the consequence of the incremental demand surpassing the capacity increase. Because the capacity will increase significantly in 2007- 2011 when the announced projects go online, the global operating rates should decrease. Most future growth in ethylene capacity will occur in the Middle East due to feedstock advantages. North America and Western Europe will experience a more uniform capacity growth. [4]

The two most urgent issues now facing the global petrochemical industry are the impacts of the recent financial/economic crisis and the large build-up of new chemical capacity over the next few years. The recent financial/economic crisis has already reduced the availability of debt-financing for new projects and refinancing of existing projects. Since almost all of the projects planned for commissioning in the next 2-3 years are already fully financed and under construction, this will not likely slow the onslaught of new capacity but will slow the 1. Introduction 3

Figure 1.1: Global ethylene operating rate, capacity and demand [4] neglecting the current economic crisis

development of new projects scheduled after 2011. The economic crisis is also negatively impacting end-use consumer demand in the Western economies of the USA and Europe. As a result, the Eastern economies of Asia are also seeing reduced demand growth since most of these economies are dependent on exports to the Western economies. In 2008 and 2009 the ethylene demand growth is slowed in most areas of the world. High energy prices and slow ethylene demand growth in North America and Europe are expected to limit future investments in new capacity in these regions. North America and Europe will concentrate on projects that focus on energy efficiency and feedstock flexibility. Over the next few years, it is likely that some capacity will be shut down in these regions as well as in parts of Asia as other lower cost capacity is brought on-line. Global ethylene capacity additions are forecast to outpace global demand growth over the next few years. The surplus capacity that is expected to develop will depress global steam cracker utilization rates. [5]

Currently there is a trend towards using heavier fractions as cracking feeds, such as light gas oils, vacuum gas oils (VGO) and kerosenes. Due to a decreasing demand of these heavy fractions as fuel, large amounts of these low cost fuels remain available. Because of their low cost, heavy fractions become a viable alternative for naphtha as a steam cracker feed, although these fractions show a different cracking behavior compared to the lighter fractions. They produce a larger amount of coke and so fouling in the TLE and the cracking tube 1. Introduction 4 becomes a bigger thread. Table 1.2 shows the different fractions, with their respective boiling point range and the number of carbon atoms, that are obtained from fractional distillation of petroleum. Kerosene is the lightest of the heavier fractions, with the number of carbon atoms of the paraffinic compounds typically ranging from 10 to 14 and a typical boiling point ranging from 150 to 300°C.

Table 1.2: Petroleum distillation fractions [6]

Petroleum fraction Boiling point range (°C) Number of carbon atoms

Fuel gas -90 – 1 C2 – C4

Gasoline -1 – 200 C4 – C10

Naphtha -1 – 205 C4 – C11

Kerosene 150 – 300 C10 – C14

Diesel fuel 205 – 290 C11 – C16

Light gas oil 255 – 315 C14 – C18

Heavy gas oil 315 – 425 C18 – C28

Vacuum gas oil 425 – 600 C28 –C55

Residue > 600 > C55

The difference in cracking behavior of the heavy and light cuts is one of the main challenges from a modeling point of view. This difference in cracking behavior between light and heavy fractions is obviously related to typical differences in chemical constituents, e.g. heavy fractions contain significant amounts of di-, tri- and poly-aromatic compounds that are not present in light fractions [7]. The most advanced models allow modeling not only of steam cracking of light feedstocks such as naphthas but also of the cracking behavior of heavier feedstocks, such as gas oils, gas condensates and vacuum gas oils (VGO’s). In the Laboratory for Chemical Technology such a fundamental simulation model has been developed (Van Geem, 2006), i.e. COILSIM1D, which accurately describes the cracking of hydrocarbon mixtures ranging up to gas condensates. However, there is still room for improvement of the simulation results for certain fractions, e.g. C4 fractions containing important amounts of olefins. Moreover, the results for naphthas which contain a large amount of aromatics are also not always as accurate as could be because no such fractions were used to fit the kinetics used 1. Introduction 5 in the model. For the simulation of steam cracking of heavy fractions also several shortcomings exist. One of them is the small or nearly non-existing experimental database, which is used to verify the simulation results. The current reaction network, with a certain number of reactions and values for the reaction rate coefficients, probably needs revising. Another insufficiency is the lack of complete characterization of the heavy feedstock. The solution to this problem is the new GCxGC, which has a ‘time of flight’ mass spectrometer (Tof MS) and a flame ionization detector (FID). This GCxGC makes it possible to analyze the feed and the cracker effluent qualitatively and quantitatively. Both an extended experimental database and GCxGC analyses will make it possible to create more detailed and accurate fundamental simulation models for heavy hydrocarbon fractions.

After this general introduction, Chapter 2 is devoted to GCxGC and more precisely to feedstock analyses. This feedstock characterization can be used as input of the simulation program COILSIM1D. Chapter 3 discusses the experiments that are conducted on the pilot plant set-up for steam cracking. Heavier hydrocarbon fractions, C4 fractions and a naphtha produced from biomass are used as feed. The effluent analyses are performed with 1D gas chromatography and GCxGC. In Chapter 4 simulations are performed with COILSIM1D and SimCo. SimCo is used for the molecular reconstruction of the feedstock if a detailed characterization is not available. The obtained experimental results can be compared with the simulation results in order to eliminate the current shortcomings that exist in the simulation program for steam cracking.

Finally in Chapter 5 the conclusions are drawn and suggestions for further improvement of the pilot plant set-up and the simulation model COILSIM1D are made.

References

[1] BP Statistical review of world energy 2007. www.bp.com. 2007.

[2] Lippe, Daniel L. SECOND-HALF 2007: US olefins see improving feed economics, demand. Oil & Gas Journal. 5, 2008, Vol. 106.

[3] Commission on Engineering and Technical Systems (CETS). Review of the Research Strategy for Biomass-Derived Transportation Fuels . 1999.

[4] Nakamura, David. SPECIAL REPORT: Global ethylene capacity increases slightly in 2006. Oil & Gas Journal. 27, 2007, Vol. 105. 1. Introduction 6

[5] CMAI. The Petrochemical Outlook. 31 October 2008.

[6] MR, Riazi. Characterization and Properties of Petroleum Fractions. ASTM International. 2005.

[7] Van Geem, K. M., Reyniers, M.-F. en Marin, G. B. Challenges of Modeling Steam Cracking of Heavy Feedstocks. Oil & Gas Journal Rev. IFP. 2008.

2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 7

2. COMPREHENSIVE TWO -DIMENSIONAL GAS

CHROMATOGRAPHY OF STEAM CRACKING

FEEDSTOCKS

2.1. A new analytical method

Comprehensive two-dimensional gas chromatography (GCxGC) started to gain attention some 18 years ago, with applications mainly in the field of petrochemical analysis [1]. GCxGC differs from the already well known two-dimensional GC, since not only a few fractions of the eluent from the first column but the entire sample is now separated on two different columns [1]. Compared to two-dimensional GC, comprehensive GCxGC offers an improved resolution for all the components of interest, without loss of time. The signal-to- noise ratio (and sensitivity) is also significantly enhanced in comparison with one- dimensional GC.

A typical GCxGC set-up is shown in the left part of Figure 2.1. Two distinctly different separation columns are used which are based on two statistically independent separation mechanisms, that is why the two separations are called orthogonal. The first column contains a non-polar stationary phase (separation based on volatility), the second column is much shorter and narrower and contains a (medium) polar stationary phase (separation based on analyte-stationary phase interaction). One advantage of orthogonality is that ordered structures for structurally related components show up in the GCxGC chromatograms. A detailed group type separation is now possible. [2]

Between the two columns an interface, a cryogenic modulator, is present (see right part of Figure 2.1 for its working mechanism). Its main role is to trap adjacent fractions of the analyte eluting from the first-dimension column by cryogenic cooling, and heating-up these cold spots rapidly to release them as refocused analyte pulses into the second-dimension column. To prevent leakage of the first column material, two jets are used that each by turn collect the 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 8

1st dimension eluent. The second-dimension separation must be completed before the next fraction is injected to avoid wrap-around, the phenomenon that second-dimension peaks show up in a later modulation than in which they were injected. This explains the shorter and narrower second-dimension column compared to the first one.

Figure 2.1: Typical GCxGC set-up (S0) General set-up of dual-jet cryogenic modulator; (S1) Right-hand-side jet traps eluent from 1 st dimension column (S2); cold spot heats up, analyte pulse into 2 nd dimension column + left-hand-side jet switch on; (S3) next modulation cycle [1]

The most common ways of visualization of the GCxGC chromatograms are a 2D color plot, a contour plot and a 3D plot, see Figure 2.2. Two dimensional chromatograms can be obtained because the second-dimension separation time equals the modulation time. This is an important feature of GCxGC.

In order to maintain the separation obtained in the first-dimension column, the narrow fractions trapped by the modulator and released in the 2 nd column should be no wider than one quarter of the peak widths in the 1 st dimension. The term “comprehensive” refers to this aspect of comprehensive GCxGC. As a consequence of this characteristic and since the modulation time must equal the 2 nd dimension run time, second-dimension separations should be very fast, in the order of 2 to 8 seconds. This will render very narrow 2 nd dimension peaks and a demand of correspondingly fast detectors, like an FID (flame ionization detector) for 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 9 quantitative analysis or a Tof-MS (time-of-flight mass spectrometer) for qualitative analysis. [3][4][5] An example GCxGC color plot of a diesel fraction with an ordered structure for the group types which are separated and indicated in the plot, can be seen in Figure 2.3. [1][6]

Figure 2.2: Visualization of GCxGC output [1]

Figure 2.3: GCxGC color plot of a diesel fraction [7] 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 10

2.2. GCxGC analyses & optimal settings

+ The GCxGC set-up at the LCT is part of the C 5 analysis section of the pilot plant unit for steam cracking of hydrocarbons. The GCxGC is combined with a flame ionization detector (FID) for quantitative analysis and a time-of-flight mass spectrometer (Tof-MS) for qualitative analysis. This new gas chromatograph can be used off-line and on-line, which makes a detailed GCxGC analysis of the cracker effluent possible. The cryogenic cooling of the eluent from the first dimension column is performed by carbon dioxide. Liquid CO 2 is stored in bottles that are placed in a battery behind the GCxGC equipment. The bottles are equipped with a dip tube. A problem that is encountered is an insufficient CO 2 pressure at the jets outlet. This causes breakthrough of the 1D eluent, since it is not enough trapped by the cooling. As a solution to this problem, the liquid CO 2 bottles are now heated at the bottom with a heating element whose temperature is set to 40°C. In this way, the pressure is increased and breakthrough is limited to the lightest components, see Figure 2.4.

2.2.1. Qualitative analysis

A detailed qualitative feedstock or effluent characterization is obtained using information from the samples GCxGC-Tof-MS spectrum, the molecular library and the Kovats retention indices.

Operation of the GCxGC-Tof-MS is computer controlled, with GC peaks automatically detected as they emerge from the column. Each individual mass spectrum is directly recorded onto the hard disk for subsequent analysis. This technique provides information on the identity of every individual component obtained by chromatographic separation by taking advantage of the common fragmentation pathways for individual substance classes. The interpretation of the mass spectra and library search using the XCalibur software allows the identification of various peaks observed in the chromatogram.

In the Hyperchrom software, by double-clicking on a peak, the mass spectrum of the single peak is shown below the chromatogram. Double-clicking on the peak again now opens the molecular library, see Figure 2.5. Several possible matches are presented, and by clicking on one of them, the spectrum of the unknown compound and the spectrum of the reference compound are both shown, so that they can be compared. The one that gives the best resemblance is chosen. For each reference compound, the name, chemical formula, chemical 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 11

Figure 2.4: Top chromatogram: insufficient CO 2 pressure at the jets outlet results in breakthrough for the entire naphtha chromatogram. Bottom chromatogram: heating of the CO 2 bottles results in breakthrough limited to the lightest components 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 12 structure, molecular weight and probability of a valid match is given, see Figure 2.6 for the example case.

Figure 2.5: Library search: mass spectrum of unknown compound (top) and reference compound (bottom)

Figure 2.6: Reference compounds: probability, name, chemical formula and molecular weight

2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 13

Figure 2.7: Library search: mass spectra of unidentified and reference components 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 14

In Figure 2.7 the mass spectrum of the component that needs to be identified is compared with spectra of reference compounds. Attention must be paid to the molecular weight, which is indicated by the last appearing peak in the mass spectrum. In order to have an accurate match, the molecular weight of both the unidentified and the reference component must be the same i.e. 128 g/mol for the discussed example case. Only two reference compounds, n-nonane and 2,4-dimethyl-heptane, have an identical molecular weight. Since n-nonane has a much greater probability than 2,4-dimethyl-heptane (30.86 against 3.7), the previously unknown component is now identified as n-nonane.

Since components of the same type show up in ordered structures, characteristic group bands can be observed. The total ion current (TIC) chromatogram of a kerosene fraction is represented in Figure 2.8. It is recorded with the Tof-MS with a heating rate of 2°C/min and 4 seconds of modulation time. The individual group bands can be obtained by selecting the proper characteristic m/z values, see Figure 2.9.

naphthalenes

naphtheno-aromatics

alkylbenzenes

di-naphthenes mono-naphthenes

(iso)paraffines

Figure 2.8: TIC Tof-MS chromatogram kerosene fraction

2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 15

Figure 2.9: Characteristic group bands of a kerosene fraction (a) naphtheno-aromatics with masses 132, 146 (b) naphthalenes with masses 128, 142, 156 (c) alkylbenzenes with masses 120, 134 (d) benzothiophenes with mass 190 (e) di-naphthenes with masses 124, 138, 152, 166 (f) (iso)paraffins with masses 57, 71, 85 (g) mono-naphthenes with masses 55, 69, 83, 112 and (h) TIC chromatogram 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 16

The Kovats retention index system provides a verification of the results obtained using the molecular library, since it gives the correct sequence wherein the components elute from the column. Kovats retention indices (KRI) form a logarithmic scale on which the adjusted retention time of a peak is compared with those of linear n-alkanes as reference compounds. More details about how the analyses are precisely performed in the Hyperchrom software can be found in Annex D.

2.2.2. Quantitative analysis

A quantitative analysis of a feedstock or effluent is carried out with the use of a GCxGC-FID spectrum. This analysis is based on the peak surface areas. The peak surface area in a chromatogram is proportional to the quantity of the corresponding component. Hence, integration of the peaks observed in the chromatogram makes it possible to obtain a quantitative analysis of the sample.

The integration of the modulated peaks can automatically be performed by the Hyperchrom software. However, since breakthrough cannot completely be excluded for light components manual integration becomes necessary at the beginning of the chromatogram. Breakthrough makes these peaks look more like unmodulated or one dimensional peaks. Figure 2.10 shows, in a one dimensional rendering of the GCxGC chromatogram, the difference in peak appearance when breakthrough occurs, at the beginning of the chromatogram, and when the peaks are well modulated. If the unmodulated peaks would not be manually integrated, only small parts and not the entire peak surface area would be taken in consideration. This would lead to wrong molecular compositions of the examined samples. 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 17

Figure 2.10: Manual integration when breakthrough occurs and automatic integration when good modulation appears

The peak surface areas Ai and mass fractions Mi of the components are related via the calibration factors CF i:

= / 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 18

To determine the calibration factors of the most important components, a mixture with known composition is injected and the peak areas of the components present in the mixture are determined. Then the calibration factors of the different components are calculated using the following equation:

∙ % = ∙ ∙ % where Ai = the peak surface area of component i

wt% i = the weight fraction of component i in the calibration mixture

One component, usually methane, is assigned to be the reference component with calibration factor CF REF equal to 1. The calibration factors of the remaining components are determined using a group contribution method developed by Dierickx et al.[8]. For hydrocarbons, with some exceptions, most of the values of the response factors are approximately 1. An alternative way of calculating the calibration factors is by means of the theoretical mass. The theoretical response factors thus obtained are calculated using the equation:

= ∙ where MW denotes the molecular weight of component i.

In order to obtain the correct calibration factors, these theoretical response factors need to be inverted since the peak surface areas are divided by the calibration factors to obtain the mass fractions.

The weight fractions of the different components present in a feedstock with unknown composition are calculated using equation:

/ % = 100 ∑ /

Note that no internal standard is used when the detailed molecular composition of a feedstock is determined. In case that an effluent is analyzed, methane is used as second internal standard, since it is also detected on the Interscience Trace TCD (see Section 1.1.2). The weight fractions of the effluent components are calculated according to:

% % = ∙ with % = the previously calculated weight fraction of methane. 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 19

The reader is again referred to Annex D for more details about how to conduct a quantitative analysis in the Hyperchrom software.

2.2.3. Tuning of FID and Tof-MS GCxGC

A flame ionization detector (FID) is used for quantitative analysis and a time-of-flight mass spectrometer (Tof-MS) is used for qualitative analysis of the same sample. Both detectors work under a different pressures, i.e. atmospheric pressure for an FID and vacuum for a Tof- MS. If the same GCxGC settings like carrier gas flow are used for both detectors, the obtained spectra look completely different and this is not desired. FID and Tof-MS spectra from the same sample must look more or less the same to make the interpretation of the results straight forward. For that reason the GCxGC-FID and the GCxGC-Tof-MS settings are tuned to one another with the use of two Excel programs (GCGCcalculator(FID)22-08-2005.xls and GCGCcalculator(MS)v22-8-05.xls, Hans-Gerd Janssen, august 2005) provided by Jan Beens. The next few paragraphs describe this GCxGC tuning.

First some GCxGC properties and settings are implemented as input in the program. These comprise the 1 st and 2 nd column properties such as the column length, diameter, diameter of the stationary phase, capacity factor and coating efficiency factor. The column temperature for which the optimization is performed is set equal to 100°C. The inlet pressure range that will be scanned in order to find an optimum, must also be specified. Finally, the number of carbon and hydrogen atoms of a reference compound are defined. Naphthalene is taken as reference compound since this is usually the last compound that elutes from the column. The calculations are performed for helium carrier gas. Since the FID is used for quantitative analysis and the component separations must consequently be optimal, the GCxGC-FID settings are first optimized and the GCxGC-Tof-MS settings follow from these.

Figure 2.11 presents the graph that is obtained after specification of the input variables for optimization of the GCxGC-FID settings. The best separation is achieved when the number of theoretical plates N reaches a maximum as function of the inlet pressure, for both the first and second column separately. This optimal inlet pressure value is however different for both columns. The inlet pressure must be optimal for the first column when first dimension separation is more important than second dimension separation. If this is not the case, meaning that the second dimension separation is more important than the separation in the first dimension, the inlet pressure is chosen such that N for the second column reaches a maximum. Figure 2.11 shows that an inlet overpressure of 150 kPa renders a maximal N for 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 20 the second column. An inlet pressure of 210 kPa (over) is necessary if an optimum for the first column is preferred.

GCxGC optimization (FID-helium)

250'000 3.5 first column second column 3.0 modulation criterion 200'000

2.5

150'000 2.0 N 1.5 100'000

1.0 criterion modulation

50'000 0.5

0 0.0 0 50 100 150 200 250 300 350 400 Input pressure (kPa over)

Figure 2.11: GCxGC-FID optimization

Since the 2D separation is more important, an inlet pressure of 150 kPa seems the best choice. It is however seen that when the pressure is increased from 150 to 170 kPa (over) the number of plates N for the second column slightly decreases, whereas N for the first column increases and comes much closer to the maximum. This is clearly a better situation, so an inlet pressure of 170 kPa is chosen. Next the average linear velocity in the first column that corresponds with this pressure, is read from a table generated by the program and equals 19 cm/s. The same value must be attained when using the Tof-MS.

For the tuning of the GCxGC-Tof-MS settings, the same values for the program input variables are entered. In the generated table, the inlet pressure value that corresponds to an average linear velocity in the first column of 19 cm/s is taken as set point. This value equals 122.4 kPa.

The GCxGC settings are such that a constant carrier gas flow is maintained. In order to implement the determined optimal inlet pressures, the constant value for the carrier gas flow 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 21 is adapted so that the correct inlet pressure is realized. This procedure is carried out while the column temperature is set to 100°C, which is also the case for the calculations in the Excel program. A carrier gas flow of 1.2 ml/min results in the optimal inlet pressure value for the GCxGC-FID and a flow of 0.8 ml/min for the GCxGC-Tof-MS.

Another GCxGC setting that still needs to be optimized is the heating rate. The optimal heating rate is found by using the formula:

10 ℎ = where = the dead time or the time that it takes for a non-interacting component to elute from the column.

This dead time is determined by injecting a calibration mixture which includes methane and recording the time that it takes before the first peak is observed in the chromatogram. This is again done for a column temperature of 100°C. A value of 4.4 minutes is found for , and hence the optimal heating rate is equal to 2.27 °C/min. The same value for the heating rate must be used for both the FID and Tof-MS in order to obtain similar looking chromatograms for the same sample.

The modulation time is the last setting that needs revision. Naphthalene is chosen as reference compound since this is usually the compound with the greatest retention time in the second dimension and therefore it must just be separated without wrap-around, fully exploiting all the GCxGC separation capacity. The modulation time is closely connected with the heating rate. At higher heating rates, the second dimension separations occur at higher temperatures and are consequently performed faster. A smaller modulation time can accordingly be chosen and more modulations for each 1D peak are thus possible which is desirable. Heating rates higher than the optimal value imply however poorer separations in the first dimension and this is not favorable. Both effects must be taken in consideration when an optimal heating rate is chosen. An aromatic calibration mixture which contains naphthalene is injected on the GCxGC-FID to determine the optimal modulation time. At a heating rate of 3 °C/min naphthalene elutes from the second column with an average retention time of 4 seconds. The separation in the first dimension is still adequate and a few modulations for every 1D peak are performed. Hence, the optimal modulation time in combination with a heating rate of 3 °C/min is 5 seconds. If a heating rate closer to the optimal value is chosen, the optimal modulation time would become higher and the number of modulations across each 1D peak would be too small. Table 2.1 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 22 gives an overview of the GCxGC properties and settings. The difference between the temperature program for a feedstock analysis and the program for an effluent analysis is discussed in more detail in the next section.

Table 2.1: GCxGC properties and settings Properties column 1 type PONA length 50 m diameter 250 µm stationary phase dimethylpolysiloxane diameter stationary phase 0.5 µm capacity factor 8 coating efficiency 90% Properties column 2 type BP X50 length 2 m diameter 150 µm diameter stationary phase 0.15 µm capacity factor 6 coating efficiency 90% Temperature program Effluent analysis

Tinitial = -40°C hold time 4 min rate = 5°C/min T = 40°C hold time 0 min rate = 3°C/min

Tfinal = 300°C hold time 0 min Feedstock analysis

Tinitial = 30°C hold time 0 min rate = 3°C/min

Tfinal = 300°C hold time varies Modulation modulation time 5 seconds delay time 20 minutes for effluent analysis Right inlet temperature 250°C split ratio 125 split flow 150 ml/min 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 23

Right carrier (helium) flow FID 1.2 ml/min Tof-MS 0.8 ml/min Right detector - FID flow air 350 ml/min

flow H2 35 ml/min

2.2.4. Influence of the GCxGC settings

As discussed in the previous section, the GCxGC settings are strongly coupled and have a significant influence on the obtained chromatogram. At higher heating rates, the second dimension separations occur at higher temperatures and are consequently performed faster. The components elute at smaller second dimension retention times. This can be desirable if the sample contains components up to naphthalene and wrap around needs to be avoided without taking too large modulation times. Heating rates higher than the optimal value imply however poorer separations in the first dimension and this is not favorable. At a lower heating rate, the first dimension separation is improved and the peaks are stretched in the second dimension since these 2 nd dimension separations now occur at lower temperatures which makes them consequently slower. Figure 2.12 presents the effect of the heating rate on the 1 st and 2 nd dimension separations when analyzing a Fischer-Tropsch naphtha. The top chromatogram corresponds with a heating rate of 1.5°C/min (when heating from 30 to 300°C) and 5 seconds of modulation time. The bottom chromatogram is recorded with a heating rate of 3°C/min (from 30 to 300°C) and a modulation time of 5 seconds. The same part of the chromatogram, starting at decane and ending with undecane, is shown for both conditions.

Another side effect of a wrong choice for the heating rate value combined with the modulation time, is wrap around, see Figure 2.13. Both chromatograms correspond with the same kerosene fraction. The top chromatogram is recorded with a heating rate of 2°C/min. No wrap around occurs and naphthalene elutes from the second column within the 4 seconds of modulation time. The position of the eluting before naphthalene in relation to its surrounding components is indicated with arrows. The bottom chromatogram shows, however, wrap around due to the lower heating rate of 1°C/min, combined with the same rather small modulation time of 4 seconds. When the position of the aromatic compound eluting before naphthalene is again related to its surrounding components, it is clear that the 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 24

Figure 2.12: Effect of heating rate on 1 st and 2 nd dimension separation 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 25

Figure 2.13: Effect of heating rate: bottom chromatogram shows wrap around 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 26 compound is now situated at a different location on the chromatogram, i.e. a location corresponding to a later modulation cycle than in which it was injected. Naphthalene even shows up in a modulation cycle two cycles later than the one in which it was injected. This wrap around phenomenon can be avoided when choosing a larger modulation time or a larger heating rate.

Figure 2.14 presents two other phenomena that are undesired in a GCxGC chromatogram. For a heating rate of 3°C/min and 5 seconds of modulation time breakthrough occurs. The latter is caused by an insufficient cryogenic cooling of the 1 st column eluent. As a result the components are not properly trapped and appear twice in the chromatogram at the same 1D retention times and different 2D retention times. The inadequate cooling is the consequence of a too low CO 2 pressure at the jets outlet, which may be caused by an almost empty CO 2 bottle or limited heating of the bottle. The heating of the bottle and the amount of CO 2 that is still present must always be verified before starting the recording of a chromatogram.

Figure 2.14: Breakthrough and tailing

2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 27

The tailing present in the chromatogram of Figure 2.14 is possibly caused by heavy components that stay behind in the transfer line to the GCxGC set-up. The helium carrier gas flows through this transfer line and takes along these components, collecting them at the GCxGC inlet. These heavy components will release the sample constituents in consecutive small parts instead of at once, giving rise to the observed tailing. The latter is almost only observed for the first recorded GCxGC chromatogram of the day. Performing a blank injection before analyzing the sample may provide a solution to this problem.

2.3. GCxGC applications

2.3.1. Complex feedstock characterization

Fischer-Tropsch Naphtha

The first feedstock that is analyzed, is a naphtha which is made using the Fischer-Tropsch process on bio-derived syngas. This feedstock is also cracked on the LCT pilot plant set-up for steam cracking as will be discussed in Chapter 3.

A quantitative analysis is performed both in 2D with the GCxGC-FID and in 1D with the HP 5890 GC-FID. One of the great advantages of comprehensive two-dimensional GC compared to one dimensional GC is shown in Figure 2.15 and Figure 2.16. For the 1D GC chromatogram, Figure 2.16, peak overlap is observed to a certain extent, especially where isoparaffins and naphthenes or aromatics elute at nearly the same 1D retention time. This peak overlap is not observed in the 2D GCxGC chromatogram, Figure 2.15, since these components are further separated on the 2 nd column according to differences in polarity. From this it is clear that a more accurate molecular composition can be obtained with GCxGC than with one dimensional GC. 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 28

Figure 2.15: Portion of GCxGC-FID (2D) chromatogram Fischer-Tropsch naphtha: no peak overlap

Figure 2.16: Portion of HP-FID (1D) chromatogram Fischer-Tropsch naphtha: peak overlap 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 29

In Annex A the detailed molecular composition of this naphtha feedstock is given with the GCxGC. The detailed PIONA weight fractions obtained from the GCxGC results are shown in Table 2.4. For each number of carbon atoms in the range 3-12, the weight fractions for the paraffinic and iso-paraffinic compounds, olefins, naphthenes and aromatics are given. The PIONA analysis shows that the Fischer-Tropsch naphtha contains a great amount of paraffinic and isoparaffinic compounds, some naphthenes and almost no aromatics and olefins and this mainly in the range C5-C9. The same conclusion can be made when observing the GCxGC FID chromatogram shown in Figure 2.17 (heating rate = 3 °C/min and 5 seconds modulation time). This is also in line with the expectations since the naphtha is made from biomass according to the Fischer-Tropsch process followed by the Synfining ® process and not derived from the refining of crude oil.

Figure 2.17: GCxGC FID chromatogram Fischer-Tropsch naphtha – color plot

Table 2.2: PIONA weight fractions (wt%) obtained from GCxGC results P I O N A SUM

3 0.172 0.000 0.000 0.000 0.000 0.172

4 1.506 0.963 0.000 0.000 0.000 2.468

5 4.584 4.956 0.000 0.000 0.000 9.540

6 7.784 9.946 0.000 1.055 0.000 18.784

7 7.964 12.870 0.000 1.389 0.108 22.331

8 5.598 11.140 0.022 1.708 0.305 18.773

9 3.249 10.745 0.255 1.708 0.331 16.289

2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 30

10 1.237 6.519 0.112 0.598 0.089 8.555

11 0.251 2.172 0.000 0.019 0.000 2.443

12 0.062 0.581 0.000 0.000 0.000 0.644

SUM 32.407 59.893 0.389 6.477 0.833 100.000

The detailed PIONA weight fractions obtained from the 1D analysis are shown in Table 2.3. The slightly greater amount of naphthenes and somewhat lower amount of (iso)paraffins is mainly due to peak overlap in the one dimensional chromatogram. The molecular composition determined with GCxGC is therefore more accurate.

Table 2.3: PIONA weight fractions (wt%) obtained from 1D GC results P I O N A SUM

3 0.181 0.000 0.000 0.000 0.000 0.181

4 1.506 1.980 0.000 0.000 0.000 3.486

5 4.398 4.750 0.000 0.000 0.000 9.148

6 7.359 8.918 0.000 1.026 0.017 17.320

7 7.535 11.997 0.000 2.497 0.168 22.197

8 5.428 11.996 0.061 3.221 0.427 21.134

9 3.129 10.900 0.230 1.726 0.332 16.318

10 1.182 6.292 0.085 0.384 0.145 8.089

11 0.201 1.481 0.000 0.023 0.000 1.705

12 0.045 0.377 0.000 0.000 0.000 0.423

SUM 30.966 58.693 0.376 8.876 1.090 100

Petroleum Naphtha

The second naphtha that is analyzed, is a petroleum naphtha fraction (naphtha A). A qualitative analysis is performed with a GCxGC-Tof-MS chromatogram and next a quantitative analysis with a GCxGC-FID chromatogram. The Tof-MS chromatogram is depicted in Figure 2.18 as a color plot and in Figure 2.19 in a three dimensional rendering. 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 31

At the beginning of the chromatogram some breakthrough is visible, indicating the presence of rather light components that are not completely trapped by the cryogenic cooling of the jets.

Figure 2.18: GCxGC-Tof-MS chromatogram naphtha feedstock – color plot 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 32

Figure 2.19: GCxGC-Tof-MS chromatogram naphtha feedstock – 3D rendering

A modulation time of only 4 seconds and a heating rate of 2°C/min are used when recording this chromatogram (and the carrier gas flow is not yet optimized). Wrap around does not appear because the naphtha feedstock does not contain many heavy aromatic compounds that elute at high second dimension retention times. From the chromatogram it can already be seen that the feedstock contains a great amount of paraffinic, iso-paraffinic and naphthenic compounds and only a few aromatics. This is confirmed by the calculated detailed molecular composition.

In Annex A the obtained detailed molecular composition of this naphtha feedstock is given. The detailed PIONA weight fractions are shown in Table 2.4. For each number of carbon atoms in the range 3-13, the weight fractions for the paraffinic and iso-paraffinic compounds, olefins, naphthenes and aromatics are given, and for the naphthenes a further distinction is made between the mono and di-naphthenes and the olefin-naphthenes.

2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 33

Table 2.4: PIONA weight fractions (wt%) obtained from GCxGC results N SUM P I O A mono di o

3 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.005

4 1.650 0.272 0.000 0.000 0.000 0.000 0.000 1.922

5 5.943 4.107 0.000 0.966 0.000 0.000 0.000 11.017

6 5.928 6.117 0.000 4.129 0.000 0.000 0.325 16.499

7 5.774 6.171 0.000 12.408 0.000 0.000 1.431 25.785

8 3.938 5.970 0.000 10.744 0.116 0.000 1.985 22.753

9 2.416 4.755 0.782 6.837 0.255 0.000 1.553 16.598

10 0.576 3.113 0.209 0.984 0.068 0.000 0.128 5.080

11 0.017 0.166 0.000 0.133 0.000 0.000 0.000 0.316

12 0.000 0.000 0.000 0.027 0.000 0.000 0.000 0.027

13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SUM 26.248 30.673 0.991 36.228 0.440 0.000 5.421 100.000

These results can be compared with previously obtained results from one dimensional gas chromatography. The detailed PIONA weight fractions for the 1D GC analysis are given in Table 2.5. Only small, negligible differences are encountered and again they are mainly caused by peak overlaps between (iso)paraffins and naphthenes or aromatics in the 1D chromatogram.

Table 2.5: PIONA weight fractions (wt%) obtained from 1D GC results N SUM P I O A mono di o

3 0.169 0.000 0.000 0.000 0.000 0.000 0.000 0.169

4 2.328 0.592 0.000 0.000 0.000 0.000 0.000 2.920

5 5.807 4.175 0.095 0.957 0.000 0.000 0.000 11.034

6 5.662 6.062 0.082 6.291 0.000 0.010 0.392 18.499

7 5.657 6.210 0.008 11.634 0.000 0.000 1.602 25.111

8 3.511 8.752 0.184 8.388 0.000 0.000 3.093 23.927

9 2.026 3.128 0.094 6.182 0.000 0.346 1.345 13.121

10 0.534 3.274 0.109 0.990 0.040 0.000 0.066 5.013

11 0.014 0.135 0.020 0.030 0.001 0.000 0.004 0.203

12 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.003

SUM 25.710 32.330 0.592 34.471 0.041 0.356 6.501 100

2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 34

Kerosene

The next fraction that is analyzed is a kerosene feedstock (Kerosene G) from Petrobras. The GCxGC-Tof-MS chromatogram is shown in Figure 2.20. A modulation time of 4 seconds is used when recording this chromatogram and the other GCxGC settings are not yet the optimal ones (heating rate = 2°C/min). The group type separation is clearly visible and the names of the different groups are also shown in Figure 2.20. This kerosene fraction contains obviously much more aromatics and heavier (iso)paraffins than the previously examined naphtha fraction.

naphthalenes

naphtheno-aromatics

alkylbenzenes

di-naphthenes mono-naphthenes

(iso)paraffines

Figure 2.20: GCxGC-Tof-MS chromatogram kerosene feedstock - color plot (group type names are shown)

For the GCxGC-FID chromatogram the optimal settings from Table 2.1 are used. The color plot is presented in Figure 2.21 and the 3D rendering in Figure 2.22. 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 35

Figure 2.21: GCxGC-FID chromatogram kerosene feedstock - color plot

Figure 2.22: GCxGC-FID chromatogram kerosene feedstock - 3D rendering 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 36

In Annex A the obtained detailed molecular composition of this kerosene feedstock is given. The detailed PIONA weight fractions obtained from the GCxGC results are shown in Table 2.6. For the naphthenes a further distinction is made between the mono- and di-naphthenes and the naphtheno-aromatics. The aromatics are further divided in the alkylbenzenes, naphthalenes and indenes.

Table 2.6: PIONA weight fractions (wt%) obtained from GCxGC results P I O N A SUM

m d a b n i

8 1.012 0.347 0.000 1.316 0.000 0.000 1.266 0.000 0.000 3.941

9 2.160 1.678 0.304 4.070 0.286 0.000 3.344 0.000 0.000 11.843

10 3.558 4.560 0.361 5.414 1.210 0.498 4.334 0.176 0.000 20.110

11 3.604 4.753 0.134 4.983 1.486 1.315 1.539 0.612 0.088 18.514

12 3.304 4.067 0.000 6.158 1.259 1.014 0.695 0.550 0.000 17.047

13 2.859 4.440 0.000 3.388 0.360 0.000 0.340 0.000 0.000 11.386

14 2.004 2.681 0.542 0.499 0.000 0.000 0.133 0.000 0.000 5.859

15 2.627 1.841 0.000 0.173 0.232 0.000 0.000 0.000 0.000 4.873

16 1.130 0.564 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.694

17 0.813 0.784 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.597

18 0.569 1.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.769

19 0.254 0.667 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.922

20 0.128 0.193 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.321

21 0.091 0.034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.125

SUM 24.112 27.810 1.342 26.001 4.833 2.827 11.649 1.339 0.088 100

These results can again be compared with previously obtained results from one dimensional gas chromatography. The detailed PIONA weight fractions for the 1D GC analysis are given in Table 2.7. Much greater differences between 1D and GCxGC PIONA are now encountered compared to the differences observed with the petroleum naphtha. This is not surprising when the color plots of both feedstocks are compared, see Figure 2.18 and Figure 2.21. The kerosene fraction contains much more aromatics so this creates more possibilities for peak overlap with naphthenes and (iso)paraffins in the 1D chromatogram. This is the reason why GCxGC is preferred over 1D GC to obtain accurate molecular compositions, especially when a kerosene or a heavier fraction is considered. 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 37

Table 2.7: PIONA weight fractions (wt%) obtained from 1D GC results P I O N A SUM m d a b n i 4 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004

5 0.009 0.008 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.018

6 0.009 0.008 0.052 0.010 0.000 0.000 0.001 0.000 0.000 0.080

7 0.034 0.015 0.000 0.285 0.000 0.000 0.112 0.000 0.000 0.446

8 1.261 1.359 0.022 4.568 0.000 0.000 2.812 0.000 0.000 10.022

9 2.388 3.022 0.139 6.861 0.000 0.214 5.288 0.000 0.000 17.911

10 3.818 7.859 0.758 4.687 1.000 0.785 3.223 0.037 0.239 22.406

11 3.559 5.055 0.000 3.221 0.456 1.206 4.100 0.279 0.065 17.941

12 3.067 4.083 0.000 1.817 1.056 0.060 1.398 1.057 0.087 12.624

13 2.557 4.427 0.000 2.584 0.000 0.000 0.109 0.239 0.000 9.917

14 1.660 2.438 0.000 0.833 0.000 0.000 0.060 0.052 0.000 5.043

15 0.839 1.462 0.000 0.000 0.000 0.000 0.127 0.000 0.000 2.427

16 0.276 0.000 0.000 0.480 0.000 0.000 0.000 0.000 0.000 0.756

17 0.146 0.211 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.357

18 0.029 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.032

19 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014

20 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003

21 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

SUM 19.626 29.946 0.970 25.348 2.511 2.265 17.230 1.664 0.391 100

Gas condensate

Three different gas condensates are examined with GCxGC. The gas condensates 700A and 700B are also cracked on the LCT pilot plant set-up for steam cracking as discussed in Chapter 3. Since the effect of the composition of the gas condensates on the product distribution and the amount of coke deposited in the reactor and the transfer line exchanger (TLE) is studied, a detailed molecular feedstock composition obtained with GCxGC is necessary. Gas condensate 661 has been cracked under various conditions in the past and therefore a detailed GCxGC analysis is also convenient.

The GCxGC-FID chromatogram of gas condensate 700A is shown in Figure 2.23. The optimal settings as formulated in Table 2.1 are used. During approximately the first 30 minutes some breakthrough cannot be avoided as depicted in Figure 2.23. From the chromatogram can easily be seen that a gas condensate fraction contains more (iso)paraffins 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 38 and naphthenes and less aromatics than a kerosene fraction. This is confirmed by comparison of Figure 2.21 and Figure 2.24. Due to the GCxGC ability of group type separation the previous observation can be made without the need of a qualitative analysis obtained with a GCxGC-Tof-MS chromatogram.

Figure 2.23: GCxGC-FID chromatogram gas condensate 700A - color plot

2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 39

Figure 2.24: GCxGC-FID chromatogram gas condensate 700A - 3D rendering

Figure 2.25: GCxGC-FID chromatogram gas condensate 700B - color plot 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 40

The GCxGC-FID chromatogram of gas condensate 700B is depicted in Figure 2.25. Comparison with the color plot for gas condensate 700A, Figure 2.23, shows that both feedstocks contain approximately the same components, but in different amounts. A quantitative analysis will indicate what the exact difference in amount is. Another difference is that more breakthrough is visible in the chromatogram of gas condensate 700B than in the chromatogram of feedstock 700A. This can be caused by an insufficient heating of the CO 2 bottle which in turn results in a too low pressure to give an adequate cooling of the eluent from the first column.

The GCxGC-FID chromatogram of gas condensate 661 is shown in Figure 2.26. This gas condensate contains obviously more aromatics and naphthenes than the gas condensates 700A and 700B since a higher amount of peaks and more intense peaks are detected in the group type bands of aromatics and naphthenes (the same color intensities are used for Figure 2.26, Figure 2.25 and Figure 2.23).

Figure 2.26: GCxGC-FID chromatogram of gas condensate 661 - color plot

2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 41

2.3.2. Pilot effluent analysis

+ GCxGC-FID is used for the C 5 analysis of the effluent when cracking a certain feedstock on the pilot plant set-up for steam cracking. Methane functions as a second internal standard. In order to make an accurate detection of methane possible, the initial column temperature must be as low as -40°C. Since light components, starting from methane and ranging till hexane, experience breakthrough, the modulation start is delayed for 20 minutes. The initial heating rate is set to 5°C/min until a temperature of 40°C is reached. Next a heating rate of 3°C/min combined with a modulation time of 5 seconds would be optimal, as explained previously in Section 2.2.3.

Figure 2.27 presents a two-dimensional chromatogram obtained with the GCxGC-FID and + used for the C 5 analysis of the effluent when cracking a C4 fraction. The color plot clearly shows the start of the modulation after a time of 20 minutes. The used GCxGC-FID settings are not yet the optimal ones, see Table 2.8. The temperature program is the same as used for + the HP 5890 series II GC, which is also part of the C 5 analysis section of the pilot plant set- up.

Figure 2.27: GCxGC-FID color plot: Full C5+ chromatogram obtained for cracking a C4 fraction 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 42

Table 2.8: GCxGC-FID settings during cracking of C4 fractions Temperature program

Tinitial = -40°C hold time 4 min rate = 5°C/min T = 40°C hold time 0 min rate = 3°C/min T = 90°C hold time 0 min rate = 8°C/min

Tfinal = 250°C hold time 8 min Modulation modulation time 4 seconds delay time 20 minutes Right inlet temperature 250°C split ratio 125 split flow 150 ml/min Right carrier 1.2 ml/min Right detector - FID flow air 350 ml/min

flow H 2 35 ml/min

The heavier aromatics like indene and naphthalene are expected to elute at higher first and second dimension retention times than the lighter aromatics such as styrene and . This is however not the case as can be seen from Figure 2.27. The reason for this lower second dimension retention time for indene and naphthalene is the change in heating rate just after the elution of styrene. The heating rate is increased from 3 to 8°C/min, which causes a faster separation in the second column because the temperature at which the separation occurs is increased. Therefore the peaks for these heavier aromatics are observed at lower 2D retention times. 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 43

2.4. Conclusions

First the GCxGC settings were tuned in order to give an optimal representation of both the FID and Tof-MS chromatograms. A heating rate of 3°C/min in combination with 5 seconds as modulation time seem to be the optimal settings. The carrier gas flow must equal 1.2 ml/min in case the FID is used and 0.8 ml/min when using the Tof-MS so that both chromatograms look the same and the interpretation of the results is straightforward. It is observed that the GCxGC settings are strongly coupled and have a significant influence on the obtained chromatograms.

Detailed GCxGC analyses of a Fischer-Tropsch naphtha, a petroleum naphtha and a kerosene fraction were performed, both qualitative as quantitative. For each of the studied fractions a detailed PIONA was obtained and compared to results from 1D gas chromatography. For the naphtha fractions only small differences were observed and these are mainly due to peak overlap between (iso)paraffins, naphthenes and aromatics. This peak overlap does not occur in GCxGC chromatograms since the components that overlap in 1D are further separated in the 2 nd column based on differences in polarity. Greater differences between 1D and 2D results were encountered for the kerosene fraction. This is not surprising since this heavier fraction contains more aromatics which renders more possibilities for peak overlap with (iso)paraffins and naphthenes. GCxGC is thus preferred over 1D GC to obtain accurate molecular feedstock compositions, especially for heavier fractions like kerosenes. GCxGC can further be used to obtain a more complete characterization of also gas condensates and other heavier fractions. An adjusted temperature program and the combination of FID and Tof-MS make GCxGC also suitable for providing accurate and more detailed analyses of the cracker effluent.

References

[1] Adahchour M., Beens J., Vreuls R.J.J., Brinkman U.A.Th. Recent developments in comprehensive two-dimensional gas chromatography (GCxGC) I. Introduction and instrumental set-up. Trends in Analytical Chemistry. 2006, Vol. 25, 5, pp. 438-454.

[2] Van Geem K. Analytics driving Kinetics. 22 nd Eurokin workshop. 2008. 2. Comprehensive two-dimensional gas chromatography of steam cracking feedstocks 44

[3] Blumberg L.M., David F., Klee M.S., Sandra P. Comparison of one-dimensional and comprehensive two-dimensional. Journal of Chromatography A. 2008, 1188, pp. 2-16.

[4] Dalluge J., Beens J., Brinkman U.A.Th. Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool. Journal of Chromatography A. 2003, 1000, pp. 69-108.

[5] Amador-Munoz O., Marriott P.J. Quantification in comprehensive two-dimensional gas chromatography and a model of quantification based on selected summed modulated peaks. Journal of Chromatography. 2008, 1184, pp. 323-340.

[6] Welthagen W. The optimisation of GCxGC and the analysis of diesel petrochemical samples. Submitted in partial fulfilment of the requirements for the degree of Master of Science (Chemistry). University of Pretoria. 2005.

[7] Vendeuvre C., Ruiz-Guerrero R., Bertoncini F., Duval L., Thiébaut D., Hennion M.-C. Characterisation of middle-distillates by comprehensive two-dimensional gas chromatography (GC×GC): A powerful alternative for performing various standard analysis of middle-distillates. Journal of Chromatography A. 2005, pp. 21-28.

[8] Dierickx J. L., Plehiers P. M., Froment G. F. On-line gas chromatographic analysis of hydrocarbon effluents: calibration factors and their correlation. J. Chromatogr. 1986.

3. Pilot Plant experiments 45

3. PILOT PLANT EXPERIMENTS

3.1. Description of the pilot plant unit for steam cracking of hydrocarbons

A brief description of the pilot plant set-up for steam cracking of hydrocarbons at the Laboratory for Chemical Technology of Ghent University is given in this section. All the experiments are carried out on this unit. Three main parts can be distinguished: the feed section, the reaction section followed by the cooling section and the analysis section. [1][2][3]

3.1.1. Feed section

The feed section controls the supply of the different feedstocks to the reactor coil. The flow is regulated by the pumping frequency of the pump. The mass flow of all feeds is measured instead of the volume flow in order to avoid inaccuracies due to volume dependence on temperature and pressure. The measurement of the mass flow is carried out using an electronic balance on which an intermediate barrel filled with the feedstock is placed. Every minute, the weight indicated by the balance is sent to the computer. The flow can be easily calculated from the weight reduction per time interval. If the flow calculated by the computer deviates from the set point, the pumping frequency is changed. When the fluid level in the intermediate barrel is too low, the barrel is filled up with feed from the storage barrels or gas cylinders.

For feeding of liquid C4 fractions, the LCT is equipped with a new battery system placed outside. Helium is used to put pressure on these feed bottles to ensure a flow to the reactor inlet. The used mass flow meter is no longer based on the detection of the thermal conductivity, with the use of a TCD, but it utilizes an advanced coriolis type mass flow sensor, a Cori-Flow. It gives the same performance even with changing operating conditions in pressure, temperature, density, conductivity and viscosity. The Cori-Flow mass flow meter measures the true mass flow, independent of physical properties. This quality is a great 3. Pilot Plant experiments 46 improvement compared to the TCD, because with changing physical properties, an accurate mass flow measurement based on the thermal principle is very difficult to obtain.

The measuring principle of the Cori-Flow mass flow meter is depicted in Figure 3.1. The Cori-Flow contains two parallel tubes, forming part of an oscillating system. The tubes are brought in vibration such that when no flow is present, they oscillate harmonious. When a fluid flows through the tubes, Coriolis forces cause a variable phase shift between the loops, which is detected by sensors and fed into the integrally mounted pc-board. The resulting output signal is strictly proportional to the real mass flow rate. [4]

Figure 3.1: Measuring principle of the Cori-Flow mass flow meter [4]

The hydrocarbon feedstocks are mostly fed as liquids. Next to liquefied gasses also heavier hydrocarbons such as vacuum gas oils or waxes can be used. These heavier hydrocarbons are preheated and even melted if necessary before they are pumped to the reactor via a heated pump. Gasses (ethane, propane, etc.) can be fed as well. Different types of feedstock can be pumped through the reactor simultaneously, which allows co-cracking of any feedstock. Steam (water) is added to the reactor coil to reduce the hydrocarbon partial pressure and thus 3. Pilot Plant experiments 47 favor the formation of the target products (ethylene and propylene) and suppress coke formation.

3.1.2. Reaction section

The reaction section of the reactor coil is 12m long and has an internal diameter of 9mm. These dimensions give rise to a turbulent flow in the coil without the need of large feed flow rates. The reactor coil is made of Incoloy 800HT. The process gas temperature is measured by means of 20 thermocouples located along the coil. Five manometers allow measurement and registration of the pressure profile of the reacting gas.

The furnace is built of silica/alumina brick (Li23) and is about 4m long, 0.7m wide and 2.6m high. It is fired by means of 90 premixed gas burners, which are equipped with automatic fire checks and orderly mounted on the side walls to provide a uniform distribution of the produced heat. The fuel supply system consists of a combustion controller, to regulate the fuel to air ratio, and the usual safety devices. The furnace is further divided in 7 individual cells which can be fired independently. This allows a flexible operation of the pilot plant unit where any type of temperature profile can be obtained. A schematic representation of the reactor and the cooling section is given in Figure 3.2.

At the reactor outlet, nitrogen is injected as internal standard and contributes to a certain extent to the quenching of the reactor effluent. The effluent is cooled further down in the TLE (Transfer Line Exchanger), but first a sample is taken for the on-line analysis of the C5 + components. During this master thesis also other positions for injection of the internal standard are evaluated because significant fluctuations in the total mass balances are observed when cracking under fixed conditions. The latter seem to be directly related to unstable nitrogen addition to the pilot effluent.

The temperature of the cracked gas leaving the furnace can range from 750 to 900°C. Rapid reduction of this gas temperature to 500°C is necessary to avoid losses of valuable products through secondary reactions. This is accomplished in the cooling section which consists of two heat exchangers: TLE1 and TLE2. TLE1, made of Incoloy 800HT, is designed to achieve turbulent flow conditions with effluent flow rates typical for the pilot unit and is used to study coke deposition under TLE conditions. It consists of two concentric tubes: the reactor effluent flows through the inner tube while air, providing cooling of the effluent, flows co-currently through the outer tube. The dimensions of TLE1 are given in Table 3.1. Both air and the 3. Pilot Plant experiments 48 process gas enter at the top of TLE1. Co-current of both streams is chosen since this provides a more uniform wall temperature profile along the TLE as compared to counter-current. By adjusting the air flow rate, the temperature profile of the process gas in TLE1 can be regulated. TLE1 can also be heated to 900°C for decoking with air/steam. In TLE2, which is a concentric tube heat exchanger, the process gas is further cooled by means of a cooling oil.

Table 3.1: Dimensions of TLE1

Inner diameter (mm) Outer diameter(mm) Length(mm)

Thermo well 4.31 6.35 -

Process gas tube 22.10 25.40 1550

Air cooling tube 35.00 39.00 1550

The effluent leaving TLE2 is sent to the separation section. First the condensed liquid and the tar are separated from the cooler exit flow by means of a knock-out vessel and a cyclone. The condensed heavy hydrocarbons can be periodically collected by opening the valve connected at the bottom of the knock-out drum. Downstream of the knock-out drum the effluent is further cooled in a heat exchanger, condensing most of the water added as diluents. This condenser is cooled with water. A cyclone allows the removal of any entrained liquid in the - flow send to the CO x analyzer and the C 4 analysis section.

The pressure at the reactor outlet (COP) is regulated with a reduction valve. A fraction of the - effluent stream is withdrawn for on-line C4 product analysis, while the remaining part is sent directly to the flare. The continuous recording of the CO and CO 2 concentration in the effluent is performed by an IR-meter. This is done both in the case of cracking as in the case of decoking, in which the deposited cokes are burned off. A vortex gas meter measures the volumetric flow rate. In the case of decoking, the measured data are used to determine the total amount of carbon deposited in the reactor and in the TLE separately.

3. Pilot Plant experiments 49

Figure 3.2: Schematic representation of the reaction and cooling section of the pilot plant unit for steam cracking of hydrocarbons 3. Pilot Plant experiments 50

A coking run consists of three stages:

1. Cracking and coke deposition in the reactor and in TLE1 . During this stage the reactor effluent flows successively through TLE1 and TLE2 and coke is deposited in the coil and in TLE1. At the outlet of TLE1, the injection of nitrogen provides an internal standard. + - Sampling for C 5 analysis occurs downstream of TLE1 and for C 4 analysis downstream of TLE2.

2. Decoking of the reactor with a steam/air mixture . Decoking of the reactor coil is performed with a steam/air mixture. During this stage, N 2 is sent counter-currently through TLE1 and a connection with the CO x analyzers is established. During decoking of the reactor coil, the CO and the CO 2 content in the effluent is monitored continuously with IR-meters. A vortex gas meter measures the volumetric gas flow rate. These data are used to calculate the total amount of carbon deposited in the reactor. It should be mentioned that the rates of coke deposition reported in this study represent values averaged over the length of the reactor and over the duration of the run. In a tubular reactor coke is deposited according to a profile which depends on the product distribution and on the temperature at each point in the reactor. Thus, in a tubular reactor only average rates of coking can be obtained.

3. Decoking of TLE1 with a steam/air mixture . Since the reactor has been decoked previously, the steam/air mixture is heated in the reactor before entering TLE1. The IR-meters determine the CO and the CO 2 content in the effluent when burning off the deposited coke. A vortex gas meter measures the volumetric gas flow rate. These data are used to calculate the total amount of carbon deposited in TLE1. As for the reactor, the rates of coke deposition in TLE1 represent values averaged over the length of TLE1 and over the duration of the run.

3.1.3. Analysis section

The on-line product analysis is entirely based on the internal standard technique, with nitrogen as internal standard.

The C2 - analysis of the quenched effluent gases is performed simultaneously on two gas chromatography (GC) devices. Hydrogen is only detected on one GC. The use of two devices for the same analysis improves the reliability of the results. The first system is an Interscience Trace GC Ultra. Hydrogen, carbon dioxide, carbon monoxide, nitrogen, methane, ethane, ethylene and acetylene are all detected by a thermal conductivity detector (TCD). The second 3. Pilot Plant experiments 51 system is an Interscience Fisons GC 8340 with a TCD which detects the same components but without hydrogen.

The C1 to C4 components are also analyzed with the Interscience Trace GC Ultra while using a flame ionization detector (FID). The C5 + analysis is performed with the HP 5890 series II GC which uses an FID. Comprehensive two-dimensional GC, known as GCxGC, is another technique that can be used to detect the C5 + components. The GCxGC device is combined with an FID for quantitative analysis and a Tof-MS (time-of-flight mass spectrometer) for qualitative analysis. It can be used both on-line as off-line. Since separation occurs in two dimensions, the GCxGC gives more accurate and detailed results than the conventional HP 5890 series II GC. In Chapter 2 more details about the analysis procedure are discussed when using a GCxGC. The identification of the peaks in the mass spectra is performed while using the molecular library implemented in the XCalibur software. The Kovats retention index system provides a verification of the results obtained using the molecular library, since it gives the correct sequence wherein the components elute from the column. The Kovats retention indices (KRI) form a logarithmic scale on which the adjusted retention time of a peak is compared with those of linear n-alkanes as reference compounds. A huge number of retention indices on different columns can be found on the kovats.org website.

Peak identification and integration is performed by the integration package ChromCard. Since this software is new, the different product components with their corresponding retention times first needed to be implemented, while using reference chromatograms. The effluent flow calculations are based on absolute flow-rates, which is possible due to the injection of a precisely known nitrogen flow at the exit of the reactor. With the knowledge of this nitrogen amount, the determined peak areas of the Interscience Trace TCD chromatogram and the calibration factors – experimentally obtained with certified standard reference mixtures – the flows of hydrogen, carbon dioxide, carbon monoxide, methane, ethane, ethylene and acetylene can be calculated according to the equation:

= where Ai = the peak area of component i

CF i = the calibration factor of component i, which is calculated using:

∙ % = ∙ ∙ % 3. Pilot Plant experiments 52 where wt% i = the weight fraction of component i in the calibration mixture

CF ref = the calibration factor of the reference component, equal to 1

From all these components, only methane is also detected on the Interscience Trace FID and HP and GCxGC FID and can be used as a second internal standard to calculate the flows of the other C4 - and C5 + components. Because nitrogen and methane are also detected on the Interscience Fisons GC 8340, a check for the calculated methane flow is available. In Figure 3.3, a representation of the used GC’s and reference components is given. From the determined effluent flow rates, a product distribution in terms of weight percentages can be calculated. Since the feed flow rate is known, the product yields and a material balance can also be obtained.

H2 CO 2 C2H4 C2H6 C2H2 N2 CO CH 4 Interscience TCD

CH 4 sumC 2 C3 C4 Interscience FID

Fisons TCD CO 2 C2H4 C2H6 C2H2 N2 CO CH 4

CH 4 sumC 2 sumC 3 C4 C5 C6 ... HP FID

sumC 2 sumC 3 C4 C5 C6 ... GCxGC

Figure 3.3: GC's and reference components used for product analysis

3. Pilot Plant experiments 53

3.2. Testing the internal standard injection position

During this master thesis an alternative position for injection of the internal standard is evaluated because significant fluctuations in the total mass balances are observed when cracking under fixed conditions. The latter seem to be directly related to fluctuations in the outlet pressure which lead to unstable nitrogen addition to the pilot effluent. Another source which might be responsible for fluctuations is certain dead volumes in the effluent analysis section. A second method for verifying the balances would certainly be a valuable addition to the set-up. The aim of the performed tests is to study the influence of the position for injection of the internal standard on the stability of the total mass balances. To study this effect, n- hexane is used as feed. During the first test the internal standard is injected after the reactor and before the coolers, see Figure 3.4. During the second test nitrogen is added to the effluent after the coolers.

Figure 3.4: Injection of internal standard before the coolers 3. Pilot Plant experiments 54

3.2.1. Operating conditions

The program of these tests was the yield determination during steam cracking of n-hexane at standard cracking conditions (COP = 1.7 bar; δ = 0.5 kg/kg; COT= 850°C). The position for injection of the internal standard was before the coolers during the first test and after the coolers during the second test. The operating conditions are given in Table 3.2. For the first set of conditions, 6 duplicate runs were carried out, for the second set of conditions, 7 duplicate runs were performed.

Table 3.2: Operating conditions Feed n-hexane n-hexane

FHC (g/hr) 4000 4000 δ (kg/kg) 0.5 0.5 COT cell 1 (°C) 550 550 COT cell 2 (°C) 550 550 COT cell 3 (°C) 600 600 COT cell 4 (°C) 700 700 COT cell 5 (°C) 780 780 COT cell 6 (°C) 820 820 COT cell 7 (°C) 850 850 COP (bar abs) 1.7 1.7 P/E 0.43 0.42 Position internal standard Before coolers After coolers

3.2.2. Experimental results

A detailed list containing the measured yields of all the identified products can be found in Annex B. In this table ΣC4 - corresponds to the sum of the weight fractions of all the C4 - components including hydrogen. [C5 +,C6H6[ is equal to the sum of the yields of the components with more than 5 carbon atoms that elute from the GC before benzene. [C6H6, naphthalene[ is equal to the sum of the yields of the components that elute between benzene and naphthalene, including benzene. The next 2 tables give a results summary for the 2 different positions for injection of the internal standard.

3. Pilot Plant experiments 55

Table 3.3: Results summary, internal standard before coolers

Position internal standard BEFORE coolers Feed n-hexane Run nr. 1 2 3 4 5 6 Conditions HC-flow (kg/hr) 4.002 4.002 4.002 3.978 4.032 3.996

H2O-flow (kg/hr) 1.944 2.004 2.034 1.980 1.956 2.082 Dilution (kg/kg) 0.486 0.501 0.508 0.498 0.485 0.521 COT (°C) 852 850 850 848 849 852 COP (bar abs) 1.62 1.66 1.66 1.67 1.67 1.71 Residence time (s) 0.273 0.269 0.279 0.284 0.284 0.293 Yields (wt%) Σ C4 - 88.325 94.659 92.170 91.045 89.839 86.325 [C5 +,C6H6[ 3.331 4.488 5.069 5.547 4.603 - [C6H6, naphthalene[ 5.467 5.575 5.035 4.787 4.500 - Pyrolyse gasoil ([naphthalene, ...[) 0.630 0.081 0.070 0.108 0.080 - TOTAL mass balance 97.754 104.803 102.344 101.487 99.022 - P/E 0.433 0.448 0.434 0.434 0.427 0.427 hydrogen 0.803 0.812 0.900 0.902 0.917 0.859 methane 14.130 15.520 15.448 15.374 15.501 14.859 ethylene 36.540 40.696 41.037 40.964 40.773 39.514 ethane 4.168 4.650 4.560 4.522 4.554 4.349 propylene 15.807 18.246 17.823 17.774 17.415 16.853 iso-butane 2.044 1.173 0.565 0.357 0.217 0.140 iso- 1.284 0.954 0.570 0.456 0.353 0.273 1-butene 2.032 2.182 1.904 1.849 1.658 1.701 1,3-C4H6 3.775 4.476 4.711 4.730 4.714 4.533 n-butane 3.599 2.316 1.315 0.922 0.640 0.449 t-2-C4H8 1.145 0.893 0.651 0.551 0.456 0.417 c-2-C4H8 0.951 0.757 0.566 0.484 0.413 0.342 hexane 1.823 2.691 2.855 3.024 2.470 - benzene 3.462 3.600 3.372 3.158 3.092 - toluene 1.068 1.006 0.911 0.765 0.799 - Et-benzene 0.123 0.095 0.112 0.089 0.091 - m-xylene 0.158 0.000 0.104 0.000 0.087 - p-xylene 0.058 0.131 0.000 0.083 0.000 - styrene 0.356 0.304 0.293 0.227 0.273 - o-xylene 0.062 0.047 0.044 0.039 0.035 - naphthalene 0.271 0.166 0.393 0.122 0.169 -

3. Pilot Plant experiments 56

Table 3.4: Results summary, internal standard after coolers

Position internal standard AFTER coolers Feed n-hexane Run nr. 1 2 3 4 5 6 7 Conditions HC-flow (kg/hr) 4.008 4.008 4.044 4.008 4.002 3.996 4.002

H2O-flow (kg/hr) 2.004 2.034 2.352 1.986 1.986 2.010 1.974 Dilution (kg/kg) 0.500 0.507 0.582 0.496 0.496 0.503 0.493 COT (°C) 849 850 850 850 851 850 848 COP (bar abs) 1.71 1.71 1.79 1.76 1.74 1.75 1.84 Residence time (s) 0.279 0.278 0.266 0.289 0.285 0.291 0.303 Yields (wt%) Σ C4 - 90.716 89.128 87.338 88.891 88.688 88.968 88.377 [C5 +,C6H6[ 3.614 4.418 5.326 4.887 4.671 5.094 - [C6H6, naphthalene[ 5.795 4.549 5.228 4.576 5.304 4.813 - Pyrolyse gasoil ([naphthalene, ...[) 0.291 0.134 0.269 0.455 0.215 0.099 - TOTAL mass balance 100.417 98.228 98.161 98.809 98.879 98.975 - P/E 0.423 0.424 0.427 0.426 0.424 0.426 0.422 hydrogen 0.939 0.922 0.890 0.963 0.896 0.869 0.930 methane 15.768 15.334 15.027 15.234 15.348 15.002 15.418 ethylene 41.464 41.020 40.253 41.091 41.129 41.496 40.954 ethane 4.715 4.435 4.351 4.406 4.455 4.204 4.491 propylene 17.519 17.393 17.175 17.493 17.434 17.673 17.281 iso-butane 0.113 0.073 0.039 0.038 0.028 0.026 0.017 iso-butene 0.233 0.183 0.171 0.263 0.151 0.159 0.136 1-butene 1.600 1.716 1.730 1.712 1.652 1.843 1.655 1,3-C4H6 4.580 4.551 4.536 4.643 4.672 4.774 4.595 n-butane 0.359 0.274 0.170 0.166 0.142 0.122 0.085 t-2-C4H8 0.370 0.374 0.401 0.300 0.293 0.290 0.307 c-2-C4H8 0.330 0.296 0.269 0.269 0.264 0.255 0.222 hexane 1.572 2.439 2.608 2.660 2.076 2.780 - benzene 3.885 3.120 3.484 3.225 3.583 3.359 - toluene 1.026 0.733 0.923 0.753 0.913 0.748 - Et-benzene 0.096 0.074 0.110 0.107 0.101 0.093 - m-xylene 0.000 0.019 0.000 0.052 0.092 0.043 - p-xylene 0.053 0.000 0.021 0.000 0.000 0.052 - styrene 0.000 0.000 0.000 0.000 0.000 0.000 - o-xylene 0.034 0.033 0.029 0.043 0.014 0.041 - naphthalene 0.243 0.134 0.203 0.128 0.198 0.110 -

From Table 3.3 and Table 3.4 it can already be seen that the ΣC4 - fluctuates when nitrogen as internal standard is injected before the coolers. When nitrogen is added after the coolers, the sum of the weight fractions of all the C4 - components including hydrogen stays much more stable when comparing the different runs and with the exception of the first run, which is typically not very accurate. When the yields of all the product components are summed, a more precise view on the stability of the obtained results is given, see Table 3.5.

3. Pilot Plant experiments 57

Table 3.5: Sum of all the product yields, internal standard before and after coolers

Run nr. 1 2 3 4 5 6 Position internal standard BEFORE coolers Yields (wt%) Σ C4 - 88.325 94.659 92.170 91.045 89.839 [C5 +,C6H6[ 3.331 4.488 5.069 5.547 4.603 [C6H6, naphthalene[ 5.467 5.575 5.035 4.787 4.500 Pyrolyse gasoil ([naphthalene, ...[) 0.630 0.081 0.070 0.108 0.080 TOTAL 97.754 104.803 102.344 101.487 99.022 Position internal standard AFTER coolers Yields (wt%) Σ C4 - 90.716 89.128 87.338 88.891 88.688 88.968 [C5 +,C6H6[ 3.614 4.418 5.326 4.887 4.671 5.094 [C6H6, naphthalene[ 5.795 4.549 5.228 4.576 5.304 4.813 Pyrolyse gasoil ([naphthalene, ...[) 0.291 0.134 0.269 0.455 0.215 0.099 TOTAL 100.417 98.228 98.161 98.809 98.879 98.975

When the internal standard is added to the effluent before the coolers, which is the typical position, the sum of all the product yields decreases from run 2 to run 5 and exceeds 100%. The difference between the highest and the lowest value for this sum equals 7.049%. When nitrogen is injected after the coolers, which is the alternative position, the sum of all the product yields remains much more stable over the different runs and only exceeds 100% during the first run, which is usually neglected. The difference between the highest and the lowest value for this sum only comprises 2.256%, or even 0.814% when the first run is not taken into account.

3.2.3. Conclusions

In conclusion it can be stated that the position for injection of the internal standard has a great influence on the stability of the calculated yields. This is due to an unstable nitrogen addition to the pilot effluent in case the internal standard is added before the coolers. The optimal position for injection of the internal standard is considered to be after the coolers, as can be seen from the results of these cracking experiments.

3. Pilot Plant experiments 58

3.3. Pilot plant campaign

The aim of this pilot campaign is to study the cracking behavior of two C4 fractions, a Fischer-Tropsch naphtha and 2 gas condensates. In the first two tests the C4 fractions are used as feed while the effect of the process conditions on the product distribution is studied in the LCT pilot plant setup. In the next experiments, the effect of the process conditions on the product distribution is examined while the Fischer-Tropsch naphtha is fed. The influence of this type of feedstock on the amount of coke deposited in the reactor is investigated in the following test. 100 ppm DMDS (dimethyldisulfide) is subsequently added to the same feed to test its influence on the amount of coke deposited in the reactor. In the last two tests, the effect of the composition of the gas condensates on the product distribution and the amount of coke deposited in the reactor and the transfer line exchanger (TLE) is studied.

3.3.1. Experimental program

The program of this pilot campaign was carried out according to the following steps:

1. Yield determination during steam cracking of two different C4 fractions (C4 fraction ARAL and PETRO) at different COT’s (COP = 1.7 bar; δ = 0.55 kg/kg; COT= 820°C, 840°C, 860°C and 880°C) 2. Yield determination during steam cracking of a Fischer-Tropsch naphtha (FT naphtha from Syntroleum) at different COT’s (COP = 1.7 bar; δ = 0.45 kg/kg; COT= 820°C, 835°C, 850°C and 865°C) and at different dilutions (COP = 1.7 bar; δ = 0.3, 0.45 and 0.7 kg/kg; COT= 850°C) Yield determination and coke measurement in the reactor during steam cracking of a Fischer-Tropsch naphtha at standard cracking conditions (COP = 1.7 bar; δ = 0.45 kg/kg; COT= 850°C) Yield determination and coke measurement in the reactor during steam cracking of a Fischer-Tropsch naphtha + 100 ppm DMDS at standard cracking conditions (COP = 1.7 bar; δ = 0.45 kg/kg; COT= 850°C) 3. Yield determination and coke measurement in the reactor and the TLE during steam cracking of 2 different gas condensates (gas condensate 700A and 700B) at standard

cracking conditions (COP = 1.7 bar; δ = 0.7 kg/kg; COT= 820°C; TTLE,out = 350°C) 3. Pilot Plant experiments 59

Table 3.6 presents an overview of all the experiments conducted during this campaign. In total, 54 experimental cracking runs are performed. For each set of conditions, at least one duplicate run is carried out.

Table 3.6: Overview of the test campaign ( δ=dilution, COT=coil outlet temperature) Conditions No. Feed Comments δ(kg/kg) COT(°C) TTLE,out (°C) Influence of feedstock composition and COT 1 ARAL 0.55 821 14 - 2 ARAL 0.55 820 15 Repeat run 1 3 ARAL 0.54 840 16 - 4 ARAL 0.54 840 17 Repeat run 3 5 ARAL 0.55 861 18 - 6 ARAL 0.55 861 19 Repeat run 5 7 ARAL 0.55 878 19 - 8 ARAL 0.55 877 21 Repeat run 7 9 PETRO 0.55 820 20 - 10 PETRO 0.56 819 20 Repeat run 9 11 PETRO 0.55 841 21 - 12 PETRO 0.56 841 21 Repeat run 11 13 PETRO 0.56 861 21 - 14 PETRO 0.55 859 22 Repeat run 13 15 PETRO 0.55 879 22 - Influence of feedstock composition, COT and dilution 16 FT naphtha 0.45 820 25 - 17 FT naphtha 0.45 820 25 Repeat run 16 18 FT naphtha 0.45 836 25 - 19 FT naphtha 0.43 835 25 Repeat run 18 20 FT naphtha 0.45 835 25 Repeat run 18 21 FT naphtha 0.45 850 24 - 22 FT naphtha 0.46 850 24 Repeat run 21 23 FT naphtha 0.44 850 24 Repeat run 21 24 FT naphtha 0.45 865 24 - 25 FT naphtha 0.45 865 24 Repeat run 24 26 FT naphtha 0.45 865 24 Repeat run 24 27 FT naphtha 0.71 849 24 - 28 FT naphtha 0.71 849 25 Repeat run 27 29 FT naphtha 0.70 850 25 Repeat run 27 30 FT naphtha 0.30 855 25 - 3. Pilot Plant experiments 60

31 FT naphtha 0.31 850 25 Repeat run 30 32 FT naphtha 0.29 847 25 Repeat run 30 33 FT naphtha 0.45 850 24 - 34 FT naphtha 0.45 850 24 Repeat run 33 35 FT naphtha 0.45 850 24 Repeat run 33 36 FT naphtha 0.46 850 24 Repeat run 33 FT naphtha 37 +100ppmDMDS 2.18 850 25 - FT naphtha 38 +100ppmDMDS 2.22 850 25 Repeat run 37 FT naphtha 39 +100ppmDMDS 0.46 850 27 - FT naphtha 40 +100ppmDMDS 0.44 850 27 Repeat run 39 FT naphtha 41 +100ppmDMDS 0.45 851 27 Repeat run 39 FT naphtha 42 +100ppmDMDS 0.45 850 27 Repeat run 39 Influence of feedstock composition 43 700B 0.71 821 347 - 44 700B 0.70 819 351 Repeat run 43 45 700B 0.69 816 349 Repeat run 43 46 700B 0.71 821 351 Repeat run 43 47 700B 0.71 820 350 Repeat run 43 48 700B 0.69 820 346 Repeat run 43 49 700A 0.70 823 350 - 50 700A 0.70 821 352 Repeat run 49 51 700A 0.70 821 347 Repeat run 49 52 700A 0.70 820 349 Repeat run 49 53 700A 0.71 820 351 Repeat run 49 54 700A 0.70 821 348 Repeat run 49

3.3.2. Operating conditions and analysis procedures

Reactor and TLE characteristics

The reactor, TLE1 and TLE2 are made in Incoloy 800HT. The composition of the reactor material is given in Table 3.7. In this campaign cell 3 to cell 7 are used for cracking. The inlet temperature of cell 3 is about 600°C when the C4 fractions are cracked and about 650°C when the Fischer-Tropsch naphtha and the gas condensates are fed. The length of the reactor is 12 m. The diameter of the reactor is 9 mm.

3. Pilot Plant experiments 61

Table 3.7: Composition of the reactor material Incoloy 800HT

Element Amount (wt%)

Ni 30-35

Cr 19-23

Fe > 39.5

C 0.08-0.10

Mn ≤ 1.5

Si ≤ 1.0

P 0.015

S ≤ 0.015

Cu ≤ 0.75

Ti 0.15-0.60

Al 0.15-0.60

Al+Ti 0.85-1.20

Feedstock

As stated previously experiments are carried out with 2 C4 fractions, a Fischer-Tropsch naphtha with and without 100ppm DMDS and 2 gas condensates as feedstocks. The experiments to study the effect of the COT on the product distribution are carried out with the C4 fractions and the Fischer-Tropsch naphtha as feed. The FT naphtha is also used to examine the effect of the dilution on the product distribution. The experiments that are conducted to test the influence of the composition of the feed on the product distribution and the amount of coke deposited are performed with the gas condensates and the FT naphtha (with and without 100 ppm DMDS). The compositions of these fractions are listed in Annex A.

Cracking conditions

The cracking conditions used in this campaign are given in Table 3.8 and Table 3.9.

3. Pilot Plant experiments 62

Table 3.8: Cracking conditions - part 1

Effect of Effect of COT and feedstock feedstock Aral Aral Aral Aral Petro Petro Petro Petro 700B 700A

FHC (g/hr) 4000 4000 4000 4000 4000 4000 4000 4000 3530 3530 δ (kg/kg) 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.7 0.7 COT cell 1 (°C) 550 550 550 550 550 550 550 550 550 550 COT cell 2 (°C) 550 550 550 550 550 550 550 550 550 550 COT cell 3 (°C) 600 600 600 600 600 600 600 600 650 650 COT cell 4 (°C) 700 700 700 700 700 700 700 700 720 720 COT cell 5 (°C) 760 770 780 780 760 770 780 780 770 770 COT cell 6 (°C) 800 810 820 820 800 810 820 820 810 810 COT cell 7 (°C) 820 840 860 880 820 840 860 880 820 820

TTLE,out (°C) 14 16 18 20 24 25 26 26 350 350 COP (bar abs) 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 P/E 1.52 1.35 1.10 0.94 1.61 1.33 1.10 0.91 0.61 0.57

Table 3.9: Cracking conditions - part 2

Effect of COT, dilution and feedstock FT FT FT FT FT FT FT FT FT naphtha naphtha naphtha naphtha naphtha naphtha naphtha naphtha naphtha +100ppm +100ppm DMDS DMDS

FHC (g/hr) 4000 4000 4000 4000 3000 5100 4000 1800 4000 δ (kg/kg) 0.45 0.45 0.45 0.45 0.70 0.30 0.45 2.22 0.45 COT cell 1 (°C) 550 550 550 550 550 550 550 550 550 COT cell 2 (°C) 550 550 550 550 550 550 550 550 550 COT cell 3 (°C) 650 650 650 650 650 650 650 650 650 COT cell 4 (°C) 700 700 700 700 700 700 700 700 700 COT cell 5 (°C) 740 750 760 770 760 760 760 760 760 COT cell 6 (°C) 770 790 800 810 800 800 800 800 800 COT cell 7 (°C) 820 835 850 865 850 850 850 850 850

TTLE,out (°C) 25 25 24 24 25 25 24 25 27 COP (bar abs) 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 P/E 0.72 0.63 0.58 0.51 0.55 0.59 0.57 0.56 0.58

3. Pilot Plant experiments 63

Analytical procedures

Effluent analysis

+ In Figure 3.5 a chromatogram obtained with the HP 5890 series II GC for the C 5 section is shown when cracking feedstock 700B. The important products formed during cracking are clearly methane, ethylene, propylene, benzene and toluene. Zooming in on the first part shows that many important peaks are present between methane and benzene, see Figure 3.6. Almost no peaks are observed between benzene and toluene. Also several small but significant peaks are present between toluene and naphthalene, see Figure 3.7. The peaks eluting after naphthalene are very small, see Figure 3.8. These peaks correspond to components such as 2- methylnaphthalene, ethylnaphthalene, phenantrene and other heavier molecules.

ethylene

propylene methane

benzene

1,3butadiene toluene naphthalene

Figure 3.5: Full C5+ chromatogram obtained for cracking gas condensate 700B

3. Pilot Plant experiments 64

Figure 3.6: Partial chromatogram: detailed view of peaks between methane and benzene

Figure 3.7: Partial chromatogram: detailed view of peaks between toluene and naphthalene 3. Pilot Plant experiments 65

Figure 3.8: Partial chromatogram: detailed view of peaks following naphthalene

+ During the cracking of the C4 fractions and the FT naphtha, some of the C 5 analyses are performed with the GCxGC combined with the FID for quantitative analysis. Table 3.10 lists the GCxGC settings that are used during the cracking experiments. Methane functions as a second internal standard. In order to make an accurate detection of methane possible, the initial column temperature must be as low as -40°C. Since light components, starting from methane and ranging till hexane, experience breakthrough, the modulation start is delayed for 20 minutes. The initial heating rate is set to 5°C/min until a temperature of 40°C is reached. Next a heating rate of 3°C/min combined with a modulation time of 5 seconds would be optimal, as explained in Chapter 2. These settings are used for the effluent analysis when cracking the FT naphtha. The used GCxGC-FID settings when the C4 fractions are fed are not yet the optimal ones, see Table 3.10. The temperature program is the same as used for the HP + 5890 series II GC, which is also part of the C 5 analysis section of the pilot plant set-up.

3. Pilot Plant experiments 66

Table 3.10: GCxGC settings during cracking of C4 fractions and FT naphtha Temperature program C4 fractions FT naphtha

Tinitial = -40°C hold time 4 min Tinitial = -40°C hold time 4 min rate = 5°C/min rate = 5°C/min T = 40°C hold time 0 min T = 40°C hold time 0 min rate = 3°C/min rate = 3°C/min

T = 90°C hold time 0 min Tfinal = 250°C hold time 0 min rate = 8°C/min

Tfinal = 250°C hold time 8 min Modulation C4 fractions FT naphtha modulation time 4 seconds modulation time 5 seconds delay time 20 minutes delay time 20 minutes Right inlet temperature 250°C split ratio 125 split flow 150 ml/min Right carrier 1.2 ml/min Right detector - FID flow air 350 ml/min

flow H 2 35 ml/min 3. Pilot Plant experiments 67

Figure 3.9 presents a two-dimensional chromatogram obtained with the GCxGC-FID for the + C5 section when cracking the C4 fraction ARAL. The important products formed during cracking are methane, ethylene, propylene, iso-butane, iso-butene, n-butane and to a lesser extent the aromatic compounds benzene, toluene, ethylbenzene, styrene, indene and naphthalene, as can be seen from the color intensities in the chromatogram. Figure 3.9 clearly shows the start of the modulation after a time of 20 minutes.

Figure 3.9: GCxGC color plot: Full C5+ chromatogram obtained for cracking C4 fraction ARAL

The 3D rendering of the previous color plot in Figure 3.10 shows more clearly that the contribution of the aromatics to the product yield is much smaller than the contribution of the C4 - components. 3. Pilot Plant experiments 68

Figure 3.10: GCxGC 3D plot obtained for cracking C4 fraction ARAL

In order to obtain accurate quantitative results, manual integration of the peaks eluted during the first 20 minutes is necessary. The Hyperchrom software can automatically integrate the modulated peaks but it fails when integrating the unmodulated peaks since it does not take into consideration the whole peak surface area but just small parts of it. Figure 3.11 shows the difference between the unmodulated and modulated peaks in a one dimensional rendering of the GCxGC-FID chromatogram obtained when cracking the C4 fraction ARAL. 3. Pilot Plant experiments 69

Figure 3.11: Unmodulated peaks during first 20 minutes, modulated peaks at higher 1D retention times

Feedstock analysis

A detailed composition of the C4 fractions is obtained from the one-dimensional feedstock’s chromatogram. A traditional HP 5890 Series II gas chromatograph is used, equipped with a 50 m x 0.25 mm fused silica capillary column coated with a 0.5 m film of HP-PONA and a Flame Ionization Detector (FID).

The qualitative analysis of the C4 fractions is based on the knowledge of the retention times on the HP 5890 GC of common components present in the cracker effluent. The quantitative analysis is based on the peak surface areas. The peak surface area in a chromatogram is proportional to the quantity of the corresponding component. Hence, integration of the peaks observed in the chromatogram makes it possible to obtain a quantitative analysis of the feedstock. The peak surface areas Ai and mass fractions Mi of the components are related via the calibration factors CF i:

= ∙ To determine the calibration factors of the most important components, a mixture with known composition is injected and the peak areas of the components present in the mixture are 3. Pilot Plant experiments 70 determined. Then the calibration factors of the different components are calculated using the following equation:

∙ % = ∙ ∙ % where Ai = the peak surface area of component i

wt% i = the weight fraction of component i in the calibration mixture

One component, usually methane, is assigned to be the reference component with calibration factor CF REF equal to 1. The weight fractions of the different components are calculated using equation:

∙ % = 100 ∑ ∙ Note that no internal standard is used when the detailed molecular composition is determined.

A detailed feedstock analysis of the Fischer-Tropsch naphtha is obtained using both its one dimensional chromatogram recorded with the HP 5890 Series II gas chromatograph and its GCxGC chromatogram. Chapter 2 further discusses this feedstock analysis.

A detailed feedstock composition of the gas condensates is acquired using the GCxGC. The Flame Ionization Detector (FID) is used for quantitative analysis and the Time-of-flight Mass Spectrometer (Tof-MS) for qualitative analysis, see Chapter 2.

Decoking procedure

Decoking of the reactor coil

Decoking of the reactor coil is performed with a steam/air mixture. During this stage, N 2 (0.08

Nl/s) is fed counter-currently through TLE1 and a connection with the CO x meters is established. During decoking of the reactor coil the conditions specified in Table 3.11 are applied. At the beginning of the decoking procedure, the reactor is heated to 800°C under a nitrogen flow and then steam (0.28 g/s) is introduced to the reactor. At the actual decoking start - after approximately 180 s - the nitrogen flow is stopped and air (0.23 Nl/s) is admitted to the reactor. Once most of the coke is removed, the temperature is increased to 900°C. When practically all the coke is gasified, the steam flow is stopped and decoking occurs in air only. The standard decoking time is 6 ks.

3. Pilot Plant experiments 71

Decoking of TLE1

The decoking of TLE1 is performed with a steam/air mixture. During decoking of TLE1, the conditions specified in Table 3.12 are applied. The coil outlet temperature is kept at 900°C during the entire decoking procedure. Initially, TLE1 is heated under a nitrogen flow. Then steam (0.35 g/s) is fed to TLE1 through the reactor coil. After 600 s, at the actual decoking start, the nitrogen flow is stopped and air is admitted to TLE1 via the reactor coil. Once most of the coke is gasified, the temperature in TLE1 is increased. When the CO 2 content in the effluent has fallen below 0.1 vol%, the steam flow is stopped and decoking occurs in air only. Typically, the decoking time is 6 ks.

Table 3.11: Conditions for decoking of the reactor coil

Decoking of the reactor coil

F in N2 F F F T T T T T TLE1 steam N2 air out,cell3 out,cell4 out,cell5 out,cell6 out,cell7 (g/s) (Nl/s) (Nl/s) (°C) (°C) (°C) (°C) (°C) (Nl/s)

Heating up 0.078 0 0.083 0 800 800 800 800 800

Prestart 0.078 0.28 0.083 0 800 800 800 800 800

Start 0.078 0.28 0 0.23 800 800 800 800 800

CO 2<1vol% 0.078 0.28 0 0.23 900 900 900 900 900

CO 2<0.1vol% 0.078 0 0 0.23 900 900 900 900 900

Table 3.12: Conditions for decoking of TLE1

Decoking of TLE1

Fsteam FN2 Fair COT TTLE1,inlet TTLE1,T2 TTLE1,T3 TTLE1,outlet (g/s) (Nl/s) (Nl/s) (°C) (°C) (°C) (°C) (°C)

Heating up 0 0.083 0 900 800 800 800 350

Prestart 0.35 0.083 0 900 800 800 800 350

Start 0.35 0 0.23 900 800 800 800 350

CO 2<1vol% 0.35 0 0.23 900 900 900 900 350

CO 2<0.1vol% 0.35 0 0.23 900 900 900 900 350 3. Pilot Plant experiments 72

During decoking, the deposited coke is converted into CO and CO 2 by oxidation. The obtained amounts of CO and CO 2 are measured with two infrared meters. Both values are uploaded to the process computer every 10 seconds and stored in a file. During decoking the volumetric flow rate is calculated using a vortex rotameter in order to know the absolute flow rates of CO and CO 2. With these flow rates the total amount of coke m coke can be calculated using the following equation:

∑ = ∙ + ∙ ∙ ∆ with = flow rate of CO in the time interval n [kg/s]

= flow rate of CO 2 in the time interval n [kg/s]

∆ = time interval [s]

∙ ∆ = total burn off time [s].

3.3.3. Cracking of C4 fractions

A detailed list containing the measured yields of all the identified products can be found in Annex B. In this table ΣC4 - corresponds to the sum of the weight fractions of all the C4 - components including hydrogen. [C5 +,C6H6[ is equal to the sum of the yields of the components with more than 5 carbon atoms that elute from the GC before benzene. [C6H6, naphthalene[ is equal to the sum of the yields of the components that elute between benzene and naphthalene, including benzene. The following tables give a results summary for the 2 C4 fractions that are used as feed.

Table 3.13: Results summary, feedstock = C4 fraction ARAL

Feed C4 fraction ARAL Run nr. 1 2 3 4 5 6 7 8 Conditions HC-flow (kg/hr) 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00

H2O-flow (kg/hr) 2.19 2.20 2.17 2.18 2.20 2.19 2.20 2.20 Dilution (kg/kg) 0.55 0.55 0.54 0.54 0.55 0.55 0.55 0.55 COT (°C) 821 820 840 840 861 861 878 877 COP (bar abs) 1.62 1.62 1.70 1.61 1.83 1.65 1.72 1.62 Yields (wt%) Σ C4 - 97.04 97.37 96.11 95.68 93.80 95.04 93.48 95.44 [C5 +,C6H6[ 2.38 1.97 2.77 2.91 3.39 2.73 3.78 3.91 [C6H6, naphthalene[ 1.08 0.99 1.71 1.80 3.54 2.98 3.94 3.26 Pyrolyse gasoil ([naphthalene, ...[) 0.01 0.02 0.01 0.01 0.09 0.09 0.10 0.12 TOTAL mass balance 100.51 100.35 100.60 100.39 100.82 100.84 101.29 102.72 3. Pilot Plant experiments 73

P/E 1.48 1.56 1.36 1.33 1.10 1.10 0.92 0.96 hydrogen 1.07 0.99 1.17 1.15 1.30 1.35 1.48 1.55 methane 14.65 14.13 16.30 17.10 19.41 19.57 21.62 21.30 ethylene 14.92 14.16 16.65 17.24 19.99 20.31 22.88 22.66 ethane 2.10 2.01 2.22 2.35 2.32 2.33 2.29 2.25 propylene 22.12 22.05 22.72 22.89 22.06 22.29 21.05 21.68 propane 1.81 1.92 1.67 1.61 1.31 1.33 1.03 1.08 i-butane 15.68 16.70 12.36 11.54 7.96 8.04 5.53 5.97 i-butene 9.01 9.48 9.32 9.00 8.04 8.10 6.49 7.09 1-butene 1.51 1.54 1.69 1.62 1.64 1.68 1.46 1.57 1,3-C4H6 1.19 1.12 1.53 1.50 1.98 2.02 2.18 2.38 n-butane 11.02 11.39 8.20 7.54 4.90 4.89 3.19 3.57 benzene 0.54 0.45 1.05 1.10 2.14 1.83 2.38 1.87 toluene 0.23 0.22 0.44 0.46 0.80 0.44 0.90 0.74 Et-benzene 0.06 0.05 0.04 0.05 0.07 0.04 0.07 0.06 m-xylene 0.02 0.02 0.03 0.03 0.06 0.06 0.06 0.06 p-xylene 0.04 0.03 0.03 0.03 0.02 0.08 0.02 0.04 styrene 0.11 0.03 0.06 0.06 0.17 0.14 0.19 0.16 o-xylene 0.01 0.01 0.01 0.01 0.04 0.03 0.04 0.03 naphthalene 0.01 0.02 0.01 0.01 0.06 0.05 0.07 0.09

Table 3.14: Results summary, feedstock = C4 fraction PETRO

Feed C4 fraction PETRO Run nr. 1 2 3 4 5 6 7 Conditions HC-flow (kg/hr) 3.83 4.00 3.90 3.92 3.95 3.77 3.82

H2O-flow (kg/hr) 2.20 2.23 2.18 2.23 2.22 2.20 2.18 Dilution (kg/kg) 0.58 0.56 0.56 0.57 0.56 0.58 0.57 COT (°C) 820 819 841 841 861 859 879 COP (bar abs) 1.67 1.77 1.53 1.76 1.75 1.51 1.57 Yields (wt%) Σ C4 - 93.74 94.69 91.59 91.86 88.15 88.53 84.42 [C5 +,C6H6[ 3.29 2.80 3.90 3.78 4.13 4.03 5.70 [C6H6, naphthalene[ 2.93 2.47 4.39 4.25 7.32 7.05 9.49 Pyrolyse gasoil ([naphthalene, ...[) 0.05 0.04 0.12 0.12 0.40 0.38 0.40 TOTAL mass balance 100 100 100 100 100 100 100 P/E 1.59 1.64 1.34 1.33 1.09 1.10 0.91 hydrogen 0.70 0.68 0.84 0.84 0.98 0.93 1.09 methane 12.99 12.28 15.52 15.15 17.56 17.56 18.94 ethylene 13.51 12.76 16.39 16.13 18.92 19.14 21.16 ethane 1.78 1.68 2.01 1.91 2.09 2.04 1.98 propylene 21.43 20.91 21.91 21.47 20.65 21.03 19.23 propane 0.92 0.94 0.82 0.80 0.68 0.70 0.55 i-butane 11.72 12.53 8.50 8.76 5.87 5.88 3.97 i-butene 9.21 9.64 8.38 8.62 7.25 7.09 5.39 1-butene 1.96 2.13 1.73 1.84 1.64 1.53 1.25 1,3-C4H6 4.05 4.31 3.97 4.36 4.27 4.00 3.70 n-butane 11.84 12.86 8.22 8.67 5.53 5.30 3.27 benzene 1.70 1.50 2.44 2.36 4.01 3.86 5.59 toluene 0.81 0.69 1.21 1.17 2.01 1.93 2.12 3. Pilot Plant experiments 74

Et-benzene 0.07 0.05 0.08 0.08 0.19 0.18 0.20 m-xylene 0.06 0.05 0.10 0.09 0.18 0.17 0.18 styrene 0.12 0.08 0.21 0.21 0.46 0.44 0.62 o-xylene 0.03 0.03 0.05 0.05 0.09 0.09 0.09 naphthalene 0.05 0.04 0.09 0.09 0.33 0.32 0.32

Influence of the feedstock composition

Analysis of the feedstocks

Table 3.15 presents the detailed quantitative and qualitative analysis of the C4 fractions ARAL and PETRO.

Table 3.15: Detailed composition of C4 fractions ARAL and PETRO ARAL PETRO Component name wt% wt% ethane 0.076 0.000 propylene 0.118 0.142 propane 3.750 0.968 PD 0.080 0.000 i-butane 51.830 30.066 methanol 0.136 0.000 i-butene 0.272 7.234 1-butene 0.244 7.015 1,3-butadiene 0.007 0.165 n-butane 41.453 39.939 t-butene 0.203 7.614 c-butene 0.128 5.902 3Me-butene 0.011 0.217 2Me-butane 1.642 0.649 2Me-butene 0.000 0.033 pentane 0.049 0.041 isoprene 0.000 0.014

The weight fractions show that the C4 fraction ARAL contains the highest amount of n- paraffinic and iso-paraffinic compounds, whereas the C4 fraction PETRO contains the highest amount of olefins.

3. Pilot Plant experiments 75

Effect on the product yields

In order to study the influence of the feedstock composition on the product yields, runs that are performed under similar cracking conditions are compared. The C4 fractions are -1 compared since the same operating conditions are used for both feeds: F HC = 4 kg h , δ = 0.55 kg/kg, COT = 820°C, 840°C, 860°C and 880°C. Table 3.16 lists the average values of the yields of the main products.

Table 3.16: Overview of the average yields of the main products when cracking the 2 C4 fractions under -1 the conditions: F HC = 4 kg h , δ = 0.55 kg/kg, COT = 820°C, 840°C, 860°C and 880°C

Product Yield ARAL PETRO ARAL PETRO ARAL PETRO ARAL PETRO (wt%) COT=820°C COT=820°C COT=840°C COT=840°C COT=860°C COT=860°C COT=880°C COT=880°C hydrogen 1.027 0.686 1.157 0.842 1.326 0.959 1.512 1.092 methane 14.392 12.638 16.698 15.338 19.491 17.559 21.456 18.941 ethylene 14.540 13.136 16.946 16.258 20.152 19.028 22.769 21.164 ethane 2.055 1.733 2.288 1.961 2.323 2.068 2.272 1.981 propylene 22.086 21.170 22.808 21.691 22.177 20.836 21.362 19.228 propane 1.864 0.933 1.642 0.812 1.321 0.686 1.055 0.548 i-butane 16.192 12.127 11.954 8.628 7.998 5.878 5.747 3.968 i-butene 9.243 9.426 9.162 8.500 8.072 7.168 6.791 5.393 1-butene 1.527 2.044 1.657 1.784 1.658 1.585 1.516 1.254 1,3-butadiene 1.156 4.176 1.514 4.169 2.000 4.136 2.279 3.702 n-butane 11.202 12.350 7.869 8.443 4.894 5.415 3.381 3.274 benzene 0.496 1.600 1.075 2.402 1.988 3.931 2.130 5.594 toluene 0.225 0.748 0.453 1.188 0.624 1.971 0.820 2.125 Et-benzene 0.052 0.060 0.045 0.080 0.054 0.182 0.068 0.205 m-xylene 0.017 0.056 0.030 0.094 0.058 0.174 0.062 0.177 p-xylene 0.035 0.000 0.034 0.000 0.049 0.000 0.031 0.000 styrene 0.069 0.101 0.058 0.208 0.156 0.451 0.176 0.621 o-xylene 0.013 0.032 0.013 0.050 0.035 0.088 0.033 0.088 naphthalene 0.015 0.044 0.010 0.090 0.056 0.326 0.078 0.320

Remarkable in Table 3.16 is the relatively small difference between the product yields observed when cracking these 2 C4 fractions. The C4 fraction ARAL gives the highest yield of light olefins, while the PETRO C4 fraction gives the highest yield of aromatics (ranging from benzene till naphthalene). Under the cracking conditions with a COT of 820°C, the PETRO feedstock gives the highest amount of heavier olefins (iso-butene, 1-butene and 1,3- butadiene), while under the other cracking conditions it is the ARAL feedstock that gives the highest amount of heavier olefins, except for 1,3-butadiene. The PETRO feedstock gives the highest yield of 1,3-butadiene under all cracking severities, meaning all the different coil outlet temperatures. These results seem logical based on the weight fractions of the different feedstock components specified in Table 3.15. Feedstock ARAL contains the highest amount 3. Pilot Plant experiments 76 of n-paraffinic compounds, and hence high yields of light olefins are to be expected. For the C4 fraction ARAL the content of iso-paraffins is also the highest, hence higher yields of heavier olefins can be expected. When cracking under a COT of 820°C, the cracking severity is low and so the PETRO fraction yields higher amounts of unconverted heavier olefins compared to the ARAL fraction, since the PETRO fraction contains higher amounts of these heavier olefins.

Influence of the operating conditions

Effect of the COT on the product yields

The influence of the coil outlet temperature on the product yields is studied for the feedstocks ARAL and PETRO. Table 3.17 lists the yields of the main products under the different COT’s -1 for the feeds ARAL and PETRO, with the remaining operating conditions: F HC = 4 kg h , δ = 0.55 kg/kg. The coil outlet temperature is changed from 820°C to 880°C with steps of 20°C.

Table 3.17: Overview of the average yields of the main products under different COT's, ranging from 820°C to 880°C, for the feeds ARAL and PETRO

Product Yield ARAL ARAL ARAL ARAL PETRO PETRO PETRO PETRO (wt%) COT=820°C COT=840°C COT=860°C COT=880°C COT=820°C COT=840°C COT=860°C COT=880°C hydrogen 1.027 1.157 1.326 1.512 0.686 0.842 0.959 1.092 methane 14.392 16.698 19.491 21.456 12.638 15.338 17.559 18.941 ethylene 14.540 16.946 20.152 22.769 13.136 16.258 19.028 21.164 ethane 2.055 2.288 2.323 2.272 1.733 1.961 2.068 1.981 propylene 22.086 22.808 22.177 21.362 21.170 21.691 20.836 19.228 propane 1.864 1.642 1.321 1.055 0.933 0.812 0.686 0.548 i-butane 16.192 11.954 7.998 5.747 12.127 8.628 5.878 3.968 i-butene 9.243 9.162 8.072 6.791 9.426 8.500 7.168 5.393 1-butene 1.527 1.657 1.658 1.516 2.044 1.784 1.585 1.254 1,3-butad iene 1.156 1.514 2.000 2.279 4.176 4.169 4.136 3.702 n-butane 11.202 7.869 4.894 3.381 12.350 8.443 5.415 3.274 benzene 0.496 1.075 1.988 2.130 1.600 2.402 3.931 5.594 toluene 0.225 0.453 0.624 0.820 0.748 1.188 1.971 2.125 Et-benzene 0.052 0.045 0.054 0.068 0.060 0.080 0.182 0.205 m-xylene 0.017 0.030 0.058 0.062 0.056 0.094 0.174 0.177 p-xylene 0.035 0.034 0.049 0.031 0.000 0.000 0.000 0.000 styrene 0.069 0.058 0.156 0.176 0.101 0.208 0.451 0.621 o-xylene 0.013 0.013 0.035 0.033 0.032 0.050 0.088 0.088 naphthale ne 0.015 0.010 0.056 0.078 0.044 0.090 0.326 0.320

Figure 3.12 shows that increasing the coil outlet temperature from 820°C to 880°C results in an increase of the ethylene yield. The yield of benzene and naphthalene also increases. Figure 3.12 also shows that the yield of propylene reaches a maximum at a COT of 840°C, while the 3. Pilot Plant experiments 77 yield of n-butane decreases as function of the COT. From Table 3.17 it can be seen that for 1,3-butadiene and toluene an increasing yield is observed, while the iso-butene and 1-butene yields exhibit a maximum as function of the COT. The yields for propane and i-butane experience a decrease. The observed trends are in agreement with what is generally expected for an increase in COT. [5]

Influence of COT on product yields 25

20 ethylene

15 propylene benzene

10 n-butane

Yield Yield (wt%) naphthalene 5

0

-5 810 820 830 840 850 860 870 880 890 COT (°C)

Figure 3.12: Effect of the COT on the main product yields for feedstock ARAL

3.3.4. Cracking of Fischer-Tropsch naphtha

A detailed list containing the measured yields of all the identified products can be found in Annex B. The product yields are all normalized. The next five tables present a results summary of the cracking and coking tests performed with the Fischer-Tropsch naphtha with and without the addition of 100ppm DMDS.

3. Pilot Plant experiments 78

Table 3.18: Results summary, feedstock = Fischer Tropsch naphtha, cracking run

Feed Fischer-Tropsch naphtha Run nr. 1 2 3 4 5 6 7 8 Conditions HC-flow (kg/hr) 4.03 4.03 4.01 4.00 4.01 4.00 4.01 4.01

H2O-flow (kg/hr) 1.82 1.82 1.82 1.73 1.80 1.81 1.83 1.78 Dilution (kg/kg) 0.45 0.45 0.45 0.43 0.45 0.45 0.46 0.44 COT (°C) 820 820 836 835 835 850 850 850 COP (bar abs) 1.62 1.62 1.66 1.65 1.73 1.74 1.69 1.79 Yields (wt%) Σ C4 - 82.32 83.86 83.17 84.88 84.99 84.79 84.35 84.14 [C5 +,C6H6[ 8.23 7.69 6.73 5.87 5.83 5.03 5.45 5.53 [C6H6, naphthalene[ 8.87 7.87 9.66 8.89 8.82 9.70 9.90 10.03 Pyrolyse gasoil ([naphthalene, ...[) 0.58 0.58 0.43 0.36 0.36 0.48 0.30 0.30 TOTAL mass balance 100 100 100 100 100 100 100 100 P/E 0.70 0.73 0.63 0.63 0.63 0.57 0.58 0.58 C yield 83.71 83.72 83.84 83.69 83.67 83.56 83.67 83.66 H yield 15.99 16.00 15.93 16.12 16.11 16.20 16.20 16.21 hydrogen 0.70 0.72 0.66 0.80 0.80 0.90 0.88 0.87 methane 13.73 13.20 14.82 15.33 15.23 16.64 16.22 16.45 ethylene 27.14 27.05 29.67 29.60 30.13 30.87 30.41 30.40 ethane 4.27 4.11 3.94 4.27 4.11 4.21 4.19 4.22 propylene 19.04 19.74 18.57 18.76 18.94 17.73 17.77 17.53 propane 0.70 0.73 0.64 0.67 0.66 0.60 0.61 0.60 i-butane 0.29 0.34 0.23 0.23 0.23 0.16 0.16 0.15 i-butene 3.79 4.08 3.33 3.78 3.41 3.11 3.12 3.18 1-butene 2.91 3.36 2.27 2.33 2.46 1.72 1.78 1.65 1,3-C4H6 5.62 5.91 5.36 5.37 5.28 5.45 5.49 5.37 n-butane 0.47 0.51 0.34 0.34 0.35 0.26 0.28 0.25 benzene 3.31 3.01 4.66 4.44 4.41 5.35 5.72 5.80 toluene 1.65 1.57 2.07 2.06 2.05 2.10 1.50 1.52 Et-benzene 0.16 0.20 0.17 0.21 0.21 0.21 0.18 0.19 m-xylene 0.27 0.20 0.24 0.27 0.26 0.22 0.26 0.26 p-xylene 0.13 0.08 0.02 0.10 0.10 0.05 0.06 0.06 styrene 0.31 0.28 0.40 0.46 0.45 0.63 0.56 0.57 o-xylene 0.10 0.12 0.10 0.12 0.12 0.13 0.12 0.12 naphthalene 0.14 0.15 0.24 0.23 0.23 0.34 0.30 0.30

Table 3.19: Results summary, feedstock = Fischer Tropsch naphtha, cracking run (continued)

Feed Fischer-Tropsch naphtha Run nr. 9 10 11 12 13 14 15 16 17 Conditions HC-flow (kg/hr) 4.01 3.99 3.98 2.99 2.98 3.01 5.11 5.10 5.12

H2O-flow (kg/hr) 1.79 1.80 1.79 2.12 2.11 2.09 1.52 1.55 1.49 Dilution (kg/kg) 0.45 0.45 0.45 0.71 0.71 0.70 0.30 0.30 0.29 COT (°C) 865 865 865 849 849 850 855 850 847 COP (bar abs) 1.72 1.73 1.72 1.77 1.69 1.74 1.67 1.70 1.69 Yields (wt%) Σ C4 - 84.05 84.12 82.15 85.39 85.14 84.10 84.01 84.12 86.85 [C5 +,C6H6[ 4.31 4.30 4.41 3.81 3.88 5.26 5.57 5.54 3.67 [C6H6, naphthalene[ 10.90 10.85 12.82 10.13 10.30 10.20 9.96 9.89 9.47 Pyrolyse gasoil ([naphthalene, ...[) 0.73 0.73 0.62 0.67 0.68 0.44 0.46 0.45 0.00 3. Pilot Plant experiments 79

TOTAL mass balance 100 100 100 100 100 100 100 100 100 P/E 0.51 0.51 0.51 0.55 0.54 0.55 0.59 0.59 0.59 C yield 83.57 83.59 83.75 83.71 83.73 83.73 83.65 83.64 83.53 H yield 16.30 16.30 16.14 16.16 16.13 16.10 16.26 16.26 16.39 hydrogen 0.96 0.97 0.95 0.94 0.93 0.93 0.85 0.87 0.89 methane 17.69 17.61 17.29 16.24 16.52 16.16 16.76 16.65 17.48 ethylene 31.90 32.12 31.49 32.61 32.47 31.76 29.95 30.09 31.04 ethane 4.10 4.01 3.99 3.67 3.70 3.66 4.74 4.67 4.93 propylene 16.36 16.43 16.10 17.89 17.54 17.33 17.78 17.86 18.25 propane 0.54 0.53 0.52 0.56 0.55 0.54 0.65 0.64 0.66 i-butane 0.11 0.11 0.11 0.57 0.12 0.16 0.15 0.11 0.15 i-butene 2.53 2.72 2.61 2.82 2.86 3.04 3.06 3.07 3.31 1-butene 1.13 1.14 1.11 1.71 1.59 1.58 1.69 1.65 1.71 1,3-C4H6 5.23 5.31 4.94 5.35 5.39 5.47 5.13 5.15 5.22 n-butane 0.18 0.18 0.17 0.24 0.23 0.23 0.25 0.24 0.23 benzene 5.92 5.89 7.00 5.89 5.99 5.86 5.28 5.24 5.75 toluene 2.41 2.39 2.76 2.32 2.36 2.09 2.33 2.31 2.64 Et-benzene 0.15 0.15 0.22 0.19 0.20 0.22 0.24 0.24 0.00 m-xylene 0.26 0.25 0.27 0.24 0.25 0.24 0.27 0.27 0.00 p-xylene 0.12 0.12 0.13 0.12 0.12 0.09 0.09 0.09 0.00 styrene 0.68 0.67 0.76 0.62 0.63 0.56 0.57 0.57 0.92 o-xylene 0.12 0.11 0.15 0.13 0.14 0.12 0.15 0.15 0.00 naphthalene 0.49 0.48 0.34 0.39 0.40 0.25 0.33 0.33 0.00

Table 3.20: Results summary, feedstock = Fischer-Tropsch naphtha, coking run

Feed Fischer-Tropsch naphtha Run nr. 1 2 3 4 Conditions HC-flow (kg/hr) 3.99 4.01 4.00 4.01

H2O-flow (kg/hr) 1.78 1.79 1.78 1.83 Dilution (kg/kg) 0.45 0.45 0.45 0.46 COT (°C) 850 850 850 850 COP (bar abs) 1.70 1.67 1.71 1.66 Yields (wt%) Σ C4 - 84.18 83.94 83.70 84.13 [C5 +,C6H6[ 4.87 5.05 5.25 5.15 [C6H6, naphthalene[ 10.56 10.66 10.75 10.41 Pyrolyse gasoil ([naphthalene, ...[) 0.39 0.36 0.30 0.32 TOTAL mass balance 100 100 100 100 P/E 0.57 0.56 0.56 0.57 C yield 83.55 83.64 83.69 83.69 H yield 16.24 16.22 16.22 16.24 hydrogen 0.93 0.91 0.90 0.89 CO 0.30 0.22 0.13 0.12 CO2 0.04 0.02 0.01 0.01 methane 16.49 16.51 16.46 16.48 ethylene 30.93 30.92 30.92 31.13 ethane 4.23 4.21 4.20 4.21 propylene 17.52 17.39 17.44 17.63 propane 0.58 0.58 0.58 0.58 i-butane 0.14 0.11 0.14 0.13 i-butene 3.16 3.20 2.92 3.06 3. Pilot Plant experiments 80

1-butene 1.66 1.60 1.60 1.59 1,3-C4H6 5.13 5.16 5.18 5.35 n-butane 0.22 0.21 0.21 0.21 benzene 5.58 5.82 5.86 5.80 toluene 2.28 2.31 2.32 2.23 Et-benzene 0.21 0.21 0.22 0.21 m-xylene 0.25 0.23 0.27 0.23 p-xylene 0.08 0.10 0.08 0.08 styrene 0.56 0.51 0.51 0.45 o-xylene 0.13 0.13 0.12 0.12 naphthalene 0.26 0.23 0.20 0.20

Table 3.21: Results summary, feedstock = Fischer-Tropsch naphtha + 100ppm DMDS, cracking run

Feed Fischer-Tropsch naphtha + 100ppm DMDS Run nr. 1 2 Conditions HC-flow (kg/hr) 1.79 1.79

H2O-flow (kg/hr) 3.92 3.99 Dilution (kg/kg) 2.18 2.22 COT (°C) 850 850 COP (bar abs) 1.67 1.64 Yields (wt%) Σ C4 - 89.55 89.92 [C5 +,C6H6[ 5.31 5.29 [C6H6, naphthalene[ 6.12 6.09 Pyrolyse gasoil ([naphthalene, ...[) 0.15 0.14 TOTAL mass balance 100 100 P/E 0.55 0.56 C yield 83.44 83.68 H yield 16.17 16.18 hydrogen 1.00 0.96 methane 14.51 14.44 ethylene 33.64 33.67 ethane 3.21 3.20 propylene 18.59 18.84 propane 0.61 0.61 i-butane 0.14 0.13 i-butene 3.25 3.40 1-butene 2.52 2.60 1,3-C4H6 6.16 6.18 n-butane 0.25 0.26 benzene 3.76 3.74 toluene 1.18 1.17 Et-benzene 0.18 0.18 m-xylene 0.11 0.11 p-xylene 0.078 0.078 styrene 0.29 0.29 o-xylene 0.00 0.00 naphthalene 0.15 0.14

3. Pilot Plant experiments 81

Table 3.22: Results summary, feedstock = Fischer-Tropsch naphtha + 100ppm DMDS, coking run

Feed Fischer-Tropsch naphtha + 100ppm DMDS Run nr. 1 2 3 4 Conditions HC-flow (kg/hr) 3.98 4.01 3.99 3.99

H2O-flow (kg/hr) 1.81 1.76 1.78 1.81 Dilution (kg/kg) 0.45 0.44 0.45 0.45 COT (°C) 850 850 851 850 COP (bar abs) 1.64 1.64 1.60 1.69 Yields (wt%) Σ C4 - 85.80 85.26 85.09 85.14 [C5 +,C6H6[ 4.76 4.15 4.15 4.34 [C6H6, naphthalene[ 9.05 10.04 10.17 10.00 Pyrolyse gasoil ([naphthalene, ...[) 0.38 0.55 0.59 0.52 TOTAL mass balance 100 100 100 100 P/E 0.58 0.59 0.58 0.59 C yield 83.69 83.82 83.79 83.81 H yield 16.27 16.15 16.18 16.15 hydrogen 0.96 0.96 0.96 0.96 CO 0.056 0.048 0.058 0.056 CO2 0.008 0.003 0.003 0.002 methane 16.35 15.99 16.31 16.10 ethylene 31.30 31.21 31.28 31.20 ethane 4.24 4.11 4.34 4.29 propylene 18.27 18.27 18.10 18.33 propane 0.61 0.60 0.61 0.61 i-butane 0.13 0.14 0.13 0.14 i-butene 3.10 3.40 3.20 3.02 1-butene 1.83 1.78 1.67 1.76 1,3-C4H6 5.65 5.70 5.50 5.61 n-butane 0.23 0.23 0.22 0.23 benzene 5.11 5.38 5.67 5.46 toluene 2.08 2.18 2.24 2.28 Et-benzene 0.17 0.17 0.17 0.18 m-xylene 0.22 0.25 0.23 0.23 p-xylene 0.07 0.09 0.10 0.08 styrene 0.54 0.64 0.64 0.61 o-xylene 0.11 0.12 0.12 0.10 naphthalene 0.31 0.38 0.43 0.39

Influence of the feedstock composition

Analysis of the feedstocks

One of the possible alternatives to reduce the dependency of the Western economies on crude oil is development and commercialization of second generation renewable fuel produced using Fischer-Tropsch technology. An example of such a technology is shown in Figure 3.13. This technology developed by Syntroleum actually comprises three core technologies namely 3. Pilot Plant experiments 82 the gasification, Fischer-Tropsch and Synfining ® technology. These technologies are used for the production of ultra-clean synthetic fuels. [6]

Figure 3.13: Production scheme of bio-derived naphtha [7]

In a first step syngas (synthesis gas which consists of carbon monoxide and hydrogen) is produced by gasification of coal, petroleum coke, natural gas or biomass according to the reaction:

+ → + where represents the carbonaceous organic compound. The energy needed for this endothermic reaction is usually provided by the exothermic partial combustion of the carbon- containing material:

1 + → 2 Only a limited amount of oxygen is introduced into the reactor in order to have a partial combustion.

In a second step the syngas is converted to FT wax in the Fischer-Tropsch (FT) process. The FT process covers the Gas to liquids (GTL), Coal to liquids (CTL) and Biomass to liquids 3. Pilot Plant experiments 83

(BTL) processes. The produced FT waxes are mainly made up of paraffinic compounds. The process involves a variety of competing chemical reactions, but the most important reactions are those resulting in the formation of alkanes. These can be described by chemical equations of the form:

2 + 1 + → + where n is a positive integer.

In a third and last step the FT waxes can, if desired, be hydro-processed and further upgraded according to the Synfining ® process. Diesel, jet fuel, naphtha or propane are obtained as products. This technology can be applied to a wide variety of renewable feedstocks such as vegetable oils, fats and greases in order to produce ultra-clean, high performing and environmentally friendly renewable synthetic diesel fuel, renewable synthetic jet fuel, naphtha and propane. [8]

This Bio-Synfining™ process converts the triglycerides and/or fatty acids from fats and vegetable oils with heat, hydrogen and proprietary catalysts to high quality synthetic paraffinic kerosene (SPK) in three steps. First, the raw feedstocks are treated to remove catalyst contaminants and water. In the second step, the fatty acid chains are transformed into n-paraffins in a hydrotreater. The and deoxygenation reactions in the hydrotreater are as follows:

+ 4 → + 2 for the illustrative example of oleic acid conversion to n-octadecane. For most bio-oils, fats, and greases, the hydrotreater liquid product consists mainly of C15-C18 n-paraffins. In the third step of the process, these long straight-chain paraffins are hydrocracked into shorter branched paraffins. The hydrocracked products fall mainly in the kerosene boiling range. [9]

Figure 3.14 presents the schematic flow diagram of the Bio-Synfining™ SPK Process. Its configuration is a simple single-train hydroprocessing unit. The feed pretreatment section is not shown in this diagram. As can be seen from Figure 3.14, the pretreated bio-feed is first combined with the hydrocracker effluent which acts as solvent/diluent for the following exothermic hydrotreater reactions. After separation from hydrogen and light hydrocarbons, the reaction products are transferred to the fractionation column. Virtually all the hydrotreated fresh feed, the C15-C18 n-paraffins, ends up with the heavies recycle to the hydrocracker. The process co-products, bio-LPG and naphtha, are marketable commodities. Bio-LPG is a clean burning renewable fuel. Paraffinic naphtha is an excellent feedstock for olefin plants. Use of 3. Pilot Plant experiments 84

Bio-Synfining™ naphtha offers petrochemical producers the opportunity to diversify into renewable feedstocks without modifying their production facilities. [9]

Figure 3.14: Schematic flow diagram of the Bio-Synfining™ SPK Process [9]

The synthetic paraffinic kerosene (SPK) obtained from the Bio-Synfining™ process on the one hand and the lower temperature Fischer-Tropsch process on the other, are equivalent in performance. This equivalence is not surprising given the compositional similarity between the two SPK products. The chromatograms of SPK from the Bio-Synfining™ and the Fischer- Tropsch processes are shown in Figure 3.15. It is clear that both products are mainly made up of paraffinic and isoparaffinic compounds. [9]

3. Pilot Plant experiments 85

Figure 3.15: Chromatogram of SPK from Bio-Synfining™ (top) and Fischer-Tropsch (bottom) process[9]

The Bio-Synfining™ renewable synthetic diesel has superior qualities compared to soybean or rapeseed based biodiesel and diesel/gasoil. In Table 3.23 a comparison is made between the properties of two biodiesels, an ultra-low-sulfur diesel (ULSD) and a Dynamic Fuels diesel. Concerning all the tabled qualities the Bio-synfined Dynamic Fuels diesel performs better than any pure biodiesel or ultra-low-sulfur diesel.

Table 3.23: Comparison of Bio-Synfining TM fuel, biodiesel and ULSD

Biodiesel Biodiesel Dynamic Fuels Crude oil Rapeseed Palm Oil All feedstocks #2 ULSD B100 B100 R-2 Diesel

Cloud point (°C) -3 13 -15 -15

Cold filter plugging point (°C) -4 12 -20 -25

Incompatibles Brass, seals Brass, seals No spec. None

Sulfur (ppm) 3 < 10 15 max < 1

Aromatics (vol%) 0 0 35 max 0 3. Pilot Plant experiments 86

Cetane number 55-70 40 40 min 74+

Energy content relative to #2 ULSD 91% 91% 100% 98%

The bio-derived naphtha that is cracked in the LCT pilot plant set-up for steam cracking is made from biomass using the discussed technology. The intermediate Fischer-Tropsch wax is formed according to the Biomass to liquids (BTL) process. The syngas is first produced by gasification of biomass and next converted to wax in the FT process. This wax is then transformed to naphtha in the Synfining ® process.

In Annex A the detailed molecular composition of the Fischer-Tropsch naphtha, which is obtained with the GCxGC (see Chapter 2) is given. Note that no internal standard is used when determining the detailed molecular composition. After the experiments with the pure FT naphtha, 100 ppm DMDS is added to test its influence on the product yields and amount of coke formed in the reactor.

Effect on the product yields

Table 3.24 presents an overview of the average yields of the main products when cracking the Fischer-Tropsch naphtha with and without addition of 100 ppm DMDS under the conditions: -1 FHC = 4.00 kg h , δ = 0.45 kg/kg, COT = 850 °C. These results are used to investigate the effect of dimethyl disulfide (DMDS) on the product yields. Addition of DMDS seems to have little or no effect on the observed product yields. DMDS is generally added to control CO and

CO 2 production during steam cracking [10]. When the yields of CO and CO 2 are compared for both feeds, a small difference is indeed observed. Lower amounts of CO and CO 2 are produced when 100 ppm DMDS is added to the Fischer-Tropsch naphtha.

Table 3.24: Overview of the average yields of the main products when cracking the Fischer-Tropsch -1 naphtha with and without addition of 100ppm DMDS under the conditions: F HC = 4.00 kg h , δ = 0.45 kg/kg, COT = 850 °C Product Yield FT naphtha FT naphtha (wt%) +100ppm DMDS hydrogen 0.908 0.957 CO 0.192 0.055 CO2 0.022 0.004 methane 16.487 16.184 ethylene 30.974 31.246 3. Pilot Plant experiments 87

ethane 4.214 4.246 propylene 17.493 18.244 propane 0.580 0.605 i-butane 0.128 0.133 i-butene 3.085 3.180 1-butene 1.612 1.758 1,3-butadiene 5.207 5.613 n-butane 0.212 0.226 benzene 5.764 5.405 toluene 2.284 2.192 Et-benzene 0.212 0.171 m-xylene 0.246 0.231 p-xylene 0.085 0.086 styrene 0.509 0.610 o-xylene 0.124 0.112 naphthalene 0.219 0.379

Effect on coke formation in the reactor

The influence of the feedstock composition on the amount of coke formed in the reactor is studied for the FT naphtha with and without addition of 100 ppm DMDS. Table 3.32 presents an overview of the amount of coke deposited in the reactor.

Table 3.25: Amount of coke formed in the reactor during 6 hours of cracking for the feedstocks: FT naphtha, FT naphtha + 100ppm DMDS

Feedstock Coke formed in reactor (g/6hr) FT naphtha 3.4621 FT naphtha + 100ppm DMDS 6.9682

Addition of 100 ppm DMDS to the Fischer-Tropsch naphtha clearly results in an increase of the amount of coke deposited in the reactor. More than twice the amount of coke deposited on the reactor wall when cracking the pure FT naphtha is produced. Similar results were obtained by Dhuyvetter et al. (2001) for petroleum naphtha fractions [10]. These authors performed a series of tests with continuous addition of increasing amounts of DMDS to the feed (50, 200, 400, and 800 ppmw of S relative to the naphtha feed). The weight of coke deposited in the 3. Pilot Plant experiments 88 reactor coil was found to increase with 85% upon addition of 50 ppmw of S. At higher sulfur concentrations, the weight of coke deposited decreased slowly but remained higher than the value observed for a blank run. From 400 ppmw of S onward, a constant value that practically coincides with the value observed for a blank run was observed.

Influence of the operating conditions

Effect of the COT on the product yields

Table 3.26 lists the yields of the main products under the different COT’s for the Fischer- -1 Tropsch naphtha, with the remaining operating conditions: F HC = 4 kg h , δ = 0.45 kg/kg. The coil outlet temperature is changed from 820°C to 865°C with steps of 15°C.

Table 3.26: Overview of the average yields of the main products under different COT's, ranging from 820°C to 865°C, for the FT naphtha feedstock Product Yield FT naphtha FT naphtha FT naphtha FT naphtha (wt%) COT=820°C COT=835°C COT=850°C COT=865°C hydrogen 0.709 0.753 0.883 0.958 methane 13.463 15.128 16.437 17.528 ethylene 27.093 29.801 30.559 31.836 ethane 4.189 4.106 4.204 4.034 propylene 19.388 18.759 17.678 16.295 propane 0.717 0.657 0.604 0.529 i-butane 0.311 0.229 0.159 0.107 i-butene 3.935 3.507 3.141 2.619 1-butene 3.139 2.352 1.716 1.126 1,3-butadiene 5.764 5.336 5.436 5.158 n-butane 0.486 0.342 0.264 0.176 benzene 3.160 4.501 5.626 6.269 toluene 1.610 2.060 1.709 2.520 Et-benzene 0.183 0.196 0.193 0.174 m-xylene 0.234 0.257 0.249 0.259 p-xylene 0.103 0.073 0.053 0.123 styrene 0.296 0.436 0.584 0.703 o-xylene 0.113 0.114 0.122 0.128 naphthalene 0.147 0.235 0.313 0.436

Figure 3.16 shows again that increasing the coil outlet temperature from 820°C to 865°C results in an increase of the methane and ethylene yield. The yield of benzene and naphthalene also increases. Figure 3.16 also shows that the yield of propylene reaches its maximum at a COT smaller than or equal to 820°C. 3. Pilot Plant experiments 89

Influence of COT on product yields 35

30 ethylene 25 propylene 20 benzene

15 methane naphthalene

Yield Yield (wt%) 10

5

0

-5 810 820 830 840 850 860 870 COT (°C)

Figure 3.16: Effect of the COT on the main product yields for feedstock FT naphtha

Effect of the dilution on the product yields

The influence of the dilution on the product yields is studied for the Fischer-Tropsch naphtha only. Table 3.27 lists the yields of the main products under the different dilutions for the FT -1 naphtha, with the remaining operating conditions: COT = 850°C, F HC = 5.1 kg h when δ = -1 -1 0.3 kg/kg, F HC = 4 kg h when δ = 0.45 kg/kg, F HC = 2.1 kg h when δ = 0.7 kg/kg, F HC = 1.8 kg h -1 when δ = 2.2 kg/kg and 100ppm DMDS is added to the FT naphtha.

Table 3.27: Overview of the average yields of the main products under different dilutions, ranging from 0.3kg/kg to 2.2kg/kg, for the FT naphtha feedstock FT naphtha Product Yield FT naphtha FT naphtha FT naphtha +100ppm DMDS (wt%) δ = 0.3 kg/kg δ = 0.45 kg/kg δ = 0.7 kg/kg δ = 2.2 kg/kg hydrogen 0.870 0.883 0.932 0.980 methane 16.964 16.437 16.308 14.474 ethylene 30.358 30.559 32.278 33.653 ethane 4.778 4.204 3.678 3.201 propylene 17.967 17.678 17.586 18.715 propane 0.650 0.604 0.549 0.606 i-butane 0.139 0.159 0.285 0.138 i-butene 3.147 3.141 2.907 3.326 1-butene 1.685 1.716 1.625 2.560 3. Pilot Plant experiments 90

1,3-butadiene 5.168 5.436 5.401 6.170 n-butane 0.240 0.264 0.229 0.260 benzene 5.423 5.626 5.912 3.749 toluene 2.427 1.709 2.255 1.176 Et-benzene 0.161 0.193 0.203 0.177 m-xylene 0.182 0.249 0.245 0.112 p-xylene 0.057 0.053 0.112 0.078 styrene 0.684 0.584 0.602 0.290 o-xylene 0.100 0.122 0.131 0.000 naphthalene 0.218 0.313 0.348 0.145

When the dilution is increased from 0.3 kg/kg to 2.2 kg/kg, keeping the COT and the COP fixed, the yield of the olefins in general increases. On the other hand the yields of ethane and methane decrease. This is logical if you consider the radical mechanism. The selectivity to light olefins can be increased by favoring monomolecular reactions (β-scission, which form light olefins) over bimolecular reactions (hydrogen abstraction and recombination, which form methane and ethane). Increasing the dilution, decreases the partial pressures of the hydrocarbon species, and hence, favors the monomolecular pathways.

Influence of dilution on product yields 40

35 ethylene 30 propylene 25 methane 20 ethane 15 Yield Yield (wt%) 10

5

0

-5 0 0.5 1 1.5 2 2.5 dilution (kg/kg)

Figure 3.17: Effect of dilution on ethylene, propylene, methane and ethane yield

3. Pilot Plant experiments 91

From Figure 3.17 and Figure 3.18 it is seen that when the dilution is increased the light olefin selectivity increases while the yields of the so-called secondary products such as benzene, toluene and naphthalene decrease.

Influence of dilution on product yields 7

6

5 benzene

4 toluene 3 naphthalene 2 Yield Yield (wt%) 1

0

-1

-2 0 0.5 1 1.5 2 2.5 dilution (kg/kg)

Figure 3.18: Effect of dilution on benzene, toluene and naphthalene yield

3.3.5. Coke formation during cracking of heavy condensates

In Annex B a detailed list with the measured product yields is given. The next two tables present a results summary for the cases in which the gas condensates 700A and 700B are used as feed.

Table 3.28: Results summary, feedstock = gas condensate 700B

Feed Gas condensate 700B Run nr. 1 2 3 4 5 6 Conditions HC-flow (kg/hr) 3.53 3.53 3.53 3.52 3.53 3.52

H2O-flow (kg/hr) 2.50 2.47 2.44 2.50 2.49 2.44 Dilution (kg/kg) 0.71 0.70 0.69 0.71 0.71 0.70 COT (°C) 821 819 816 821 820 820 COP (bar abs) 1.86 1.77 1.60 1.79 1.61 1.65 Yields (wt%) Σ C4 - 65.72 64.92 67.16 66.51 65.84 65.82 [C5 +,C6H6[ 3.63 3.41 7.33 6.21 5.99 4.14 [C6H6, naphthalene[ 11.31 10.62 11.07 10.07 9.71 12.23 3. Pilot Plant experiments 92

Pyrolyse gasoil ([naphthalene, ...[) 0.97 0.92 0.94 0.77 0.74 0.63 TOTAL mass balance 81.64 79.87 86.50 83.55 82.28 82.82 P/E 0.59 0.61 0.62 0.61 0.61 0.61 hydrogen 0.65 0.69 0.74 0.73 0.73 0.65 methane 12.07 11.34 11.94 12.70 12.25 11.91 ethylene 24.37 24.55 24.54 24.38 24.67 23.74 ethane 3.45 3.19 3.68 4.09 3.66 3.66 propylene 14.29 14.87 15.14 14.82 15.03 14.46 iso-butene 2.33 2.19 2.33 1.97 1.90 2.43 1-butene 1.36 1.28 1.56 1.33 1.28 1.57 1,3-C4H6 3.74 3.51 3.62 3.11 2.99 4.01 benzene 5.45 5.12 4.18 4.06 3.91 5.61 toluene 2.45 2.30 2.12 1.97 1.90 2.85 Et-benzene 0.18 0.17 0.24 0.23 0.22 0.21 m-xylene 0.48 0.45 0.54 0.46 0.45 0.54 p-xylene 0.13 0.12 0.14 0.12 0.11 0.14 styrene 0.67 0.63 0.63 0.53 0.51 0.76 o-xylene 0.23 0.22 0.28 0.26 0.25 0.28 naphthalene 0.41 0.39 0.45 0.40 0.39 0.34

Table 3.29: Results summary, feedstock = gas condensate 700A

Gas condensate 700A Run nr. 1 2 3 4 5 6 Conditions HC-flow (kg/hr) 3.53 3.52 3.53 3.53 3.52 3.53

H2O-flow (kg/hr) 2.48 2.45 2.48 2.45 2.50 2.47 Dilution (kg/kg) 0.70 0.70 0.70 0.70 0.71 0.70 COT (°C) 823 821 821 820 820 821 COP (bar abs) 1.70 1.60 1.88 1.73 1.65 1.56 Yields (wt%) Σ C4 - 70.13 68.73 69.31 69.10 67.56 68.15 [C5 +,C6H6[ 5.58 5.36 7.16 4.54 4.29 4.33 [C6H6, naphthalene[ 13.12 12.60 12.36 12.32 11.64 11.75 Pyrolyse gasoil ([naphthalene, ...[) 1.24 1.19 0.92 1.20 1.13 1.14 TOTAL mass balance 90.07 87.88 89.76 87.15 84.62 85.38 P/E 0.58 0.57 0.57 0.56 0.57 0.58 hydrogen 0.60 0.61 0.59 0.62 0.58 0.64 methane 11.99 11.51 11.38 11.86 11.21 11.31 ethylene 26.43 26.23 26.19 26.54 26.37 26.44 ethane 3.62 3.61 3.35 3.75 3.38 3.28 propylene 15.20 15.00 15.02 14.91 15.09 15.45 iso-butene 2.20 2.11 2.28 2.08 1.97 1.99 1-butene 1.63 1.56 1.82 1.57 1.48 1.49 1,3-C4H6 4.60 4.42 4.60 4.25 4.01 4.05 benzene 4.53 4.35 4.54 5.00 4.72 4.77 toluene 2.44 2.34 2.68 2.79 2.64 2.66 Et-benzene 0.29 0.28 0.31 0.27 0.26 0.26 m-xylene 0.69 0.66 0.77 0.77 0.73 0.74 p-xylene 0.16 0.15 0.22 0.20 0.19 0.19 styrene 0.55 0.52 0.66 0.75 0.71 0.72 o-xylene 0.29 0.28 0.30 0.28 0.26 0.27 naphthalene 0.38 0.36 0.44 0.47 0.44 0.45 3. Pilot Plant experiments 93

Influence of the feedstock composition

Analysis of the feedstocks

No detailed molecular compositions of the 2 different gas condensate feedstocks are determined but from their GCxGC color plots it can be deducted what type of components are present in the samples, see Chapter 2. The gas condensates contain mainly (iso)paraffins and naphthenes and also some aromatics. Compared to the Fischer-Tropsch naphtha they contain much heavier (iso)paraffins and naphthenes and more aromatics.

Effect on the product yields

The yields obtained when cracking the gas condensates can be compared since the same operating conditions are used for both feeds. Table 3.30 lists the average values of the yields of the main products when cracking the gas condensates 700B and 700A under the cracking -1 conditions: F HC = 3.53 kg h , δ = 0.7 kg/kg, COT = 820 °C. Since product yields are compared within a specific type of feedstock, namely gas condensates, the product yields do not change significantly.

Table 3.30: Overview of the average yields of the main products when cracking the 2 gas condensates -1 under the conditions: F HC = 3.53 kg h , δ = 0.7 kg/kg, COT = 820 °C Product Yield (wt%) 700B 700A hydrogen 0.696 0.607 methane 12.033 11.544 ethylene 24.373 26.366 ethane 3.620 3.497 propylene 14.768 15.111 iso-butene 2.191 2.105 1-butene 1.397 1.592 1,3-butadiene 3.496 4.321 benzene 4.721 4.651 toluene 2.267 2.592 Et-benzene 0.210 0.278 m-xylene 0.487 0.726 p-xylene 0.128 0.185 styrene 0.623 0.653 o-xylene 0.252 0.281 naphthalene 0.399 0.424

3. Pilot Plant experiments 94

Even though the 2 C4 fractions, the FT naphtha and the 2 gas condensates are cracked under different operating conditions, a comparison between the product yields can be made, for the case in which the COT equals 820°C. Table 3.31 gives an overview of the average values of the yields of the main products when cracking the C4 fractions under the conditions: F HC = 4 -1 -1 kg h , δ = 0.55 kg/kg, COT = 820°C, the FT naphtha under the conditions: F HC = 4 kg h , δ = -1 0.45 kg/kg, COT = 820°C and the gas condensates under the conditions: F HC = 3.53 kg h , δ = 0.7 kg/kg, COT = 820 °C. These results show that when the type of feedstock changes, from C4 fractions to gas condensates, the product yields change drastically.

Table 3.31: Overview of the yields of the main products when cracking the different feedstocks under the -1 conditions: F HC = 4 kg h , δ = 0.55 kg/kg, COT = 820°C for the C4 fractions ARAL and PETRO; FHC = 4 -1 -1 kg h , δ = 0.45 kg/kg, COT = 820°C for the FT naphtha; FHC = 3.53 kg h , δ = 0.7 kg/kg, COT = 820 °C for the gas condensates 700A and 700B FT Product Yield (wt%) ARAL PETRO 700B 700A naphtha hydrogen 1.027 0.686 0.709 0.696 0.607 methane 14.392 12.638 13.463 12.033 11.544 ethylene 14.540 13.136 27.093 24.373 26.366 ethane 2.055 1.733 4.189 3.620 3.497 propylene 22.086 21.170 19.388 14.768 15.111 propane 1.864 0.933 0.717 0.518 0.544 i-butane 16.192 12.127 0.311 0.108 0.176 i-butene 9.243 9.426 3.935 2.191 2.105 1-butene 1.527 2.044 3.139 1.397 1.592 1,3-butadiene 1.156 4.176 5.764 3.496 4.321 n-butane 11.202 12.350 0.486 0.507 0.435 benzene 0.496 1.600 3.160 4.721 4.651 toluene 0.225 0.748 1.610 2.267 2.592 Et-benzene 0.052 0.060 0.183 0.210 0.278 m-xylene 0.017 0.056 0.234 0.487 0.726 p-xylene 0.035 0.000 0.103 0.128 0.185 styrene 0.069 0.101 0.296 0.623 0.653 o-xylene 0.013 0.032 0.113 0.252 0.281 naphthalene 0.015 0.044 0.147 0.399 0.424

From Table 3.31 it can be seen that the C4 fractions yield the highest amount of propylene, i- butane, i-butene and n-butane. Note that the latter are unconverted feed molecules, and hence, cracking at this severity is certainly not advisable for the C4 fractions. The FT naphtha 3. Pilot Plant experiments 95 produces the greatest amount of ethylene, 1-butene and 1,3-butadiene. The gas condensates give the highest yields of aromatics. These results seem logical based on the compositions of the different feedstocks. The C4 fractions contain the highest amount of C4 n-paraffinic and isoparaffinic compounds, hence they give the highest amount of propylene, i-butane, i-butene and n-butane. For the FT naphtha the content of n-paraffins and isoparaffins, with exception of the C4 components, is the highest, hence high yields of ethylene, 1-butene and 1,3- butadiene are to be expected. Because the gas condensates contain the highest amount of aromatics (the C4 fractions do not contain aromatics), they give the highest amounts of benzene, toluene and other aromatic compounds. Since the FT naphtha contains a small amount of aromatics, it gives rise to an aromatics yield somewhere in between the yield obtained for the C4 fractions and the gas condensates.

Effect on coke formation in the reactor

The influence of the feedstock composition on the amount of coke formed in the reactor and the TLE is studied for the gas condensate feeds 700A and 700B. Table 3.32 presents an overview of the amount of coke deposited in the reactor and the TLE for the FT naphtha and the 2 gas condensates.

Table 3.32: Amount of coke formed in the reactor and the TLE during 6 hours of cracking for the feedstocks: FT naphtha, FT naphtha + 100ppm DMDS, gas condensate 700B and 700A

Feedstock Coke formed (g/6hr)

Reactor TLE FT naphtha 3.4621 - FT naphtha + 100ppm DMDS 6.9682 - Gas condensate 700B 259.7981 2.4170 Gas condensate 700A 2.4985 3.4613

The gas condensate 700B gives the highest amount, even an exceptional high amount, of coke in the reactor. One would expect that feedstocks with more heavies, such as poly-aromatics, would lead to more coke in the reactor as these molecules are believed to be important coke precursors. So based on this idea, it seems logical that the gas condensate 700B produces more coke than the FT naphtha since it contains a greater amount of aromatics. Gas condensate 700A gives however a lower amount of coke in the reactor compared to the FT naphtha even though it contains a greater amount of heavies. A possible explanation may be 3. Pilot Plant experiments 96 the sulfur content in the feedstocks, which is unknown. It is known that the amount and the chemical nature of the sulfur compounds present in the feed can drastically influence coke deposition [11][10][12]. Another reason for the higher cokes formation of the FT naphtha compared to the gas condensate 700A, is the higher yield of light olefins produced by the FT naphtha. It has been shown that, although ethylene as such is not the most active coke precursor, its presence in high concentration results in ethylene being a major coke contributor [13].

Effect on coke formation in the TLE

Although the mechanism by which coke is formed in the TLE is still being debated, coke formation in the TLE is frequently attributed to physical condensation of the high-boiling components present in the effluent on the colder metal wall of the TLE. However, in a properly designed TLE, the wall temperatures are significantly above the dew point [14]. At the lower temperatures prevailing in the TLE it can be expected that coking by a radical mechanism will not contribute substantially. Laboratory and pilot studies of coke formation in TLE conditions have provided evidence for the prevalence of a catalytic route of coke formation in the TLE [10]. Note that the contribution of the various coking mechanisms considered can vary along the TLE. As the temperature in the TLE wall gradually decreases from the inlet to the outlet, the contribution of the radical coking mechanism to coke formation at the inlet of the TLE cannot be completely excluded. Table 3.32 presents the amount of coke deposited in the TLE for the two gas condensates. Gas condensate 700A produces more coke in the TLE than in the reactor and more than gas condensate 700B.

3.3.6. Conclusions

In conclusion it can be stated that:

1. Within a specific type of feedstock, the product distribution does not change significantly under the considered conditions. 2. The influence of the process conditions on the product yields is as expected. The ethylene yield increases with the COT, propylene shows a maximum and the aromatic fraction increases. 3. An increased dilution leads to higher light olefin yields but lower ethane and methane yields. The selectivity of aromatic compounds decreases. 3. Pilot Plant experiments 97

4. Adding DMDS to the FT naphtha has a detrimental effect on the amount of coke deposited in the reactor. The amount of coke deposited in the reactor more than doubles. 5. Under the cracking conditions with a COT of 820°C, the C4 fractions ARAL and PETRO give the highest amount of propylene, i-butane, i-butene and n-butane, while the FT naphtha gives the highest yields of ethylene, 1-butene and 1,3-butadiene. The gas condensates 700A and 700B give the highest yields of aromatics. 6. Feedstock 700A gives a smaller amount of coke deposition in the reactor than the FT naphtha, whereas feedstock 700B produces an exceptional high amount of coke in the reactor. 7. Gas condensate 700A produces a higher amount of coke in the TLE than in the reactor and a higher amount compared to the gas condensate 700B.

References

[1] Dierickx J. L., Plehiers P. M., Froment G. F. On-line gas chromatographic analysis of hydrocarbon effluents: calibration factors and their correlation. J. Chromatogr. 1986.

[2] Van Damme P., Froment G. F. Chem. Eng. Prog. 1982, 78, pp. 77-82.

[3] Wang X. L., Gomez M. F., De Saegher J. J., Froment G. F. and Woerde H. M. Oil Gas - European Magazine 4. 1995, pp. 20-21.

[4] CORI-FLOW Coriolis Mass Flow Meter/Controller for Liquids and Gases. [Online] http://www.bronkhorst.com/files/downloads/brochures/cori-flow.pdf.

[5] Van Camp C.E., Van Damme P.S., Froment G.F. Thermal cracking of Kerosene. Ind. Eng. Chem. Process Des. Dev. 1984, 23, pp. 155-162.

[6] Waycuilis J.J. Combusting a hydrocarbon gas to produce a reformed gas. US Patent 5861441 Texas, USA, 19 January 1999.

[7] Annual General Meeting. Syntroleum. [Online] June 2008. http://www.syntroleum.com/pdf/AGMPresentationJune22008RevisionFINAL3.pdf.

[8] [Online] http://www.syntroleum.com.

[9] Corp., Syntroleum. Bio-Synfining™ Process for Synthetic Paraffinic Kerosene (SPK). August 2008. 3. Pilot Plant experiments 98

[10] Dhuyvetter I, Reyniers M.-F., Froment G. F., Marin G. B. The Influence of Dimethyl Disulfide on Naphtha Steam Cracking. Ind. Eng. Chem. Res. 2001.

[11] Reyniers M.F., Froment G.F. Influence of Metal Surface and Sulfur Addition on Coke Deposition in the Thermal Cracking of Hydrocarbons. Ind. Eng. Chem. Res. 1995, 34, pp. 773-785.

[12] Wang J., Reyniers M.F., Marin G.B. Influence of dimethyl disulfide on coke formation during. Ind. Eng. Chem. Res. 2007.

[13] Kopinke F.-D., Zimmerman G., Reyniers G., Froment G.F. Ind. Eng. Chem. Res. 1993, 32, pp. 56-60.

[14] Ranzi E., Dente M., Pierucci S., Barendregt S., Cronin, P. Oil & Gas Journal . 1985, pp. 49-52.

4. Simulations with COILSIM1D and SIMCO 99

4. SIMULATIONS WITH COILSIM1D AND

SIM CO

4.1. COI LSIM1D

4.1.1. Reactor simulation

COILSIM1D is a single event micro kinetic model (SEMK) that allows to simulate the steam cracking process. The model contains two parts: the sing le event reaction network and the reactor model equations . It also contains the solver of the resulting set of differential algebraic equations. A schematic overview of the single event micro kinetic (SEMK) model for steam crack ing is presented in Figure 4.1. [1]

Figure 4.1: Schematic overview of COILSIM 1D

4. Simulations with COILSIM1D and SIMCO 100

The reaction network is a radical scheme consisting of two parts: a monomolecular µ network and a β network. The reactor model equations are based on a 1-dimensional reactor model, in which no radial gradients are assumed, except for the temperature in a very thin film close to the wall in which all resistance to heat transfer is located. The flow is assumed to be of the plug flow type. The model equations contain the continuity equations for the different species, an energy balance and a pressure equation. These equations are integrated along the reactor coil, finally resulting in the product yields and the pressure and temperature profiles. [1]

Three important data files that are used as input of COILSIM1D and that contain the process conditions, must be created by the user. A new graphical user interface (GUI) makes it no longer necessary to define these text files (see Figure 4.2), drastically increasing the user friendliness of the code. The reactor.txt file contains all the information about the reactor geometry. The parameters that need to be implemented are the number of junctions in the coil, the wall thickness, the wetted perimeter and tube cross section area in each section, the axial coordinates of the junctions and the angle and radius of the bend in each junction. The nafta.i file contains all the necessary information about the feedstock. The nafta.i file is created with SimCo, using the commercial indices (combined with the concept of neural networks or maximization of the Shannon entropy) or a detailed PIONA analysis, see section 1.1.101. All the information about the reaction circumstances, i.e. the hydrocarbon flow in each junction, the steam dilution, the coil inlet temperature and pressure, the temperature and pressure profile or heat flux or external wall temperature profile, is included in the exp.txt file. After running COILSIM1D, the different product yields, yield profiles and other general info are written down in the output files: yields.csv (product yields), yieldprofiles.csv (main product yields at different axial positions in the reactor), general_info.csv (conversion, heat flux, T gas, T interface coke/gas, T wall external, T interface wall coke, pressure, residence time, Reynolds, Prandl, Nusselt, conv. coef., coke thickness, coking rate, coke yield, CO yield, P/E ratio) and results.txt (coil geometry, process variables, product yields, conversion, residence time, COP, COT). [1] 4. Simulations with COILSIM1D and SIMCO 101

Figure 4.2: COILSIM1D graphical user interface (GUI): reactor geometry input

4.2. SimCo

The determination of the detailed molecular composition of a complex feedstock is a challenge. During the past decade, several analytical techniques, such as gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS) and high performance liquid chromatography (HPLC), have been developed to obtain a detailed molecular composition. Unfortunately, these techniques are very time-consuming and for some petroleum fractions it is simply not possible to obtain accurate results because of the high complexity of these mixtures. In most cases only general properties, so-called commercial indices, are available to characterize a specific feedstock. The commercial indices comprise the average molecular weight, the ASTM D86 boiling point curve, a PIONA analysis, the H/C ratio, the density, NMR 1H, NMR 13 C, etc., which can be easily obtained in a laboratory by means of standard 4. Simulations with COILSIM1D and SIMCO 102 experimental methods (ASTM procedures). These indices do however not always provide sufficient information and sometimes a more detailed molecular composition is required, for example to implement in the COILSIM1D program. The SimCo program is now implemented in COILSIM and can be used for the reconstruction of the detailed composition of a mixture based on the commercial indices of the mixture. This software combines two different reconstruction methods. One method is based on the concept of neural networks and the other one on maximization of the Shannon entropy. [2]

Figure 4.3 gives a general overview of SimCo. The starting point is the input file, input.da, which contains the available commercial indices of the feedstock with unknown composition.

The following commercial indices can be implemented:

• Average molecular weight (g/mol) • H/C ratio (kg/kg) • Density (60°F) (g/ml) • PIONA analysis (wt% or vol%) • 13 boiling points of TBP, ASTM D86 or D2887 boiling point curve (°C, K or °F) • NMR 1H and NMR 13 C data

Another possible input file, input2.da, contains a detailed PIONA analysis of the feedstock, without any other commercial index. This implies that for each type of compound, i.e. paraffins, isoparaffins, olefins, naphthenes and aromatics, a further subdivision according to the number of carbon atoms – ranging from C3 to C13 – is present.

First of all, the information from the input file is used to determine what type of feedstock is considered. SimCo can make a distinction between four types of feedstock: naphtha, kerosene/diesel, gas oil and gas condensate. The type determines which molecular library is used in the subsequent molecular reconstruction. Such a library contains all the important information (molecular weight, boiling point, density, etc.) of components that may be present in the feedstock of the type under consideration. If the feedstock is a naphtha fraction, the program will determine whether this naphtha is within the range of the neural network. If this is the case and if all the necessary commercial indices are available, the neural network will be used for the molecular reconstruction. Figure 4.4 presents an example of such an input.da file. [2]

4. Simulations with COILSIM1D and SIMCO 103

Figure 4.3: General overview of SimCo [2]

4. Simulations with COILSIM1D and SIMCO 104

Figure 4.4: Example input.da file for SimCo [2]

After the molecular composition of the considered fraction is computed, the commercial indices are calculated using the weight fractions of the different components and the properties indicated in the molecular library. Finally, the reconstructed composition and the calculated commercial indices are written out in the output file, Results.csv. The second output file is a nafta.i file that contains all the information about the feedstock needed by COILSIM1D. This file forms the bridge between the two software modules. [2]

4.3. Co-cracking of ethane with naphtha

4.3.1. Feedstock specification

Simulations are performed with pure naphtha, pure ethane and three mixtures of ethane and naphtha. The naphtha properties, like a detailed PIONA analysis, the density, the molecular weight and the H/C ratio, are given in Table 4.1 and Table 4.2.

4. Simulations with COILSIM1D and SIMCO 105

Table 4.1: Naphtha properties: detailed PIONA

wt% nPAR iPAR NAP ARO TOTAL

C4 0.13 0.31 - - 0.44

C5 14.95 8.16 1.61 - 24.72

C6 16.59 18.00 11.23 4.30 50.12

C7 4.20 10.39 5.66 1.43 21.68

C8 0.42 1.21 0.96 0.21 2.80

C9 - 0.16 - - 0.16

C10 - 0.08 - - 0.08

Total 36.29 38.31 19.46 5.94 100.00

Table 4.2: Naphtha properties

Density 0.6816 g/ml

Molecular Weight 84.31 g/mole

H/C Ratio 2.191 mole/mole

The first composition corresponds with the experimentally determined composition. The latter is also used to determine the ASTMD86 boiling point curve necessary for applying the Shannon entropy method in SimCo. Finally the detailed PIONA weight fractions are also used to determine a third and final feedstock composition. With these three feedstock compositions the set of pilot plant experiments carried out with the naphtha are simulated. When mixtures of ethane and naphtha are used as feed, the previously obtained compositions are adjusted so that ethane also makes up a fraction of the naphtha mixture.

4. Simulations with COILSIM1D and SIMCO 106

4.3.2. Experimental conditions

All the experiments are performed at a coil outlet pressure of 1.8 bar and a steam dilution of 0.5 kg/kg. The experimental tests were carried out at five different cracking severities, run 1 to 5, which are different for each of the five feeds. The operating conditions for pure naphtha are mentioned in Table 4.3, the conditions for the other feeds are listed in Annex C.

Table 4.3: Experimental conditions for naphtha cracking Run nr. 1 2 3 4 5 T-profile reactor (°C) Position (m) 1.140 518 529 530 531 530 1.957 541 548 551 551 550 2.652 555 558 560 560 560 3.362 570 571 572 572 573 3.951 575 575 575 575 575 4.768 634 656 673 695 700 5.463 653 679 700 726 730 6.173 672 700 721 744 748 6.762 685 711 730 752 755 7.579 732 759 780 796 805 8.274 750 772 791 806 816 8.984 763 788 810 827 841 9.573 761 786 811 830 847 10.390 779 800 821 840 861 11.085 794 814 834 855 878 11.795 801 824 845 866 890 12.384 800 826 844 864 890 P-profile reactor (bar) Position (m) 0.000 2.457 2.462 2.457 2.433 2.403 4.341 2.234 2.273 2.254 2.263 2.232 9.963 1.951 1.957 1.963 1.946 1.940 12.784 1.807 1.814 1.823 1.808 1.809 Feed HC-flow (kg/hr) 5.592 5.352 5.068 4.812 4.648 H2O-flow (kg/hr) 2.775 2.704 2.546 2.468 2.364 Dilution (kg/kg) 0.496 0.505 0.502 0.513 0.509 Residence time (ms) 189 186 201 189 203

4. Simulations with COILSIM1D and SIMCO 107

4.3.3. Results and discussion

For five different feed compositions and a range of experimental conditions the product yields from steam cracking are simulated with COILSIM1D. The simulated results are compared with experimentally determined product yields and simulated results obtained with a reaction network of the Chemical Reaction Engineering and Chemical Kinetics group of the Politecnico di Milano containing 176 species and 4996 reactions [3].

The reaction network is combined with Chemkin [4] to allow simulating the set of pilot plant experiments. In the following text the simulation results obtained with this mechanism are referred to as: ‘MILANO’. Note that the feedstock composition used in the MILANO simulations corresponds with the analytically determined feedstock composition.

Table 4.4 presents the simulation results and the experimental yields when 100% naphtha is cracked. In order to compare the results obtained with the different reaction networks and the different methods (Shannon entropy, detailed PIONA and neural network) within COILSIM1D the sum of the squares of the differences between the simulated and experimentally obtained yields is calculated, see Table 4.4. The latter is defined as:

(wt% − wt% )

The components C 3H8, iC 4H10 and nC 4H10 are excluded from this sum, because their yield is only small. When the COILSIM1D simulation results are compared with the results from MILANO on the basis of these sums of squares, MILANO seems to give the most accurate yields, for the case in which naphtha is used as feed. Comparison of the different methods used in COILSIM1D shows that, when naphtha is the feedstock, a detailed PIONA analysis gives more accurate results than the Shannon entropy method, which in turn is more accurate than the method that uses the neural network, because a smaller value for the sum of squares implies a smaller deviation from the experimental yields and therefore more accurate results. In the following paragraphs a detailed analysis of the observed differences is carried out.

4. Simulations with COILSIM1D and SIMCO 108

Table 4.4: Steam cracking yields (wt%) of naphtha

COILSIM1D COILSIM1D COILSIM1D Compound name (detailed (neural (Shannon MILANO experimental PIONA) network) entropy) experimental conditions 1 H2 0.524 0.508 0.544 0.640 0.660 CH4 7.674 8.962 8.365 8.630 7.440 C2H2 0.323 0.371 0.347 0.150 0.080 C2H4 19.141 19.114 17.192 19.610 18.000 C2H6 2.243 2.548 2.317 2.610 2.660 C3H4(MA)+C3H4(PD) 0.292 0.305 0.301 0.310 0.360 C3H6 14.223 14.358 15.423 16.480 15.770 C3H8 0.356 0.448 0.388 0.410 0.410 1,3 C4H6 4.208 3.706 3.064 4.440 3.680 1C4H8 3.473 3.663 3.092 3.240 4.230 2C4H8 0.811 1.046 0.952 1.510 1.570 iC4H8 2.987 3.996 2.242 3.610 3.280 iC4H10 0.031 0.089 0.009 0.170 0.190 nC4H10 0.256 0.975 2.942 0.110 1.650 Benzene 5.057 3.907 5.856 5.180 5.420 Toluene 1.588 2.583 1.542 1.730 1.790 2 Σ(wt%sim -wt%exp ) 5.692 9.702 5.220 6.254 experimental conditions 2 H2 0.641 0.608 0.658 0.800 0.870 CH4 10.340 11.617 11.176 11.280 10.160 C2H2 0.600 0.643 0.626 0.310 0.260 C2H4 24.302 23.423 22.063 24.920 23.300 C2H6 2.764 3.063 2.861 2.900 3.040 C3H4(MA)+C3H4(PD) 0.538 0.557 0.542 0.560 0.650 C3H6 16.163 15.892 17.088 17.760 17.730 C3H8 0.458 0.532 0.488 0.430 0.470 1,3 C4H6 5.066 4.428 3.832 5.310 4.760 1C4H8 3.044 3.012 2.722 2.670 3.710 2C4H8 0.837 1.050 0.939 1.350 1.420 iC4H8 3.045 4.131 2.257 3.420 3.290 iC4H10 0.015 0.054 0.008 0.130 0.140 nC4H10 0.220 0.641 1.828 0.080 1.050 Benzene 5.945 4.804 6.624 6.250 5.550 Toluene 1.798 2.837 1.885 2.080 1.590 2 Σ(wt%sim -wt%exp ) 4.885 9.294 7.573 6.051 experimental conditions 3 H2 0.744 0.699 0.758 0.860 0.870 CH4 12.713 13.937 13.616 12.430 12.320 C2H2 0.873 0.883 0.877 0.390 0.410 C2H4 28.174 26.630 25.836 26.770 26.100 C2H6 3.169 3.430 3.264 3.000 3.160 C3H4(MA)+C3H4(PD) 0.820 0.839 0.806 0.670 0.860 C3H6 16.155 15.726 16.628 17.590 18.330 C3H8 0.499 0.544 0.520 0.420 0.380 1,3 C4H6 5.492 4.794 4.253 5.470 4.920 1C4H8 2.251 2.151 2.026 2.290 2.360 2C4H8 0.743 0.908 0.795 1.220 1.090 iC4H8 2.732 3.715 2.011 3.180 3.060 4. Simulations with COILSIM1D and SIMCO 109 iC4H10 0.009 0.028 0.006 0.110 0.100 nC4H10 0.160 0.372 0.991 0.070 0.730 Benzene 7.385 6.200 7.875 6.890 6.230 Toluene 2.184 3.275 2.496 2.290 1.540 2 Σ(wt%sim -wt%exp ) 11.734 13.536 10.254 2.408 experimental conditions 4 H2 0.829 0.773 0.836 0.980 1.080 CH4 14.545 15.698 15.414 14.400 14.640 C2H2 1.125 1.095 1.090 0.610 0.590 C2H4 30.693 28.760 28.350 29.790 30.360 C2H6 3.417 3.619 3.484 3.020 3.190 C3H4(MA)+C3H4(PD) 1.099 1.122 1.058 0.920 1.090 C3H6 14.750 14.481 14.914 16.280 15.510 C3H8 0.478 0.498 0.487 0.380 0.400 1,3 C4H6 5.487 4.844 4.357 5.560 5.050 1C4H8 1.468 1.394 1.336 1.570 1.440 2C4H8 0.590 0.714 0.612 0.920 0.850 iC4H8 2.278 3.099 1.679 2.560 2.120 iC4H10 0.006 0.013 0.005 0.070 0.050 nC4H10 0.098 0.192 0.477 0.050 0.340 Benzene 9.051 7.752 9.294 8.180 9.140 Toluene 2.624 3.726 3.143 2.630 2.440 2 Σ(wt%sim -wt%exp ) 1.424 9.874 6.652 2.477 experimental conditions 5 H2 0.907 0.841 0.907 1.110 1.290 CH4 15.978 17.089 16.793 16.220 16.860 C2H2 1.381 1.321 1.304 0.970 0.980 C2H4 32.409 30.303 30.126 32.120 31.440 C2H6 3.518 3.668 3.549 2.840 2.980 C3H4(MA)+C3H4(PD) 1.361 1.398 1.291 1.190 1.280 C3H6 12.663 12.643 12.620 13.730 13.400 C3H8 0.405 0.408 0.405 0.290 0.320 1,3 C4H6 5.192 4.643 4.230 5.280 4.660 1C4H8 0.800 0.768 0.734 0.910 0.720 2C4H8 0.429 0.513 0.431 0.590 0.650 iC4H8 1.784 2.446 1.326 1.800 1.490 iC4H10 0.004 0.007 0.003 0.040 0.000 nC4H10 0.045 0.073 0.166 0.030 0.160 Benzene 10.891 9.478 10.883 9.480 9.590 Toluene 3.034 4.107 3.713 2.880 2.380 2 Σ(wt%sim -wt%exp ) 5.409 6.654 6.624 1.823 TOTAL Σ(wt% -wt% )2 29.145 49.060 36.323 19.013 sim exp

In order to form an idea of the power of the simulation programs to determine accurate yields for each individual component, Table 4.5 presents the squared differences between simulated and experimental yields, averaged over the 5 different experimental conditions for cracking naphtha, and for each important product component. From these values, it can be seen that the simulated yields are in good agreement with the experimental yields, especially in the case of

H2, C2H2, C 2H6, C 3H4, 1,3-C4H6, 1C4H8 and 2C4H8. Less accurate yields are obtained for 4. Simulations with COILSIM1D and SIMCO 110

C2H4, CH 4, C3H6, iC4H8, benzene and toluene. For propylene, i-butene, benzene and toluene the resemblance is only poor for two or three out of the 3 methods within COILSIM1D and not for MILANO. The previous considerations are based on the calculated squared differences between the simulated and experimentally obtained yields and do not take into account the size of the product yields.

2 Table 4.5: (wt%sim -wt%exp ) averaged over the 5 experimental conditions, feedstock = naphtha

COILSIM1D COILSIM1D COILSIM1D Compound name (detailed (neural (Shannon MILANO PIONA) network) entropy) H2 0.059 0.083 0.055 0.010 CH4 0.206 1.645 0.834 0.630 C2H2 0.167 0.165 0.156 0.002 C2H4 1.531 1.078 1.604 1.291 C2H6 0.118 0.149 0.114 0.019 C3H4(MA)+C3H4(PD) 0.005 0.005 0.004 0.017 C3H6 2.140 2.757 0.879 0.351 1,3 C4H6 0.235 0.034 0.470 0.365 1C4H8 0.207 0.171 0.479 0.424 2C4H8 0.231 0.096 0.161 0.007 iC4H8 0.073 0.704 0.693 0.086 Benzene 0.664 0.957 1.149 0.383 Toluene 0.192 1.966 0.667 0.218

A better view on the accuracy of the simulated product yields is given when the previously tabled values, the squared differences, are divided by the experimentally obtained yields after taking the square root of them. Table 4.6 presents these values averaged over the 5 experimental conditions and for naphtha used as feedstock

Table 4.6: averaged over the 5 experimental conditions, (% − % ) % feedstock = naphtha COILSIM1D COILSIM1D COILSIM1D Compound name (detailed (neural (Shannon MILANO PIONA) network) entropy) H2 0.229 0.272 0.214 0.071 CH4 0.028 0.113 0.077 0.067 4. Simulations with COILSIM1D and SIMCO 111

C2H2 1.358 1.494 1.412 0.232 C2H4 0.046 0.035 0.043 0.045 C2H6 0.100 0.100 0.101 0.043 C3H4(MA)+C3H4(PD) 0.096 0.088 0.086 0.145 C3H6 0.082 0.092 0.050 0.032 1,3 C4H6 0.105 0.029 0.145 0.134 1C4H8 0.107 0.102 0.154 0.180 2C4H8 0.372 0.226 0.324 0.076 iC4H8 0.109 0.358 0.258 0.119 Benzene 0.094 0.116 0.138 0.079 Toluene 0.202 0.721 0.359 0.223

The product yields with a value for smaller than 0.10 can be (wt% − wt% ) wt% considered to be very accurate. This is the case for the products C 2H4, C 2H6, C 3H6 and C3H4 (only for COILSIM1D). Not this accurate but still acceptably accurate are the simulation results for CH 4, 1,3C 4H6, 1C 4H8 and benzene since their value for

is still smaller than 0.2. A value greater than 0.2 is obtained for (wt% − wt% ) wt% hydrogen, C2H2, toluene, iC 4H8 and 2C 4H8, so the simulated yields of these products are not very accurate. For C 2H2 the yields simulated by COILSIM1D even render a value for

greater than 1. (wt% − wt% ) wt% In Annex C, the simulation results are shown in case that mixtures of naphtha and ethane are used as steam cracker feed. Based on the calculated values for , (wt% − wt% ) wt% see Table 4.7, a high similarity with the experimental yields is again found for C2H4 and C 2H6 and a reasonably accuracy for CH 4, 1,3C 4H6, C 3H6 and benzene. Besides the simulated yields for hydrogen, C 2H2, toluene, iC 4H8 and 2C 4H8 also the ones for 1C4H8 and C3H4 are not in good agreement with the experimental results. In case that the feed consists of 50% naphtha mixed with 50% ethane, the hydrogen and methane yields are accurately simulated. This is in contrast with the other feeds.

Table 4.7: averaged over the 5 experimental conditions, (% − % ) % feedstock = mixtures of naphtha and ethane COILSIM1D COILSIM1D COILSIM1D Compound name (detailed (neural (Shannon MILANO PIONA) network) entropy) 80% naphtha + 20% ethane

4. Simulations with COILSIM1D and SIMCO 112

H2 0.318 0.342 0.303 0.155 CH4 0.017 0.122 0.073 0.046 C2H2 0.789 0.870 0.787 0.056 C2H4 0.029 0.029 0.032 0.038 C2H6 0.040 0.064 0.049 0.015 C3H4(MA)+C3H4(PD) 0.217 0.206 0.240 0.254 C3H6 0.117 0.116 0.097 0.025 1,3 C4H6 0.041 0.107 0.187 0.068 1C4H8 0.138 0.147 0.210 0.155 2C4H8 0.512 0.401 0.478 0.069 iC4H8 0.128 0.182 0.361 0.050 Benzene 0.105 0.112 0.186 0.083 Toluene 0.233 0.862 0.359 0.274 65% naphtha + 35% ethane

H2 0.320 0.328 0.302 0.128 CH4 0.074 0.196 0.137 0.040 C2H2 0.964 1.070 0.949 0.195 C2H4 0.055 0.064 0.015 0.031 C2H6 0.050 0.077 0.062 0.037 C3H4(MA)+C3H4(PD) 0.299 0.304 0.325 0.287 C3H6 0.105 0.115 0.122 0.047 1,3 C4H6 0.036 0.168 0.198 0.035 1C4H8 0.169 0.211 0.255 0.172 2C4H8 0.617 0.544 0.595 0.215 iC4H8 0.215 0.069 0.432 0.073 Benzene 0.098 0.254 0.121 0.081 Toluene 0.191 0.566 0.104 0.185 50% naphtha + 50% ethane

H2 0.055 0.093 0.083 0.052 CH4 0.040 0.055 0.043 0.077 C2H2 0.059 0.078 0.078 0.522 C2H4 0.053 0.071 0.017 0.077 C2H6 0.067 0.084 0.075 0.066 C3H4(MA)+C3H4(PD) 0.316 0.305 0.308 0.319 C3H6 0.195 0.203 0.164 0.099 1,3 C4H6 0.128 0.049 0.114 0.126 1C4H8 0.799 0.697 0.767 0.229 2C4H8 0.480 0.320 0.369 0.239 iC4H8 0.421 0.233 0.553 0.293 Benzene 0.100 0.276 0.089 0.103 Toluene 0.303 0.980 0.385 0.224 4. Simulations with COILSIM1D and SIMCO 113

Table 4.8 gives an overview of the sums of the squared differences between the simulated and experimentally obtained yields for the five different feeds for which the steam cracking process is simulated.

2 Table 4.8: Σ(wt%sim -wt%exp ) for the 5 different feeds COILSIM1D COILSIM1D COILSIM1D feedstock (detailed (neural (Shannon MILANO PIONA) network) entropy) naphtha 29.145 49.060 36.323 19.013 80% naphtha + 20% ethane 25.069 43.864 36.313 12.398 65% naphtha + 35% ethane 35.015 74.271 41.197 20.971 50% naphtha + 50% ethane 57.748 87.326 50.890 66.560 ethane 26.515 - - 67.152

For the case in which 80% naphtha + 20% ethane is used as a feed, comparison of the sums of squared differences shows that MILANO gives again the most accurate yields, since its sum of squares is the smallest. As in the case of the naphtha feed, the use of a detailed PIONA analysis provides more accurate yields than the Shannon entropy method, which in turn is more accurate than the method that uses the neural network. When the feed is a mixture of 65% naphtha and 35% ethane, simulation program MILANO provides again the most accurate yields. Also, within COILSIM1D a detailed PIONA leads again to the best simulation results, whereas the use of the neural network leads to the least accurate yields. When the feed contains 50% ethane and 50% naphtha, no longer MILANO but COILSIM1D gives the highest similarity between simulated and experimental yields. Use of the neural network still provides the least accurate yields, whereas the Shannon entropy method now gives the most accurate results.

When ethane is used as a steam cracker feed, see Annex C, some of the simulated yields that were reasonably accurate before, are now less in line with the experimental results, when comparing the values obtained for . Only the simulated yields of (wt% − wt% ) wt% C2H4, C2H6 and hydrogen are still in agreement with the experimental yields. This is also due to the lower experimental yields, sometimes even zero yields, of all the components besides ethane and ethylene. When the simulated yields from COILSIM1D are compared with those of MILANO, by looking at the sum of the squared differences (Table 4.8), it can be seen that COILSIM1D provides the most accurate yields. 4. Simulations with COILSIM1D and SIMCO 114

In general, the simulation results are in reasonable agreement with the experimental yields, but improvement is possible. A parity plot for ethylene and propylene (Figure 4.5) and benzene and toluene (Figure 4.6) for the Shannon entropy method and the use of a detailed PIONA shows the good agreement between experimental and simulated data. It is not possible to choose one simulation program over the other, because both are of comparable quality.

60

50

40

30

20 ethylene simulated yield (wt%) yield simulated 10 propylene

0 0 10 20 30 40 50 60 experimental yield (wt%)

Figure 4.5: Parity plot for ethylene and propylene 4. Simulations with COILSIM1D and SIMCO 115

12

10

8

6

4 benzene simulated yield (wt%) yield simulated 2 toluene

0 0 2 4 6 8 10 12 experimental yield (wt%)

Figure 4.6: Parity plot for benzene and toluene

Concerning the way the nafta.i file is created in COILSIM1D, the use of a detailed PIONA is preferred - if it is available - because it provides the most accurate simulation results in the largest number of cases. For the naphtha discussed above, using the neural network to obtain a detailed molecular composition must be avoided, since it generates the least accurate yields. The latter could be expected, since the development of the neural network was based on a large set of experimental data, i.e. the so-called training set. This training set, which is large enough to determine appropriate values for the network parameters, also determines the application range of the neural network, which can only be used safely for interpolation. It is obvious that the neural network can never produce accurate results if the considered naphtha differs substantially from the training samples.

In order to determine the application range of the neural network a principal component analysis was performed. This statistical technique showed that the data in the training set can be represented adequately using no less than three principal components. Figure 4.7 shows the principal component representation of the majority of the training samples. [5] 4. Simulations with COILSIM1D and SIMCO 116

Figure 4.7: Principal component representation of the training samples (black boxes) and the considered naphtha (red cross) [5]

In the principal component space shown in Figure 4.7 the considered naphtha, indicated by the red cross, falls outside this range, i.e. the ellipsoidal subspace also shown in Figure 4.7. This implies that the neural network should not be trusted to generate an accurate molecular composition, which is of course crucial when using fundamental models for process simulation. Using a wider training set for the development of the neural network for feedstock reconstruction should make it possible to resolve this issue.

4.4. Conclusions

Based on a limited set of simulation results it seems that improvements to the reaction network for steam cracking are still possible. The agreement between the simulated and experimental yields for the light olefins propylene and acetylene needs first attention. Also the simulation results obtained for the aromatics benzene and toluene need improvement. An evaluation with a wider dataset, also looking at minor products is necessary. The data obtained with the Fischer-Tropsch naphtha seem very suited for this purpose. 4. Simulations with COILSIM1D and SIMCO 117

References

[1] Van Geem K. COILSIM1D Simulation of Steam Cracking Coils - manual. 2006.

[2] Pyl S., Celie I., Van Hecke K., Van Geem K. SimCo manual. 2008.

[3] [Online] http://www.chem.polimi.it/CRECKModeling/ht0810.CKI.

[4] Kee R.J., Rupley F.M. and Miller J.A. Chemkin. Release 4.1.1, Reaction Design, Inc. 2007.

[5] Van Geem K., Pyl S., Reyniers M.F., Marin G.B. Molecular reconstruction of complex hydrocarbon mixtures based on average properties. In preparation.

5. Conclusions and future work 118

5. CONCLUSIONS AND FUTURE WORK

In this work for the first time comprehensive gas chromatography was applied for an on-line pilot plant installation. Comprehensive gas chromatography has many advantages due to the higher separation power. This has allowed to extend the database of steam cracking experiments obtained when cracking certain hydrocarbon fractions, i.e. C4 fractions containing important amounts of olefins, naphthas which contain a large amount of aromatics and heavy fractions. The unique GCxGC, because of having both a ‘time of flight’ mass spectrometer (Tof MS) and a flame ionization detector (FID), makes it also possible to analyze qualitatively and quantitatively the hydrocarbon feedstock with a precision not seen before. This will make it possible to create more detailed and accurate fundamental simulation models for complex hydrocarbon fractions.

Detailed GCxGC analyses of a Fischer-Tropsch naphtha, a petroleum naphtha and a kerosene fraction were performed, both qualitative as quantitative. First the GCxGC settings were tuned in order to give an optimal representation of both the FID and Tof-MS chromatograms. A heating rate of 3°C/min in combination with 5 seconds as modulation time seem to be the optimal settings. For each of the studied fractions a detailed PIONA was obtained and compared to results from 1D gas chromatography. For the naphtha fractions only small differences were observed and these are mainly due to peak overlap between (iso)paraffins, naphthenes and aromatics. This peak overlap does not occur in GCxGC chromatograms since the components that overlap in 1D are further separated in the 2 nd column based on differences in polarity. Greater differences between 1D and 2D results were encountered for the kerosene fraction. This is not surprising since this heavier fraction contains more aromatics which renders more possibilities for peak overlap with (iso)paraffins and naphthenes. GCxGC is thus preferred over 1D GC to obtain accurate molecular feedstock compositions, especially for heavier fractions like kerosenes. GCxGC can further be used to obtain a more complete characterization of also gas condensates and other heavier fractions. An adjusted temperature program and the combination of FID and Tof-MS make GCxGC also suitable for providing accurate and more detailed analyses of the cracker effluent. 5. Conclusions and future work 119

An experimental study of the cracking behavior of two C4 fractions, a bio-derived naphtha and two heavy condensates was carried out on the pilot plant set-up for steam cracking. The effect of the process conditions on the product yields was determined. The ethylene yield increased with increasing COT, propylene showed a maximum, and the aromatic fraction increased. An increased dilution led in general to higher light olefin selectivities, but decreased the selectivity of ethane, methane, and aromatics. Addition of DMDS to the FT naphtha had a detrimental effect on the amount of coke deposited in the reactor. An alternative position for injection of the internal standard was also tested. Evaluation of the mass balances showed that more stable results were obtained when nitrogen was added to the effluent after the coolers and fluctuations were observed when adding the internal standard before the coolers. From these tests it seems that the optimal position for injection of the internal standard is after the coolers. A second method for verifying the balances would certainly be a valuable addition to the set-up. Another adjustment that needs to be made to the pilot plant set-up is the addition of a controlled heating of the transfer line which carries the + reactor effluent from the injector block to the C 5 GC’s.

Finally, simulations were performed with COILSIM1D. The steam cracking process was simulated under different experimental conditions for pure naphtha, pure ethane and mixtures of naphtha and ethane. Based on the limited set of simulation results it seems that improvements to the reaction network for steam cracking are still possible. The agreement between the simulated and experimental yields for the light olefins propylene and acetylene needs first attention. Also the simulation results obtained for the aromatics benzene and toluene need improvement. An evaluation with a wider dataset, also looking at minor products is necessary. The data obtained with the Fischer-Tropsch naphtha seem very suited for this purpose. Annex A: Feedstock compositions I

Annex

A. Feedstock compositions with GCxGC

Fischer-Tropsch Naphtha Area/CF Component Name RT 1D RT 2D CF MW Area Area/CF wt% mole% /MW propane 4.667 0.080 0.959 44.096 0.456 0.476 0.172 0.011 0.394 isobutane 4.917 0.080 1.049 58.122 2.786 2.657 0.963 0.046 1.670 butane 5.167 0.040 1.026 58.122 4.263 4.153 1.506 0.071 2.610 2-Me-butane 5.917 0.010 1.000 72.149 13.672 13.672 4.956 0.189 6.923 pentane 6.250 0.051 1.000 72.149 12.646 12.646 4.584 0.175 6.403 2,2-diMe-butane 6.917 0.037 1.107 86.175 0.381 0.344 0.125 0.004 0.146 2,3-diMe-butane 7.583 0.039 1.107 86.175 1.627 1.469 0.532 0.017 0.623 2-Me-pentane 7.667 0.052 1.107 86.175 17.555 15.852 5.746 0.184 6.720 3-Me-pentane 8.083 0.015 1.107 86.175 10.821 9.772 3.542 0.113 4.142 hexane 8.583 0.054 1.000 86.175 21.472 21.472 7.784 0.249 9.103 2,2-diMe-pentane 9.333 0.053 1.111 100.202 0.457 0.412 0.149 0.004 0.150 Me-cyclopentane 9.417 0.079 1.136 84.160 2.481 2.183 0.791 0.026 0.948 2,4-diMe-pentane 9.500 0.053 1.111 100.202 1.343 1.209 0.438 0.012 0.441 3,3-diMe-pentane 10.500 0.055 1.111 100.202 0.374 0.337 0.122 0.003 0.123 cyclohexane 10.667 0.060 1.000 84.160 0.726 0.726 0.263 0.009 0.315 2-Me-hexane 10.917 0.056 1.176 100.202 17.401 14.791 5.362 0.148 5.393 2,3-diMe-pentane 11.083 0.019 1.111 100.202 2.357 2.122 0.769 0.021 0.773 1,1diMecypentane 11.250 0.019 1.136 98.186 0.340 0.299 0.109 0.003 0.111 3-Me-hexane 11.333 0.057 1.111 100.202 16.292 14.663 5.315 0.146 5.346 1,t3-diMecypentane 11.667 0.058 1.000 98.186 0.887 0.887 0.322 0.009 0.330 3-Et-pentane 11.833 0.021 1.115 100.202 2.197 1.971 0.714 0.020 0.718 1,t2diMecypentane 11.917 0.058 1.000 98.186 1.187 1.187 0.430 0.012 0.442 heptane 12.417 0.058 1.000 100.202 21.969 21.969 7.964 0.219 8.010 Me-cyclohexane 13.417 0.061 1.115 98.186 0.727 0.652 0.236 0.007 0.243 1,1,3triMecypentane 13.500 0.024 1.136 112.213 0.727 0.640 0.232 0.006 0.208 2,2-diMe-C6 13.500 0.056 1.115 114.229 0.384 0.345 0.125 0.003 0.110 2,5-diMehexane 13.917 0.056 1.115 114.229 0.810 0.726 0.263 0.006 0.232 Etcyclopentane 14.000 0.024 1.136 98.186 0.917 0.807 0.293 0.008 0.300 2,4-diMehexane 14.083 0.056 1.115 114.229 1.926 1.728 0.626 0.015 0.553 1,2,4triMecypentane 14.417 0.022 1.000 112.213 0.501 0.501 0.181 0.004 0.163 3,3-diMe-hexane 14.500 0.020 1.000 114.229 0.048 0.048 0.017 0.000 0.015 1,2,3triMecypentane 14.750 0.021 1.000 112.213 0.208 0.208 0.075 0.002 0.068 2,3,4triMepentane 14.917 0.020 1.000 114.229 0.011 0.011 0.004 0.000 0.004 toluene 15.167 0.075 1.123 92.138 0.333 0.297 0.108 0.003 0.118 2,3-diMehexane 15.417 0.021 1.115 114.229 0.959 0.861 0.312 0.008 0.275 2Me-3Et-pentane 15.500 0.058 1.000 114.229 0.070 0.070 0.025 0.001 0.022 2-Me-heptane 15.667 0.021 1.115 114.229 14.989 13.445 4.874 0.118 4.300 4-Me-heptane 15.750 0.012 1.000 114.229 0.936 0.936 0.339 0.008 0.299 3,4-diMe-hexane 15.917 0.022 1.000 114.229 0.474 0.474 0.172 0.004 0.152 3-Me-heptane 16.083 0.022 1.115 114.229 13.478 12.089 4.382 0.106 3.866 1,c3-diMecyhexane 16.333 0.025 1.000 112.213 0.591 0.591 0.214 0.005 0.192 t-1,4-diMecyhexane 16.417 0.025 1.000 112.213 0.293 0.293 0.106 0.003 0.095 Annex A: Feedstock compositions II

Area/CF Component Name RT 1D RT 2D CF MW Area Area/CF wt% mole% /MW 2,2,3-triMe-C6 16.667 0.056 1.000 128.255 0.117 0.117 0.042 0.001 0.033 1,1-diMecyhexane 16.667 0.063 1.000 112.213 0.196 0.196 0.071 0.002 0.064 c-1,3-EtMecypentane 16.833 0.061 1.000 114.229 0.295 0.295 0.107 0.003 0.094 t-1,3-EtMecypentane 16.917 0.061 1.000 114.229 0.211 0.211 0.076 0.002 0.067 t-1,2-EtMecypentane 17.000 0.025 1.000 114.229 0.737 0.737 0.267 0.006 0.236 1,4-octadiene 17.167 0.062 1.000 110.197 0.060 0.060 0.022 0.001 0.020 t-1,2-diMecyhexane 17.333 0.063 1.136 112.213 0.194 0.171 0.062 0.002 0.056 octane 17.417 0.025 1.000 114.229 15.444 15.444 5.598 0.135 4.939 1,3-diMe-cyhexane 17.750 0.027 1.127 112.213 0.481 0.427 0.155 0.004 0.139 1MeEtcyclopentane 18.083 0.025 1.000 114.229 0.166 0.166 0.060 0.001 0.053 2,3,4triMehexane 18.417 0.023 1.000 128.255 0.177 0.177 0.064 0.001 0.050 2,2-diMe-3Et-C5 18.583 0.057 1.000 128.255 0.264 0.264 0.096 0.002 0.075 c1Me2Etcyclopentane 18.667 0.063 1.000 114.229 0.110 0.110 0.040 0.001 0.035 2,4-diMe-C7 18.750 0.058 1.000 128.255 1.069 1.069 0.388 0.008 0.305 propylcyclopentane 19.000 0.065 1.000 112.213 0.168 0.168 0.061 0.001 0.055 2,6-diMe-C7 19.167 0.058 1.000 128.255 1.558 1.558 0.565 0.012 0.444 c-1,3,5-triMe-cyC6 19.250 0.064 1.000 126.239 0.881 0.881 0.319 0.007 0.255 3,3-diMeheptane 19.500 0.059 1.000 128.255 3.210 3.210 1.163 0.025 0.914 1,1,3triMecyhexane 19.583 0.062 1.000 126.239 0.166 0.166 0.060 0.001 0.048 2.5-diMe-C7 19.667 0.058 1.000 128.255 0.220 0.220 0.080 0.002 0.063 t-1,3-diEtcypentane 19.750 0.026 1.000 126.239 0.288 0.288 0.104 0.002 0.083 diMe-C7 19.833 0.060 1.000 128.255 0.130 0.130 0.047 0.001 0.037 t-1,2-diEtcypentane 19.917 0.025 1.000 126.239 0.300 0.300 0.109 0.002 0.087 2-nonene 20.167 0.059 1.000 126.239 0.286 0.286 0.104 0.002 0.083 Etbenzene 20.250 0.078 1.096 106.165 0.141 0.129 0.047 0.001 0.044 1,2,4-triMecyhexane 20.417 0.026 1.000 126.239 0.348 0.348 0.126 0.003 0.101 t-1,3,5-triMe-cyC6 20.583 0.059 1.000 126.239 0.065 0.065 0.024 0.001 0.019 2,3-diMeheptane 20.583 0.062 1.000 128.255 1.002 1.002 0.363 0.008 0.285 m-xylene 20.667 0.078 1.096 106.165 0.342 0.312 0.113 0.003 0.108 p-xylene 20.750 0.077 1.096 106.165 0.237 0.216 0.078 0.002 0.074 3,4-diMeheptane 20.833 0.059 1.000 128.255 0.419 0.419 0.152 0.003 0.119 4Me-octane 21.000 0.059 1.000 128.255 2.415 2.415 0.875 0.019 0.688 2-Me-octane 21.160 0.060 1.000 128.255 10.738 10.738 3.892 0.084 3.059 2Mepropylcypentane 21.333 0.059 1.000 126.239 0.024 0.024 0.009 0.000 0.007 3-Et-heptane 21.500 0.060 1.000 126.239 8.062 8.062 2.923 0.064 2.333 3-Me-octane 21.583 0.062 1.000 128.255 0.043 0.043 0.016 0.000 0.012 6Me-1octene 21.750 0.057 1.000 126.239 0.286 0.286 0.104 0.002 0.083 2,4,6triMeheptane 21.917 0.057 1.000 142.282 0.150 0.150 0.054 0.001 0.039 o-xylene 22.000 0.081 1.096 106.165 0.172 0.157 0.057 0.001 0.054 1,1,2-triMecyhexane 22.083 0.064 1.000 126.239 0.094 0.094 0.034 0.001 0.027 1Me-2prop-cypentane 22.167 0.062 1.000 126.239 0.529 0.529 0.192 0.004 0.153 c-1Et-2Me-cyhexane 22.333 0.058 1.000 126.239 0.582 0.582 0.211 0.005 0.168 t-1Et-4Me-cyhexane 22.500 0.063 1.000 126.239 0.204 0.204 0.074 0.002 0.059 i-butylcyclopentane 22.667 0.063 1.000 126.239 0.199 0.199 0.072 0.002 0.058 nonane 23.000 0.061 1.000 128.255 8.963 8.963 3.249 0.070 2.553 Et-Me-cyhexane 23.417 0.065 1.136 126.239 0.289 0.255 0.092 0.002 0.074 Et-Me-cyclohexane 23.583 0.065 1.136 126.239 0.095 0.084 0.030 0.001 0.024 isopropylbenzene 23.750 0.078 1.000 120.192 0.005 0.005 0.002 0.000 0.002 3,3,5-triMe-C7 23.833 0.058 1.000 142.282 0.321 0.321 0.116 0.002 0.082 1Me2propcypentane 23.917 0.064 1.000 126.239 0.025 0.025 0.009 0.000 0.007 3Me-cyoctene 24.000 0.058 1.000 126.239 0.133 0.133 0.048 0.001 0.038 Annex A: Feedstock compositions III

Area/CF Component Name RT 1D RT 2D CF MW Area Area/CF wt% mole% /MW 2,3,6-triMeheptane 24.083 0.058 1.000 142.282 0.971 0.971 0.352 0.007 0.249 isopropylcyhexane 24.083 0.068 1.136 126.239 0.070 0.061 0.022 0.000 0.018 1Mebutylcypentane 24.250 0.059 1.000 138.250 0.142 0.142 0.052 0.001 0.038 4,4-diMe-octane 24.417 0.058 1.000 142.282 0.407 0.407 0.148 0.003 0.105 2,6-diMe-octane 24.500 0.059 1.000 142.282 1.271 1.271 0.461 0.009 0.326 EtMecyclohexane 24.583 0.067 1.136 126.239 0.016 0.014 0.005 0.000 0.004 propylcyclohexane 24.667 0.065 1.000 126.239 0.294 0.294 0.107 0.002 0.085 2,7-diMe-octane 24.750 0.058 1.000 142.282 0.793 0.793 0.288 0.006 0.204 2,5-diMe-octane 24.833 0.059 1.000 142.282 0.571 0.571 0.207 0.004 0.147 n-butylcypentane 24.833 0.064 1.000 126.239 0.216 0.216 0.078 0.002 0.062 3,3-diMe-octane 25.000 0.059 1.000 142.282 1.178 1.178 0.427 0.008 0.302 2,3,4-triMe-heptane 25.083 0.059 1.000 128.255 0.219 0.219 0.079 0.002 0.062 3Me-5Et-heptane 25.333 0.059 1.000 142.282 1.049 1.049 0.380 0.007 0.269 2Meoctahydropentalene 25.333 0.080 1.000 124.223 0.002 0.002 0.001 0.000 0.001 propylbenzene 25.417 0.079 1.084 120.192 0.070 0.064 0.023 0.001 0.020 1Me3(2Mepr)cypentane 25.583 0.059 1.000 142.282 0.524 0.524 0.190 0.004 0.135 1,3-MeEtbenzene 25.833 0.079 1.000 120.192 0.268 0.268 0.097 0.002 0.082 1Et-2,3diMecyhexane 25.917 0.067 1.000 140.266 0.000 0.000 0.000 0.000 0.000 1,4-MeEtbenzene 25.917 0.079 1.000 120.192 0.082 0.082 0.030 0.001 0.025 1,1,2,3tetraMecyhexane 26.000 0.064 1.000 140.266 0.043 0.043 0.016 0.000 0.011 2,3-diMe-C8 26.167 0.060 1.000 142.282 1.659 1.659 0.601 0.012 0.426 1Et2,4diMecyhexane 26.250 0.066 1.000 140.266 0.002 0.002 0.001 0.000 0.000 1,3,5-triMebenzene 26.250 0.078 1.205 120.192 0.123 0.102 0.037 0.001 0.031 5Me-nonane 26.333 0.059 1.000 142.282 1.527 1.527 0.554 0.011 0.392 c-1Et2Mecyhexane 26.417 0.064 1.000 126.239 0.081 0.081 0.029 0.001 0.024 4Me-nonane 26.583 0.060 1.220 142.282 3.813 3.127 1.133 0.022 0.803 2Me-nonane 26.667 0.060 1.119 142.282 1.566 1.400 0.508 0.010 0.360 3Et-C8 26.833 0.060 1.000 142.282 0.559 0.559 0.203 0.004 0.144 1,2-MeEtbenzene 26.833 0.082 1.000 120.192 0.070 0.070 0.025 0.001 0.021 1,1,2,3tetraMecyhexane 26.917 0.063 1.000 140.266 0.032 0.032 0.012 0.000 0.008 3Me-nonane 27.000 0.060 1.000 142.282 3.001 3.001 1.088 0.021 0.770 1iprop3Mecyhexane 27.167 0.063 1.000 140.266 0.104 0.104 0.038 0.001 0.027 2,6diMe4octene 27.417 0.058 1.000 140.266 0.169 0.169 0.061 0.001 0.044 t-1iprop-3Me-cyC6 27.667 0.064 1.000 140.266 0.112 0.112 0.041 0.001 0.029 1,2,4-triMebenzene 27.667 0.081 1.000 120.192 0.312 0.312 0.113 0.003 0.095 1- 27.750 0.063 1.000 140.266 0.140 0.140 0.051 0.001 0.036 1butyl3Mecypentane 27.917 0.063 1.000 140.266 0.223 0.223 0.081 0.002 0.058 1but2Etcybutane 28.083 0.063 1.000 142.282 0.117 0.117 0.042 0.001 0.030 1Me2propcyhexane 28.333 0.064 1.000 140.266 0.074 0.074 0.027 0.001 0.019 decane 28.500 0.061 1.000 142.282 3.412 3.412 1.237 0.024 0.876 bicyclodecane 28.917 0.058 1.000 138.250 0.103 0.103 0.037 0.001 0.027 1,2,3-triMebenzene 29.167 0.001 1.205 120.192 0.012 0.010 0.004 0.000 0.003 1Et2,4diMebenzene 29.250 0.001 1.000 134.218 0.030 0.030 0.011 0.000 0.008 1,1,3,3,5pentaMecyhexane 29.250 0.059 1.000 154.293 0.054 0.054 0.019 0.000 0.013 5Et-2Me-C8 29.417 0.059 1.000 156.308 0.661 0.661 0.240 0.004 0.155 2,5diMe-nonane 29.667 0.059 1.000 156.308 0.668 0.668 0.242 0.004 0.156 1Meprop-cyhexane 29.750 0.066 1.000 140.266 0.012 0.012 0.004 0.000 0.003 1Me3ipropbenzene 29.833 0.008 1.000 134.218 0.017 0.017 0.006 0.000 0.005 2,6diMe-nonane 29.833 0.059 1.000 156.308 0.357 0.357 0.129 0.002 0.083 6Et-2Me-octane 30.083 0.059 1.000 156.308 0.581 0.581 0.210 0.004 0.136 butylcyclohexane 30.250 0.062 1.000 140.266 0.096 0.096 0.035 0.001 0.025 Annex A: Feedstock compositions IV

Area/CF Component Name RT 1D RT 2D CF MW Area Area/CF wt% mole% /MW pentylcyclopentane 30.417 0.065 1.000 140.266 0.066 0.066 0.024 0.000 0.017 diMe-C9 30.500 0.059 1.000 156.308 0.592 0.592 0.215 0.004 0.138 1Me3propbenzene 30.583 0.080 1.000 134.218 0.022 0.022 0.008 0.000 0.006 3,7diMe-nonane 30.667 0.060 1.000 156.308 0.402 0.402 0.146 0.003 0.094 1Me4propbenzene 30.750 0.079 1.000 134.218 0.063 0.063 0.023 0.000 0.017 1,4-diEt-benzene 30.917 0.079 1.000 110.197 0.028 0.028 0.010 0.000 0.009 n-butyl-benzene 31.083 0.079 1.232 134.218 0.088 0.072 0.026 0.001 0.020 Me-prop-benzene 31.250 0.082 1.000 134.218 0.003 0.003 0.001 0.000 0.001 diMe-nonane 31.333 0.060 1.000 156.308 0.480 0.480 0.174 0.003 0.112 5Me-decane 31.667 0.060 1.000 156.308 0.590 0.590 0.214 0.004 0.138 4Me-decane 31.833 0.060 1.232 156.308 0.527 0.428 0.155 0.003 0.100 2Me-decane 32.000 0.060 1.233 156.308 0.701 0.568 0.206 0.004 0.133 3Et-nonane 32.250 0.060 1.000 156.308 0.118 0.118 0.043 0.001 0.028 3Me-decane 32.333 0.060 1.000 156.308 0.547 0.547 0.198 0.004 0.128 diMe-Et-benzene 32.500 0.082 1.000 134.218 0.039 0.039 0.014 0.000 0.011 undecane 33.833 0.061 1.000 156.308 0.692 0.692 0.251 0.004 0.162 4,6-diMe-C10 34.500 0.059 1.000 170.335 0.163 0.163 0.059 0.001 0.035 2,5-diMe-C10 34.750 0.059 1.000 170.335 0.184 0.184 0.067 0.001 0.039 diMe-C10 35.083 0.059 1.000 170.335 0.124 0.124 0.045 0.001 0.027 EtMe-C9 35.333 0.059 1.000 170.335 0.125 0.125 0.045 0.001 0.027 diMe-C10 35.583 0.060 1.000 170.335 0.130 0.130 0.047 0.001 0.028 diMe-C10 35.917 0.060 1.000 170.335 0.085 0.085 0.031 0.001 0.018 diMe-C10 36.083 0.060 1.000 170.335 0.080 0.080 0.029 0.000 0.017 diMe-C10 36.417 0.060 1.000 170.335 0.064 0.064 0.023 0.000 0.014 5Me-C11 36.667 0.060 1.000 170.335 0.207 0.207 0.075 0.001 0.044 4Me-C11 36.833 0.060 1.000 170.335 0.098 0.098 0.035 0.001 0.021 2Me-C11 37.083 0.060 1.000 170.335 0.199 0.199 0.072 0.001 0.043 3Me-C11 37.417 0.060 1.000 170.335 0.145 0.145 0.052 0.001 0.031 dodecane 38.750 0.062 1.000 170.335 0.172 0.172 0.062 0.001 0.037

P I O N A SUM

3 0.172 0.000 0.000 0.000 0.000 0.172

4 1.506 0.963 0.000 0.000 0.000 2.468

5 4.584 4.956 0.000 0.000 0.000 9.540

6 7.784 9.946 0.000 1.055 0.000 18.784

7 7.964 12.870 0.000 1.389 0.108 22.331

8 5.598 11.140 0.022 1.708 0.305 18.773

9 3.249 10.745 0.255 1.708 0.331 16.289

10 1.237 6.519 0.112 0.598 0.089 8.555

11 0.251 2.172 0.000 0.019 0.000 2.443

12 0.062 0.581 0.000 0.000 0.000 0.644

SUM 32.407 59.893 0.389 6.477 0.833 100

Annex A: Feedstock compositions V

Petroleum Naphtha A Area/CF Component Name RT 1D RT 2D CF MW Area Area/CF wt% mole% /MW propane 4.400 0.009 0.959 44.096 0.023 0.024 0.005 0.001 0.011 i-butane 4.667 0.027 1.049 58.123 1.411 1.345 0.266 0.023 0.452 n-butane 4.867 0.063 1.026 58.123 8.373 8.157 1.611 0.140 2.741 2-Me-butane 5.733 0.058 1.000 72.150 20.307 20.307 4.010 0.281 5.496 n-pentane 6.200 0.048 1.000 72.150 29.383 29.383 5.802 0.407 7.953 2,2-diMe-butane 7.067 0.024 1.107 86.177 0.627 0.567 0.112 0.007 0.128 cyclopentane 7.933 0.036 1.136 70.134 5.427 4.776 0.943 0.068 1.330 2,3-diMe-butane 7.933 0.062 1.107 86.177 2.145 1.937 0.382 0.022 0.439 2-Me-pentane 8.067 0.064 1.107 86.177 19.723 17.810 3.517 0.207 4.036 3-Me-pentane 8.667 0.013 1.107 86.177 10.996 9.929 1.961 0.115 2.250 n-hexane 9.333 0.055 1.000 86.177 32.458 32.458 6.409 0.377 7.355 2,2-diMe-pentane 10.533 0.056 1.000 100.203 0.516 0.516 0.102 0.005 0.101 Me-cyclopentane 10.667 0.059 1.136 84.161 7.703 6.779 1.339 0.081 1.573 2,4-diMe-pentane 10.867 0.065 1.111 100.203 0.202 0.182 0.036 0.002 0.035 2,2,3-triMe-butane 11.200 0.049 1.000 100.203 0.044 0.044 0.009 0.000 0.009 benzene 12.133 0.022 1.148 78.113 2.060 1.794 0.354 0.023 0.449 3,3-diMe-pentane 12.467 0.003 1.111 100.203 0.063 0.057 0.011 0.001 0.011 cyclohexane 12.733 0.034 1.000 84.161 13.632 13.632 2.692 0.162 3.163 2-Me-hexane 13.333 0.032 1.176 100.203 12.337 10.486 2.071 0.105 2.044 2,3-diMe-pentane 13.533 0.003 1.111 100.203 4.805 4.324 0.854 0.043 0.843 1,1-diMe-cy-C5 13.667 0.057 1.136 98.188 0.691 0.608 0.120 0.006 0.121 3-Me-hexane 14.000 0.003 1.000 100.203 14.351 14.351 2.834 0.143 2.797 1,t3-diMe-cy-C5 14.533 0.008 1.000 98.188 7.226 7.226 1.427 0.074 1.437 1,c3-diMe-cy-C5 14.733 0.029 1.000 98.188 6.625 6.625 1.308 0.067 1.318 3-Et-pentane 14.800 0.050 1.115 100.203 0.612 0.549 0.108 0.005 0.107 1,t2-diMe-cy-C5 14.933 0.063 1.000 98.188 10.709 10.709 2.115 0.109 2.130 n-heptane 15.933 0.036 1.000 100.203 31.720 31.720 6.263 0.317 6.182 Me-cy-C6 17.800 0.015 1.115 98.188 35.350 31.709 6.261 0.323 6.306 1,1,3-triMe-cy-C5 18.067 0.007 1.136 112.214 1.356 1.194 0.236 0.011 0.208 Et-cy-C5 18.867 0.003 1.136 98.188 5.077 4.468 0.882 0.046 0.889 2,5-diMe-C6 19.000 0.020 1.115 114.230 1.022 0.917 0.181 0.008 0.157 2,4-diMe-C6 19.200 0.025 1.115 114.230 1.619 1.452 0.287 0.013 0.248 1,2,4-triMe-cy-C5 19.733 0.034 1.000 112.214 3.812 3.812 0.753 0.034 0.663 3,3-diMe-C6 19.933 0.006 1.000 114.230 0.088 0.088 0.017 0.001 0.015 1,2,3-triMe-cy-C5 20.467 0.035 1.000 112.214 7.268 7.268 1.435 0.065 1.265 2,3,4-triMe-C5 20.733 0.058 1.000 114.230 2.645 2.645 0.522 0.023 0.452 toluene 21.200 0.046 1.123 92.140 8.909 7.935 1.567 0.086 1.682 2,3-diMe-C6 22.067 0.012 1.115 114.230 1.930 1.731 0.342 0.015 0.296 2-Me-3Et-C5 22.133 0.011 1.000 114.230 0.827 0.827 0.163 0.007 0.141 2-Me-C7 22.733 0.012 1.115 114.230 13.711 12.299 2.429 0.108 2.103 4-Me-C7 22.933 0.012 1.000 114.230 3.498 3.498 0.691 0.031 0.598 3,4-diMe-C6 23.067 0.012 1.000 114.230 0.974 0.974 0.192 0.009 0.167 3-Me-C7 23.600 0.013 1.115 114.230 5.669 5.085 1.004 0.045 0.869 1,c3-diMe-cy-C6 23.667 0.017 1.115 112.214 14.327 12.852 2.538 0.115 2.237 t1,4-diMe-cy-C6 23.933 0.019 1.000 112.214 2.135 2.135 0.422 0.019 0.372 1,1-diMe-cy-C6 24.533 0.017 1.163 112.214 0.444 0.382 0.075 0.003 0.066 c1,3-EtMe-cy-C5 25.000 0.018 1.000 112.214 1.640 1.640 0.324 0.015 0.285 t1,3-EtMe-cy-C5 25.267 0.019 1.000 112.214 1.015 1.015 0.201 0.009 0.177 t1,2-EtMe-cy-C5 25.467 0.019 1.000 112.214 6.117 6.117 1.208 0.055 1.064 t1,2-diMe-cy-C6 26.000 0.002 1.136 112.214 4.868 4.284 0.846 0.038 0.745 Annex A: Feedstock compositions VI

Area/CF Component Name RT 1D RT 2D CF MW Area Area/CF wt% mole% /MW n-octane 26.733 0.015 1.000 114.230 21.704 21.704 4.286 0.190 3.710 1,3-diMe-cy-C6 26.933 0.015 1.136 112.214 2.520 2.218 0.438 0.020 0.386 1MeEt-cy-C5 27.733 0.013 1.000 112.214 0.654 0.654 0.129 0.006 0.114 2,3,4-triMe-C6 28.867 0.013 1.000 128.257 0.184 0.184 0.036 0.001 0.028 c1Me2Et-cy-C5 29.067 0.024 1.000 112.214 0.297 0.297 0.059 0.003 0.052 2,2-diMe-3Et-C5 29.333 0.012 1.000 128.257 0.215 0.215 0.042 0.002 0.033 c1,2-diMecy-C6 29.800 0.028 1.136 112.214 0.430 0.378 0.075 0.003 0.066 2,4-diMe-C7 29.867 0.014 1.000 128.257 1.879 1.879 0.371 0.015 0.286 propyl-cy-C5 30.400 0.026 1.000 112.214 0.952 0.952 0.188 0.008 0.166 Et-cy-C6 30.467 0.027 1.000 112.214 7.603 7.603 1.501 0.068 1.323 2,6-diMe-C7 30.733 0.015 1.000 128.257 4.254 4.254 0.840 0.033 0.648 1,1,3triMe-cy-C6 31.200 0.023 1.136 126.241 9.366 8.242 1.627 0.065 1.275 2,5-diMe-C7 31.600 0.015 1.000 128.257 2.256 2.256 0.445 0.018 0.343 t-1,3-diEt-cy-C5 32.067 0.020 1.000 126.241 1.040 1.040 0.205 0.008 0.161 t-1,2-diEt-cy-C5 32.333 0.019 1.000 126.241 0.528 0.528 0.104 0.004 0.082 Etbenzene 32.867 0.060 1.096 106.167 2.214 2.021 0.399 0.019 0.372 2-nonene 33.000 0.021 1.000 126.241 3.568 3.568 0.705 0.028 0.552 1,2,4-triMe-cy-6 33.267 0.023 1.000 126.241 2.417 2.417 0.477 0.019 0.374 t-1,3,5-triMe-cyC6 33.467 0.011 1.000 126.241 0.286 0.286 0.056 0.002 0.044 m-xylene 34.000 0.058 1.096 106.167 6.544 5.973 1.179 0.056 1.099 p-xylene 34.267 0.057 1.096 106.167 0.589 0.537 0.106 0.005 0.099 2,3-diMe-C7 34.400 0.017 1.000 128.257 2.457 2.457 0.485 0.019 0.374 3,4-diMe-C7 34.733 0.017 1.000 128.257 0.755 0.755 0.149 0.006 0.115 octahydropentalene 34.800 0.039 1.000 110.199 0.574 0.574 0.113 0.005 0.102 1Me3(1MeEt)-cy-C5 35.000 0.023 1.000 126.241 1.299 1.299 0.257 0.010 0.201 4Me-C8 35.467 0.017 1.000 128.257 2.346 2.346 0.463 0.018 0.357 2-Me-C8 35.667 0.017 1.000 128.257 2.933 2.933 0.579 0.023 0.447 2Mepropyl-cy-C5 35.933 0.024 1.000 126.241 1.028 1.028 0.203 0.008 0.159 3-Et-C7 36.333 0.026 1.000 128.257 1.929 1.929 0.381 0.015 0.294 3-Me-C8 36.533 0.018 1.000 128.257 4.301 4.301 0.849 0.034 0.655 6Me-1octene 36.733 0.025 1.000 126.242 0.295 0.295 0.058 0.002 0.046 2,4,6triMe-C7 36.933 0.015 1.000 142.284 0.005 0.005 0.001 0.000 0.001 1,2,3triMe-cy-C6 37.067 0.026 1.000 126.241 0.922 0.922 0.182 0.007 0.143 o-xylene 37.133 0.065 1.096 106.167 2.576 2.351 0.464 0.022 0.432 1,1,2-triMe-cy-C6 37.333 0.027 1.000 126.241 0.298 0.298 0.059 0.002 0.046 1Me-2prop-cy-C5 38.067 0.025 1.000 126.241 2.149 2.149 0.424 0.017 0.332 c-1Et-2Me-cy-C6 38.200 0.026 1.000 126.241 3.229 3.229 0.638 0.026 0.500 t-1Et-4Me-cy-C6 38.467 0.028 1.000 126.241 1.469 1.469 0.290 0.012 0.227 i-butyl-cy-C5 38.933 0.026 1.000 126.241 1.098 1.098 0.217 0.009 0.170 n-nonane 40.600 0.021 1.000 128.257 13.333 13.333 2.633 0.104 2.030 Et-Me-cy-C6 40.867 0.031 1.136 126.241 2.149 1.891 0.373 0.015 0.292 Et-Me-cy-C6 41.267 0.032 1.136 126.241 0.424 0.373 0.074 0.003 0.058 isopropylbenzene 41.800 0.063 1.000 120.194 0.359 0.359 0.071 0.003 0.058 3,3,5-triMe-C7 42.333 0.019 1.000 142.284 0.066 0.066 0.013 0.000 0.009 3Me-cyclooctene 42.333 0.038 1.000 124.226 2.213 2.213 0.437 0.018 0.348 isopropyl-cy-C6 42.667 0.033 1.136 140.268 0.533 0.469 0.093 0.003 0.065 2,3,6-triMe-C7 43.067 0.018 1.000 142.284 0.408 0.408 0.081 0.003 0.056 1Mebutyl-cy-C5 43.067 0.031 1.000 136.234 0.271 0.271 0.053 0.002 0.039 Me-octahydropentalene 43.267 0.039 1.000 124.226 0.197 0.197 0.039 0.002 0.031 2,4,6-triMe-C7 43.400 0.018 1.000 142.284 0.859 0.859 0.170 0.006 0.118 4,4-diMe-C8 43.667 0.019 1.000 142.284 0.092 0.092 0.018 0.001 0.013 Annex A: Feedstock compositions VII

Area/CF Component Name RT 1D RT 2D CF MW Area Area/CF wt% mole% /MW EtMe-cy-C6 43.933 0.035 1.136 140.268 0.433 0.381 0.075 0.003 0.053 propyl-cy-C6 44.267 0.026 1.000 140.268 3.071 3.071 0.606 0.022 0.428 2,6-diMe-C8 44.467 0.018 1.000 142.284 0.644 0.644 0.127 0.005 0.088 n-butyl-cy-C5 44.933 0.030 1.000 126.241 1.124 1.124 0.222 0.009 0.174 2,7-diMe-C8 45.067 0.018 1.000 142.284 0.154 0.154 0.030 0.001 0.021 2,5-diMe-C8 45.200 0.022 1.000 142.284 0.585 0.585 0.116 0.004 0.080 3,3-diMe-C8 45.733 0.019 1.000 142.284 4.201 4.201 0.830 0.030 0.577 2,3,4-triMe-C6 46.000 0.021 1.000 128.258 1.211 1.211 0.239 0.009 0.184 2Me-octahydropentalene 46.133 0.043 1.000 124.226 0.300 0.300 0.059 0.002 0.047 propylbenzene 46.200 0.063 1.084 120.194 0.634 0.586 0.116 0.005 0.095 3Me-5Et-C7 46.733 0.020 1.000 142.284 2.720 2.720 0.537 0.019 0.373 1Me3(2Mepr)-cy-C5 47.067 0.026 1.000 140.269 0.468 0.468 0.092 0.003 0.065 1,3-MeEt-benzene 47.333 0.065 1.000 120.194 1.368 1.368 0.270 0.011 0.222 t-octahydro-1Hindene 47.400 0.045 1.000 124.226 0.492 0.492 0.097 0.004 0.077 1Et-2,3diMe-cy-C6 47.467 0.030 1.000 140.268 0.144 0.144 0.028 0.001 0.020 1,4-MeEt-benzene 47.667 0.065 1.000 120.194 0.705 0.705 0.139 0.006 0.115 1,1,2,3-tetraMe-cy-C6 48.067 0.033 1.000 140.268 1.413 1.413 0.279 0.010 0.197 1,3,5-triMe-benzene 48.533 0.064 1.205 120.194 0.722 0.599 0.118 0.005 0.097 2,3-diMe-C8 48.733 0.022 1.000 142.284 0.633 0.633 0.125 0.004 0.087 4Et-2,3diMe-2-C6= 48.733 0.031 1.000 140.268 0.215 0.215 0.043 0.002 0.030 1Et-2,4diMe-cy-C6 49.133 0.029 1.000 140.268 0.308 0.308 0.061 0.002 0.043 5Me-C9 49.600 0.021 1.000 142.284 0.356 0.356 0.070 0.003 0.049 c-1Et2Me-cy-C6 49.733 0.036 1.000 126.241 0.279 0.279 0.055 0.002 0.043 4Me-C9 49.867 0.021 1.220 142.284 1.495 1.226 0.242 0.009 0.168 1,2-MeEt-benzene 49.933 0.004 1.000 120.194 0.778 0.778 0.154 0.006 0.126 1,2diMe-3iprop-cy-C5 50.200 0.029 1.000 140.269 0.171 0.171 0.034 0.001 0.024 octahydro-2,5diMe-pentalene 50.200 0.036 1.000 138.253 0.161 0.161 0.032 0.001 0.023 2Me-C9 50.267 0.021 1.119 142.284 1.181 1.056 0.208 0.007 0.145 1,1,2,3-tetraMe-cy-C6 50.667 0.036 1.000 140.268 0.365 0.365 0.072 0.003 0.051 3Et-C8 50.733 0.022 1.000 138.252 0.176 0.176 0.035 0.001 0.025 12diMe-3(1MeEt)-cy-C5 50.933 0.030 1.000 140.269 0.345 0.345 0.068 0.002 0.048 3Me-C9 51.200 0.022 1.000 142.284 0.786 0.786 0.155 0.006 0.108 1ipropyl-3Me-cy-C6 51.200 0.032 1.000 140.268 0.565 0.565 0.112 0.004 0.079 2,6diMe-4octene 51.867 0.038 1.000 140.269 0.096 0.096 0.019 0.001 0.013 1,2,4-triMe-benzene 52.133 0.003 1.000 120.194 2.480 2.480 0.490 0.021 0.403 c-octahydro-1Hindene 52.133 0.052 1.000 124.226 0.275 0.275 0.054 0.002 0.043 t1iprop-3Me-cy-C6 52.400 0.031 1.000 140.268 0.449 0.449 0.089 0.003 0.063 1-decene 52.800 0.030 1.000 140.268 0.939 0.939 0.185 0.007 0.131 1hexyl-3Me-cy-C5 53.000 0.028 1.000 168.323 0.133 0.133 0.026 0.001 0.015 1but-2Et-cy-C4 53.533 0.030 1.000 140.268 0.101 0.101 0.020 0.001 0.014 1Me-3prop-cy-C6 54.067 0.033 1.000 140.268 0.282 0.282 0.056 0.002 0.039 1Me2propcyhex 54.800 0.032 1.000 154.296 0.196 0.196 0.039 0.001 0.025 2,5diMe-octahydropentalene 54.800 0.042 1.000 138.253 0.065 0.065 0.013 0.000 0.009 i-butylbenzene 54.800 0.063 1.000 134.221 0.098 0.098 0.019 0.001 0.014 n-decane 55.333 0.023 1.000 142.284 3.186 3.186 0.629 0.022 0.437 bicyclodecane 55.600 0.043 1.000 138.173 0.111 0.111 0.022 0.001 0.016 1,2,3-triMebenzene 56.067 0.014 1.205 120.294 0.908 0.754 0.149 0.006 0.122 1,1,3,3,5-pentaMe-cy-C6 56.400 0.037 1.000 154.296 0.091 0.091 0.018 0.001 0.012 1Et-2,4diMe-benzene 56.467 0.064 1.000 134.221 0.117 0.117 0.023 0.001 0.017 1Me-3iprop-benzene 56.933 0.064 1.000 134.221 0.154 0.154 0.030 0.001 0.022 5Et-2Me-C8 57.800 0.021 1.000 156.310 0.094 0.094 0.019 0.001 0.012 Annex A: Feedstock compositions VIII

Area/CF Component Name RT 1D RT 2D CF MW Area Area/CF wt% mole% /MW 1Meprop-cy-C6 58.267 0.039 1.000 140.268 0.061 0.061 0.012 0.000 0.008 2,5diMe-C9 58.733 0.021 1.000 156.331 0.058 0.058 0.011 0.000 0.007 2,6diMe-C9 59.133 0.021 1.000 156.331 0.464 0.464 0.092 0.003 0.058 butyl-cy-C6 59.533 0.036 1.000 140.268 0.180 0.180 0.035 0.001 0.025 6Et-2Me-C8 59.867 0.022 1.000 156.312 0.061 0.061 0.012 0.000 0.008 pentyl-cy-C5 60.200 0.035 1.000 140.269 0.113 0.113 0.022 0.001 0.016 1Me-3prop-benzene 60.867 0.000 1.000 134.221 0.166 0.166 0.033 0.001 0.024 3,7diMe-C9 61.467 0.023 1.000 156.331 0.070 0.070 0.014 0.000 0.009 1Me-4prop-benzene 61.600 0.000 1.000 134.221 0.098 0.098 0.019 0.001 0.014 5Me-C10 64.200 0.024 1.000 156.331 0.037 0.037 0.007 0.000 0.005 2Me-C10 65.267 0.024 1.233 156.331 0.047 0.038 0.007 0.000 0.005 n-undecane 70.467 0.026 1.000 156.331 0.092 0.092 0.018 0.001 0.012

N SUM P I O A mono di o

3 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.005

4 1.650 0.272 0.000 0.000 0.000 0.000 0.000 1.922

5 5.943 4.107 0.000 0.966 0.000 0.000 0.000 11.017

6 5.928 6.117 0.000 4.129 0.000 0.000 0.325 16.499

7 5.774 6.171 0.000 12.408 0.000 0.000 1.431 25.785

8 3.938 5.970 0.000 10.744 0.116 0.000 1.985 22.753

9 2.416 4.755 0.782 6.837 0.255 0.000 1.553 16.598

10 0.576 3.113 0.209 0.984 0.068 0.000 0.128 5.080

11 0.017 0.166 0.000 0.133 0.000 0.000 0.000 0.316

12 0.000 0.000 0.000 0.027 0.000 0.000 0.000 0.027

13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SUM 26.248 30.673 0.991 36.228 0.440 0.000 5.421 100

Annex A: Feedstock compositions IX

Kerosene G Area/CF Component Name RT 1D RT 2D CF MW Area Area/CF wt% mole% /MW 2Me-C7 15.750 0.047 1.115 114.230 0.944 0.847 0.234 0.007 0.321 3Me-C7 16.167 0.048 1.115 114.230 0.456 0.409 0.113 0.004 0.155 c-1,3-diMe-cyC6 16.417 0.006 1.000 112.214 0.984 0.984 0.272 0.009 0.380 c-1Et-3Me-cyC5 16.917 0.050 1.000 112.214 0.757 0.757 0.210 0.007 0.293 1,2-diMe-cyC6 17.500 0.007 1.000 112.214 0.542 0.542 0.150 0.005 0.209 C8H18 17.583 0.048 1.000 114.230 3.656 3.656 1.012 0.032 1.388 2,6-diMe-C7 19.333 0.002 1.000 128.257 1.055 1.055 0.292 0.008 0.357 Et-cyC6 19.417 0.006 1.000 112.214 2.474 2.474 0.685 0.022 0.956 1,1,3-triMe-cyC6 19.667 0.002 1.136 126.241 4.623 4.068 1.126 0.032 1.398 2-nonene 20.333 0.006 1.136 126.241 0.366 0.322 0.089 0.003 0.111 3Me-1- 20.417 0.005 1.000 126.241 0.778 0.778 0.215 0.006 0.267 Etbenzene 20.417 0.023 1.096 106.167 0.777 0.709 0.196 0.007 0.290 1,2,4-triMe-cyC6 20.500 0.052 1.136 126.241 1.258 1.107 0.306 0.009 0.380 2,3-diMe-C7 20.833 0.003 1.000 128.257 0.969 0.969 0.268 0.008 0.328 p-xylene 20.833 0.024 1.096 106.167 2.943 2.686 0.743 0.025 1.097 2Me-C8 21.250 0.004 1.000 128.257 2.101 2.101 0.582 0.016 0.710 3Me-C8 21.667 0.004 1.000 128.257 1.941 1.941 0.537 0.015 0.656 o-xylene 22.167 0.026 1.096 106.167 1.292 1.179 0.326 0.011 0.482 1Me-2prop-cyC5 22.417 0.007 1.000 126.241 0.938 0.938 0.260 0.007 0.322 c-1Et-3Me-cyC6 22.500 0.008 1.000 126.241 1.292 1.292 0.358 0.010 0.444 t-1Et4Me-cyC6 22.667 0.008 1.000 126.241 0.590 0.590 0.163 0.005 0.203 C9H20 23.167 0.005 1.000 128.257 7.807 7.807 2.161 0.061 2.640 1Et-2Me-cyC6 23.583 0.010 1.000 126.241 1.256 1.256 0.348 0.010 0.432 3Me-cyC8 24.250 0.013 1.000 126.241 1.437 1.437 0.398 0.011 0.494 i-prop-cyC6 24.333 0.011 1.136 140.268 0.424 0.374 0.103 0.003 0.115 2,4,6-triMe-C7 24.667 0.003 1.000 142.284 0.472 0.472 0.131 0.003 0.144 prop-cyC6 24.833 0.007 1.000 140.268 2.631 2.631 0.728 0.019 0.813 3,5-diMe-C8 24.917 0.003 1.000 142.284 0.212 0.212 0.059 0.001 0.065 butyl-cyC5 25.000 0.009 1.000 126.241 1.020 1.020 0.282 0.008 0.350 2,7-diMe-C8 25.083 0.004 1.000 142.284 0.273 0.273 0.075 0.002 0.083 2,6-diMe-C8 25.167 0.004 1.000 142.284 3.930 3.930 1.088 0.028 1.198 2,3,4-triMe-C7 25.333 0.005 1.000 142.284 1.410 1.410 0.390 0.010 0.430 5Et-3Me-C7 25.583 0.005 1.000 142.284 3.976 3.976 1.101 0.028 1.212 propylbenzene 25.583 0.025 1.084 120.194 0.696 0.642 0.178 0.005 0.232 1Et-3Me-benzene 26.000 0.025 1.000 120.194 1.341 1.341 0.371 0.011 0.484 1Et-4Me-benzene 26.083 0.024 1.000 120.194 0.815 0.815 0.225 0.007 0.294 t-octahydro-1Hindene 26.250 0.016 1.000 124.226 0.397 0.397 0.110 0.003 0.138 2,3-diMe-C8 26.333 0.004 1.000 142.284 1.071 1.071 0.296 0.008 0.326 1,3,5-triMe-benzene 26.417 0.024 1.205 120.194 0.984 0.817 0.226 0.007 0.295 1123-tetraMe-cyC6 26.500 0.011 1.000 140.268 2.947 2.947 0.816 0.021 0.911 5Me-C9 26.583 0.004 1.220 142.284 2.523 2.069 0.573 0.015 0.631 2Et-1,3diMecyC6 26.667 0.009 1.000 140.268 0.806 0.806 0.223 0.006 0.249 4Me-C9 26.833 0.004 1.220 142.284 1.847 1.514 0.419 0.011 0.462 1Et-2,4diMecyC6 26.833 0.010 1.000 140.268 0.155 0.155 0.043 0.001 0.048 1Et-2Me-benzene 26.917 0.023 1.205 120.194 1.085 0.900 0.249 0.007 0.325 3Et-C8 27.000 0.005 1.000 142.284 0.288 0.288 0.080 0.002 0.088 2,5diMe-octahydro-pentalene 27.000 0.012 1.000 138.253 0.340 0.340 0.094 0.002 0.107 3Me-C9 27.167 0.005 1.119 142.284 1.419 1.269 0.351 0.009 0.387 1Me-t4iprop-cyC6 27.333 0.009 1.000 140.268 1.652 1.652 0.457 0.012 0.511 Annex A: Feedstock compositions X

Area/CF Component Name RT 1D RT 2D CF MW Area Area/CF wt% mole% /MW t-1iprop-3MecyC6 27.500 0.009 1.000 140.268 1.545 1.545 0.428 0.011 0.478 1Me-3prop-cyC6 27.833 0.010 1.000 140.268 0.704 0.704 0.195 0.005 0.218 1,2,4-triMe-benzene 27.833 0.028 1.000 120.194 4.839 4.839 1.339 0.040 1.746 ibutyl-cyC6 27.917 0.009 1.000 140.268 3.325 3.325 0.920 0.024 1.028 1decene 28.083 0.009 1.000 140.268 1.306 1.306 0.362 0.009 0.404 c-octahydro-1Hindene 28.083 0.019 1.000 124.226 0.638 0.638 0.176 0.005 0.223 1Me-2prop-cyC6 28.250 0.008 1.000 140.268 0.900 0.900 0.249 0.006 0.278 C10H22 28.750 0.006 1.000 142.284 12.861 12.861 3.560 0.090 3.920 octahydro-5Me-1Hindene 29.250 0.014 1.000 138.253 0.983 0.983 0.272 0.007 0.308 1Me-3iprop-benzene 29.333 0.024 1.000 134.221 0.411 0.411 0.114 0.003 0.133 123-triMebenzene 29.333 0.031 1.205 120.194 3.092 2.567 0.710 0.021 0.926 1,5diEt-cyC6 29.417 0.008 1.000 140.268 0.747 0.747 0.207 0.005 0.231 1Me-4iprop-benzene 29.500 0.024 1.000 134.221 0.720 0.720 0.199 0.005 0.232 5Et-2Me-C8 29.583 0.004 1.000 156.331 0.881 0.881 0.244 0.006 0.244 2Me-1propenyl-cyC6 29.667 0.015 1.000 138.253 0.322 0.322 0.089 0.002 0.101 233-triMe-C8 29.750 0.006 1.000 156.331 0.745 0.745 0.206 0.005 0.207 1Me-2prop-cyC6 29.750 0.011 1.000 140.268 0.154 0.154 0.043 0.001 0.048 2,5-diMe-C9 29.917 0.004 1.000 156.331 0.326 0.326 0.090 0.002 0.090 1Me-prop-cyC6 29.917 0.007 1.000 140.268 0.501 0.501 0.139 0.004 0.155 2,6-diMe-C9 30.000 0.005 1.000 156.331 5.209 5.209 1.442 0.033 1.445 6Et-2Me-C8 30.333 0.004 1.000 156.331 0.683 0.683 0.189 0.004 0.189 butyl-cyC6 30.500 0.012 1.000 140.268 2.950 2.950 0.816 0.021 0.912 pentyl-cyC5 30.667 0.010 1.000 140.268 1.650 1.650 0.457 0.012 0.510 3Me-C10 30.917 0.005 1.000 156.331 1.244 1.244 0.344 0.008 0.345 5Et-1-nonene 30.917 0.008 1.000 154.296 0.484 0.484 0.134 0.003 0.136 octahydro-2,5diMe-pentalene 30.917 0.018 1.000 138.253 0.753 0.753 0.208 0.005 0.236 1,4diEt-benzene 30.917 0.025 1.000 134.221 1.407 1.407 0.389 0.010 0.455 3,7-diMe-C9 31.000 0.007 1.000 156.331 2.108 2.108 0.583 0.013 0.585 butylbenzene 31.167 0.026 1.000 134.221 1.830 1.830 0.507 0.014 0.591 1Et-2,2,6-triMe-cyC6 31.333 0.008 1.000 154.296 2.750 2.750 0.761 0.018 0.773 5Et-1,3diMe-benzene 31.417 0.028 1.000 134.221 0.221 0.221 0.061 0.002 0.071 1pentyl-2propyl-cyC3 31.500 0.008 1.000 154.296 0.312 0.312 0.086 0.002 0.088 t-decahydro-naphthalene 31.750 0.020 1.000 152.238 2.296 2.296 0.635 0.015 0.654 1Me-2prop-benzene 31.750 0.027 1.000 138.173 0.759 0.759 0.210 0.005 0.238 5Me-C10 31.833 0.005 1.000 156.331 1.164 1.164 0.322 0.007 0.323 4Me-C10 32.000 0.005 1.000 156.331 1.277 1.277 0.354 0.008 0.354 2MeButyl-cyC6 32.083 0.012 1.000 154.331 0.248 0.248 0.069 0.002 0.070 2Me-C10 32.167 0.005 1.000 156.331 1.897 1.897 0.525 0.012 0.526 2Et-1,4diMe-benzene 32.333 0.028 1.000 134.221 1.514 1.514 0.419 0.011 0.489 3Me-C10 32.500 0.006 1.000 156.331 1.646 1.646 0.456 0.011 0.457 1Me-2,4diEt-cyC6 32.583 0.009 1.000 154.295 0.391 0.391 0.108 0.003 0.110 1Et-3,5diMe-benzene 32.667 0.028 1.000 134.221 0.812 0.812 0.225 0.006 0.262 1Ethenyl-4Et-benzene 32.750 0.034 1.000 132.205 0.579 0.579 0.160 0.004 0.190 1heptyl-2Me-cyC3 32.917 0.010 1.000 154.296 2.458 2.458 0.680 0.016 0.691 1Et-2,4diMe-benzene 33.000 0.030 1.000 134.221 0.497 0.497 0.138 0.004 0.161 12diMe-3iprop-cyC5 33.083 0.007 1.000 140.269 0.330 0.330 0.091 0.002 0.102 1Me-3(2MeProp)cyC5 33.250 0.010 1.000 140.268 0.881 0.881 0.244 0.006 0.272 1Et-3prop-cyC6 33.333 0.009 1.000 154.296 3.120 3.120 0.863 0.020 0.877 C5-cyC6 33.500 0.009 1.000 154.295 3.186 3.186 0.882 0.021 0.895 c4a-Me-decahydro-naphthalene 33.667 0.015 1.000 152.338 0.293 0.293 0.081 0.002 0.084 1Me-4(2Meprop)-benzene 33.667 0.024 1.000 148.248 0.778 0.778 0.215 0.005 0.227 Annex A: Feedstock compositions XI

Area/CF Component Name RT 1D RT 2D CF MW Area Area/CF wt% mole% /MW 1Et-2,3diMe-benzene 33.750 0.031 1.000 134.221 0.586 0.586 0.162 0.004 0.189 1Me-2pent-cyC6 33.917 0.011 1.000 168.226 1.385 1.385 0.383 0.008 0.357 C11H24 34.000 0.007 1.000 156.331 13.026 13.026 3.605 0.083 3.614 1Et-2prop-cyC6 34.083 0.011 1.000 154.296 0.786 0.786 0.218 0.005 0.221 1Me-4(1Meprop)-benzene 34.083 0.024 1.000 148.248 0.486 0.486 0.134 0.003 0.142 2,3diMe-C10 34.167 0.004 1.000 170.328 0.352 0.352 0.097 0.002 0.090 4Me-C11 34.250 0.006 1.000 170.328 0.161 0.161 0.045 0.001 0.041 2,4diMe-C10 34.333 0.006 1.000 170.328 1.002 1.002 0.277 0.006 0.255 1,2,4,5-tetraMe-benzene 34.417 0.024 1.000 134.221 0.672 0.672 0.186 0.005 0.217 1,2,3,5-tetraMe-benzene 34.583 0.029 1.000 134.221 0.996 0.996 0.276 0.007 0.322 1Me-decahydro-naphthalene 34.750 0.017 1.000 152.338 2.191 2.191 0.606 0.014 0.624 2,6diMe-C10 34.917 0.008 1.000 170.328 1.705 1.705 0.472 0.010 0.434 1Me-butyl-cyC6 34.917 0.011 1.000 154.331 0.569 0.569 0.157 0.004 0.160 2,3dihydro-2,2diMe-indene 35.417 0.030 1.000 146.232 0.351 0.351 0.097 0.002 0.104 4ethenyl-1,2diMe-benzene 35.417 0.037 1.000 132.205 0.250 0.250 0.069 0.002 0.082 3,7diMe-C10 35.500 0.005 1.000 170.328 2.032 2.032 0.562 0.012 0.517 t4a-Me-decahydro-naphthalene 35.500 0.016 1.000 152.338 2.424 2.424 0.671 0.016 0.690 3Me-C11 35.667 0.008 1.000 170.328 1.147 1.147 0.317 0.007 0.292 pentyl-cyC6 35.833 0.013 1.000 154.331 2.503 2.503 0.693 0.016 0.703 hexyl-cyC5 36.000 0.011 1.000 154.331 1.370 1.370 0.379 0.009 0.385 2,3dihydro-4Me-1Hindene 36.000 0.039 1.000 132.205 0.618 0.618 0.171 0.005 0.203 1butyl-2pentyl-cyC3 36.167 0.008 1.000 168.331 1.272 1.272 0.352 0.008 0.328 1,3,4,5-tetraMe-benzene 36.167 0.034 1.000 134.221 4.410 4.410 1.221 0.033 1.425 5Et-C10 36.250 0.006 1.000 170.339 0.310 0.310 0.086 0.002 0.079 C7-cyC5 36.333 0.012 1.000 154.331 1.178 1.178 0.326 0.008 0.331 pentylbenzene 36.417 0.025 1.000 148.248 0.651 0.651 0.180 0.004 0.190 1,2,3,4-tetrahydro-naphthalene 36.500 0.044 1.000 132.196 1.181 1.181 0.327 0.009 0.387 4Et-C10 36.583 0.006 1.000 170.339 0.316 0.316 0.088 0.002 0.081 C7-cyC5 36.583 0.009 1.000 154.331 1.092 1.092 0.302 0.007 0.307 C5-benzene 36.583 0.026 1.000 148.248 0.497 0.497 0.137 0.003 0.145 6Me-C11 36.750 0.006 1.000 170.337 1.907 1.907 0.528 0.011 0.485 C7-cyC5 36.833 0.009 1.000 154.331 0.363 0.363 0.101 0.002 0.102 1Me-butyl-benzene 36.917 0.027 1.000 148.238 1.030 1.030 0.285 0.007 0.301 4Me-C11 37.000 0.006 1.000 170.328 1.099 1.099 0.304 0.006 0.280 C7-cyC5 37.083 0.010 1.000 154.331 1.959 1.959 0.542 0.013 0.551 2Me-C11 37.250 0.006 1.000 170.328 2.071 2.071 0.573 0.012 0.527 1Me-decahydro-naphthalene 37.250 0.022 1.000 152.338 0.464 0.464 0.129 0.003 0.132 1Et-prop-benzene 37.250 0.028 1.000 141.193 0.435 0.435 0.120 0.003 0.134 3Me-C11 37.500 0.004 1.000 170.328 1.507 1.507 0.417 0.009 0.384 C6-cyC6 37.500 0.011 1.000 166.307 1.437 1.437 0.398 0.009 0.375 naphthalene 37.500 0.058 1.143 128.171 0.729 0.638 0.177 0.005 0.216 2,6diMe-decahydro-naphthalene 37.583 0.016 1.000 166.380 0.677 0.677 0.187 0.004 0.176 2,3dihydro-1,6diMe-indene 37.667 0.032 1.000 146.232 0.363 0.363 0.100 0.002 0.108 1Me-4(1MeBut)-cyC6 37.833 0.011 1.000 168.323 1.162 1.162 0.322 0.007 0.299 2,3dihydro-2,2diMe-indene 37.917 0.033 1.000 146.232 0.947 0.947 0.262 0.006 0.281 2,3dihydro-1,3diMe-indene 38.250 0.035 1.000 146.232 0.406 0.406 0.112 0.003 0.120 1Me-2pent-cyC6 38.417 0.011 1.000 168.226 1.893 1.893 0.524 0.011 0.488 2,3diMe-decahydro-naphthalene 38.417 0.017 1.000 166.380 1.698 1.698 0.470 0.010 0.443 1Et-2,4,5triMe-benzene 38.417 0.029 1.000 148.247 0.595 0.595 0.165 0.004 0.174 2,3dihydro-1,1diMe-indene 38.417 0.035 1.000 146.232 0.615 0.615 0.170 0.004 0.182 3Et-C10 38.500 0.005 1.000 170.339 1.092 1.092 0.302 0.006 0.278 Annex A: Feedstock compositions XII

Area/CF Component Name RT 1D RT 2D CF MW Area Area/CF wt% mole% /MW C6-cyC6 38.667 0.011 1.000 168.322 1.687 1.687 0.467 0.010 0.435 cyPent-cyC6 38.667 0.021 1.000 152.280 0.320 0.320 0.089 0.002 0.091 C12H26 39.000 0.007 1.000 170.328 11.943 11.943 3.305 0.070 3.041 1Me-3pent-cyC6 39.000 0.012 1.000 168.226 0.618 0.618 0.171 0.004 0.159 1,2,3,4tetrahydro-2Menaphthalene 39.250 0.039 1.000 146.323 0.523 0.523 0.145 0.004 0.155 C6-cyC6 39.417 0.012 1.000 168.322 0.788 0.788 0.218 0.005 0.203 2,4diMe-1(1MeEt)-cyC6 39.417 0.032 1.000 154.296 0.979 0.979 0.271 0.006 0.275 1Et-2,4,5triMe-benzene 39.500 0.030 1.000 148.248 0.112 0.112 0.031 0.001 0.033 2,4diMe-C11 39.583 0.005 1.000 184.354 0.291 0.291 0.080 0.002 0.068 4,6diMe-C11 39.750 0.006 1.000 184.354 4.969 4.969 1.375 0.027 1.169 4,7diMe-C11 40.083 0.006 1.000 184.354 0.730 0.730 0.202 0.004 0.172 2Me-C12 40.417 0.006 1.000 184.354 0.412 0.412 0.114 0.002 0.097 2But-1,1,3triMe-cyC5 40.417 0.012 1.000 168.323 2.238 2.238 0.619 0.013 0.577 1Me-2(1EtPr)-benzene 40.417 0.030 1.000 162.275 0.294 0.294 0.081 0.002 0.079 Et-bicycloC10 40.500 0.019 1.000 166.307 0.833 0.833 0.231 0.005 0.217 C12-aromatic 40.667 0.031 1.000 156.216 0.511 0.511 0.141 0.003 0.142 hexyl-cyC6 40.917 0.013 1.000 168.322 2.840 2.840 0.786 0.017 0.732 C8-cyC5 41.000 0.006 1.000 168.226 1.630 1.630 0.451 0.010 0.420 Et-bicycloC10 41.000 0.020 1.000 166.307 0.492 0.492 0.136 0.003 0.128 1,3diMe-But-benzene 41.000 0.026 1.000 162.275 0.502 0.502 0.139 0.003 0.134 cyC5-Me-cyC6 41.250 0.019 1.000 166.307 0.575 0.575 0.159 0.003 0.150 4Et-C11 41.333 0.006 1.000 184.366 0.307 0.307 0.085 0.002 0.072 hexyl-benzene 41.333 0.022 1.000 162.264 0.523 0.523 0.145 0.003 0.140 6Me-C12 41.500 0.006 1.000 184.354 1.295 1.295 0.358 0.007 0.305 C6-cyC6 41.500 0.011 1.000 162.275 1.136 1.136 0.314 0.007 0.304 1Et-4(2MeProp)-benzene 41.500 0.029 1.000 162.275 0.682 0.682 0.189 0.004 0.182 C2-indene 41.583 0.038 1.000 144.206 0.317 0.317 0.088 0.002 0.095 1,2,3,4tetrahydro-6Menaphthalene 41.583 0.042 1.000 146.323 1.236 1.236 0.342 0.008 0.366 5Me-C12 41.667 0.010 1.000 184.354 0.136 0.136 0.038 0.001 0.032 4Me-C12 41.833 0.007 1.000 184.354 1.102 1.102 0.305 0.006 0.259 2,10diMe-C11 42.000 0.007 1.000 184.354 1.737 1.737 0.481 0.009 0.409 1iprop-1,4,5triMe-cyC6 42.167 0.010 1.000 168.323 1.212 1.212 0.335 0.007 0.312 5hex-3,3diMe-cyC5 42.250 0.018 1.000 182.364 1.336 1.336 0.370 0.007 0.318 3Me-C12 42.333 0.007 1.000 184.354 0.894 0.894 0.248 0.005 0.210 C8-cyC5 42.417 0.010 1.000 168.226 1.130 1.130 0.313 0.007 0.291 2,6,7triMe-C10 42.500 0.005 1.000 184.354 3.273 3.273 0.906 0.018 0.770 1,2,3,4tetrahydro-5Menaphthalene 42.833 0.046 1.000 146.222 0.836 0.836 0.231 0.006 0.248 2Me-naphthalene 42.833 0.056 1.000 142.190 1.377 1.377 0.381 0.010 0.420 C7-cyC6 43.000 0.014 1.000 182.350 3.560 3.560 0.985 0.020 0.847 C8-cyC5 43.333 0.008 1.000 168.226 0.284 0.284 0.079 0.002 0.073 C8-cyC5 43.500 0.011 1.000 168.226 1.155 1.155 0.320 0.007 0.298 1Me-naphthalene 43.583 0.060 1.000 142.190 0.836 0.836 0.231 0.006 0.255 C13H28 43.667 0.008 1.000 184.354 10.333 10.333 2.860 0.056 2.431 1Me-3Hex-benzene 43.750 0.021 1.000 176.302 0.080 0.080 0.022 0.000 0.020 1cyC6-Me-cyC6 43.833 0.013 1.000 180.334 0.833 0.833 0.230 0.005 0.200 1,1bicyclohexyl 43.833 0.024 1.000 166.306 0.276 0.276 0.076 0.002 0.072 4,6diMe-C12 44.083 0.006 1.000 198.380 0.924 0.924 0.256 0.005 0.202 1,2,3,4tetrahydro-2,6diMenaphthalene 44.083 0.035 1.000 160.259 1.132 1.132 0.313 0.007 0.306 1,2,3,4tetrahydro-1,5diMenaphthalene 44.417 0.040 1.000 160.259 0.588 0.588 0.163 0.004 0.159 2,5diMe-C12 44.583 0.006 1.000 198.380 1.188 1.188 0.329 0.006 0.260 1,2diBut-cyC5 44.583 0.011 1.000 184.366 1.504 1.504 0.416 0.008 0.354 Annex A: Feedstock compositions XIII

Area/CF Component Name RT 1D RT 2D CF MW Area Area/CF wt% mole% /MW C8-cyC5 45.000 0.010 1.000 168.226 0.541 0.541 0.150 0.003 0.139 C2-tetrahydro-naphthalene 45.083 0.038 1.000 160.259 0.653 0.653 0.181 0.004 0.177 1Me-3Hex-benzene 45.583 0.026 1.000 176.302 0.347 0.347 0.096 0.002 0.085 heptyl-cyC6 45.667 0.014 1.000 182.350 1.108 1.108 0.307 0.006 0.263 5Et-1,2,3,4hydro-naphthalene 45.667 0.044 1.000 160.259 0.304 0.304 0.084 0.002 0.082 C13 45.750 0.013 1.000 184.354 0.903 0.903 0.250 0.005 0.212 6Me-C13 45.917 0.007 1.000 198.380 0.837 0.837 0.232 0.004 0.183 C3-dicyC6 45.917 0.021 1.000 208.388 0.839 0.839 0.232 0.004 0.175 tetrahydro-triMe-naphthalene 45.917 0.037 1.000 174.286 0.468 0.468 0.129 0.003 0.116 5Me-C13 46.083 0.007 1.000 198.380 0.372 0.372 0.103 0.002 0.081 heptyl-benzene 46.083 0.026 1.000 176.302 0.452 0.452 0.125 0.003 0.111 4Me-C13 46.333 0.007 1.000 198.380 1.138 1.138 0.315 0.006 0.249 1Me-2hex-benzene 46.333 0.027 1.000 176.302 0.349 0.349 0.097 0.002 0.086 2Me-C13 46.500 0.007 1.000 198.380 1.463 1.463 0.405 0.007 0.320 1But-2pent-cyC5 46.500 0.011 1.000 196.377 0.830 0.830 0.230 0.004 0.183 3Me-C13 46.833 0.008 1.000 198.380 1.030 1.030 0.285 0.005 0.225 2,6diMeC12 47.167 0.006 1.000 198.391 2.740 2.740 0.758 0.014 0.599 tetrahydro-Me-naphthalene 47.250 0.041 1.000 160.259 0.467 0.467 0.129 0.003 0.126 tetradecene 47.583 0.012 1.000 198.380 1.959 1.959 0.542 0.010 0.428 C8-benzene 47.750 0.030 1.000 190.180 0.481 0.481 0.133 0.003 0.110 1,7-diMe-naphtalene 47.833 0.053 1.000 156.216 0.692 0.692 0.191 0.004 0.192 C14H30 48.083 0.009 1.000 198.380 7.244 7.244 2.005 0.037 1.584 4,8diMe-C13 48.333 0.007 1.000 212.406 0.682 0.682 0.189 0.003 0.139 1,2-diMe-naphthalene 48.417 0.056 1.000 156.216 0.467 0.467 0.129 0.003 0.130 2,6,11triMe-C11 48.583 0.007 1.000 198.380 0.367 0.367 0.101 0.002 0.080 1,4-diMe-naphthalene 48.583 0.057 1.000 156.216 0.830 0.830 0.230 0.005 0.230 2,7,10triMe-C11 48.833 0.007 1.000 198.380 0.275 0.275 0.076 0.001 0.060 2,5diMe-C13 50.167 0.008 1.000 212.406 0.707 0.707 0.196 0.003 0.144 5Me-C14 50.167 0.010 1.000 212.406 0.459 0.459 0.127 0.002 0.094 octyl-cyC6 50.167 0.015 1.000 198.380 0.972 0.972 0.269 0.005 0.212 4Me-C14 50.583 0.008 1.000 212.406 0.768 0.768 0.213 0.004 0.157 2Me-C14 50.833 0.007 1.000 212.406 2.843 2.843 0.787 0.013 0.580 3Me-C14 51.083 0.008 1.000 212.406 0.554 0.554 0.153 0.003 0.113 C15H32 52.083 0.013 1.000 212.406 9.497 9.497 2.629 0.045 1.939 5Me-C15 54.000 0.009 1.000 226.445 0.531 0.531 0.147 0.002 0.102 nonyl-cyC6 54.250 0.013 1.000 210.403 0.624 0.624 0.173 0.003 0.129 4Me-C15 54.500 0.007 1.000 226.432 0.592 0.592 0.164 0.003 0.113 2Me-C15 54.750 0.009 1.000 226.432 0.631 0.631 0.175 0.003 0.121 3Me-C15 54.917 0.009 1.000 226.445 0.285 0.285 0.079 0.001 0.055 C16H34 56.167 0.010 1.000 226.432 4.085 4.085 1.131 0.018 0.782 iso-C17 57.833 0.010 1.000 240.471 0.387 0.387 0.107 0.002 0.070 2,6,10triMe-C14 58.167 0.008 1.000 240.471 1.557 1.557 0.431 0.007 0.298 4Me-C16 58.500 0.010 1.000 240.471 0.481 0.481 0.133 0.002 0.087 2Me-C16 58.750 0.010 1.000 240.471 0.410 0.410 0.113 0.002 0.074 C17H36 59.917 0.011 1.000 240.458 2.937 2.937 0.813 0.012 0.530 2,6,10triMe-C15 60.250 0.008 1.000 254.498 2.817 2.817 0.780 0.012 0.508 iso-C18 61.917 0.011 1.000 254.498 1.522 1.522 0.421 0.006 0.259 C18H38 63.333 0.012 1.000 254.498 2.057 2.057 0.569 0.008 0.351 triMeC16 63.833 0.010 1.000 268.525 1.500 1.500 0.415 0.006 0.242 iso-C19 64.833 0.012 1.000 268.525 0.912 0.912 0.252 0.003 0.147 C19H40 66.750 0.013 1.000 268.525 0.920 0.920 0.255 0.003 0.149 Annex A: Feedstock compositions XIV

Area/CF Component Name RT 1D RT 2D CF MW Area Area/CF wt% mole% /MW iso-C20 68.083 0.014 1.000 282.552 0.696 0.696 0.193 0.002 0.107 C20H42 69.917 0.014 1.000 282.552 0.463 0.463 0.128 0.002 0.071 iso-C21 71.250 0.014 1.000 296.579 0.122 0.122 0.034 0.000 0.018 C21H44 73.000 0.016 1.000 296.579 0.329 0.329 0.091 0.001 0.048

P I O N A SUM

m d a b n i

8 1.012 0.347 0.000 1.316 0.000 0.000 1.266 0.000 0.000 3.941

9 2.160 1.678 0.304 4.070 0.286 0.000 3.344 0.000 0.000 11.843

10 3.558 4.560 0.361 5.414 1.210 0.498 4.334 0.176 0.000 20.110

11 3.604 4.753 0.134 4.983 1.486 1.315 1.539 0.612 0.088 18.514

12 3.304 4.067 0.000 6.158 1.259 1.014 0.695 0.550 0.000 17.047

13 2.859 4.440 0.000 3.388 0.360 0.000 0.340 0.000 0.000 11.386

14 2.004 2.681 0.542 0.499 0.000 0.000 0.133 0.000 0.000 5.859

15 2.627 1.841 0.000 0.173 0.232 0.000 0.000 0.000 0.000 4.873

16 1.130 0.564 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.694

17 0.813 0.784 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.597

18 0.569 1.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.769

19 0.254 0.667 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.922

20 0.128 0.193 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.321

21 0.091 0.034 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.125

SUM 24.112 27.810 1.342 26.001 4.833 2.827 11.649 1.339 0.088 100

Annex B: Detailed analytical results for the pilot plant experiments XV

B. Detailed analytical results for the pilot plant experiments internal standard BEFORE coolers n-hexane Run nr. 1 2 3 4 5 6 Conditions Feed HC-flow (kg/hr) 4.002 4.002 4.002 3.978 4.032 3.996

H2O-flow (kg/hr) 1.944 2.004 2.034 1.980 1.956 2.082 Dilution (kg/kg) 0.486 0.501 0.508 0.498 0.485 0.521 T-profile reactor Cell 3 OT (°C) 645 598 600 599 600 600 Cell 4 (°C) 676 653 656 655 655 656 Cell 4 (°C) 695 686 689 689 688 689 Cell 4 (°C) 707 702 704 704 704 704 Cell 4 OT (°C) 702 698 700 700 701 701 Cell 5 (°C) 755 749 751 750 750 749 Cell 5 (°C) 764 760 762 762 763 761 Cell 5 (°C) 779 777 777 777 778 777 Cell 5 OT (°C) 783 781 781 780 780 777 Cell 6 (°C) 799 797 797 797 797 796 Cell 6 (°C) 809 808 807 807 808 807 Cell 6 (°C) 823 822 822 821 821 821 Cell 6 OT (°C) 822 821 821 820 820 820 Cell 7 (°C) 838 835 833 831 833 835 Cell 7 (°C) 839 837 837 837 838 840 Cell 7 (°C) 849 846 846 844 846 848 COT (°C) 852 850 850 848 849 852 p-profile reactor exit cell 2 (bar abs) 1.96 1.99 2.11 2.13 2.14 2.29 inlet cell 5 (bar abs) 1.91 1.94 2.04 2.05 2.06 2.21 inlet cell 7 (bar abs) 1.80 1.80 1.89 1.86 1.85 1.90 COP (bar abs) 1.62 1.66 1.66 1.67 1.67 1.71 Residence time (s) 0.273 0.269 0.279 0.284 0.284 0.293 Yields (wt%) Σ C4 - 88.325 94.659 92.170 91.045 89.839 86.325 [C5 +,C6H6[ 3.331 4.488 5.069 5.547 4.603 - [C6H6, naphthalene[ 5.467 5.575 5.035 4.787 4.500 - Pyrolyse gasoil ([naphthalene, ...[) 0.630 0.081 0.070 0.108 0.080 - TOTAL 97.754 104.803 102.344 101.487 99.022 - P/E 0.433 0.448 0.434 0.434 0.427 0.427 hydrogen 0.803 0.812 0.900 0.902 0.917 0.859 CO2 0.102 0.041 0.060 0.064 0.071 0.058 CO 0.276 0.183 0.348 0.425 0.518 0.340 methane 14.130 15.520 15.448 15.374 15.501 14.859 ethylene 36.540 40.696 41.037 40.964 40.773 39.514 acetylene 0.529 0.547 0.557 0.557 0.565 0.561 ethane 4.168 4.650 4.560 4.522 4.554 4.349 propylene 15.807 18.246 17.823 17.774 17.415 16.853 propane 0.525 0.589 0.566 0.563 0.554 0.533 MeAc 0.300 0.320 0.317 0.306 0.304 0.311 C3H4 0.215 0.217 0.207 0.203 0.200 0.199 Annex B: Detailed analytical results for the pilot plant experiments XVI

cy-C3 0.099 0.086 0.065 0.042 0.017 0.033 i-C4H10 2.044 1.173 0.565 0.357 0.217 0.140 i-C4H8 1.284 0.954 0.570 0.456 0.353 0.273 1-C4H8 2.032 2.182 1.904 1.849 1.658 1.701 1,3-C4H6 3.775 4.476 4.711 4.730 4.714 4.533 n-C4H10 3.599 2.316 1.315 0.922 0.640 0.449 t2C4H8 1.145 0.893 0.651 0.551 0.456 0.417 c2C4H8 0.951 0.757 0.566 0.484 0.413 0.342 Et-Ac 0.000 0.000 0.000 0.000 0.014 - 1,2-C4H6 0.023 0.000 0.000 0.000 0.000 - 3Me-1C4= 0.000 0.016 0.018 0.000 0.000 - 1,4-C5H8 0.064 0.072 0.071 0.099 0.083 - DiMe-Ac 0.024 0.015 0.020 0.017 0.038 - 1-C5H10 0.128 0.158 0.175 0.194 0.164 - n-pentane 0.023 0.027 0.022 0.023 0.006 - isoprene 0.015 0.021 0.000 0.008 0.000 - t-2-C5H10 0.211 0.227 0.217 0.262 0.191 - 3,3-diMe-C4 0.041 0.066 0.064 0.058 0.060 - c-2-C5H10 0.025 0.034 0.045 0.049 0.037 - 2Me-2C4= 0.012 0.014 0.012 0.013 0.012 - t-1,3-PD 0.182 0.201 0.221 0.241 0.220 - 1,3-cyPD 0.373 0.478 0.694 0.906 0.705 - 2,2-diMe-C4 0.105 0.116 0.134 0.129 0.112 - cy-C5= 0.117 0.146 0.158 0.152 0.164 - 3Me-C5 0.000 0.002 0.000 0.000 0.000 - 2Me-1C5= 0.030 0.031 0.041 0.026 0.041 - 3Me-t2-C5H10 0.000 0.000 0.000 0.000 0.000 - hexane 1.823 2.691 2.855 3.024 2.470 - t3-C6H12 0.000 0.009 0.000 0.000 0.000 - c3-C6H12 0.000 0.002 0.000 0.000 0.000 - 2,2-diMe-C5 0.000 0.009 0.018 0.000 0.000 - Me-cyC5 0.050 0.020 0.076 0.053 0.080 - 3,4-diMe-1-C5= 0.000 0.058 0.139 0.163 0.117 - 1Me-cyC5= 0.000 0.000 0.089 0.000 0.089 - 2,2,3-TriMe C4 0.045 0.000 0.000 0.000 0.000 - 2,4-diMeC5 0.040 0.075 0.000 0.130 0.000 - benzene 3.462 3.600 3.372 3.158 3.092 - 4methyl-1- 0.027 0.000 0.053 0.000 0.043 - 2,3diMe-C5 0.030 0.000 0.000 0.000 0.000 - 1,3-cyhexadiene 0.000 0.062 0.000 0.097 0.000 - 2-hexen-4yne 0.000 0.026 0.026 0.022 0.000 - n-C7H16 0.000 0.006 0.000 0.000 0.000 - 2,2-diMeC6 0.000 0.009 0.000 0.000 0.000 - toluene 1.068 1.006 0.911 0.765 0.799 - 2Me-C7 0.000 0.000 0.000 0.000 0.000 - 1,3-diMe-cyC6 0.000 0.000 0.000 0.000 0.000 - unidentified 0.000 0.007 0.000 0.001 0.000 - 2Me-C8 0.000 0.033 0.000 0.065 0.000 - Et-benzene 0.123 0.095 0.112 0.089 0.091 - m-xylene 0.158 0.000 0.104 0.000 0.087 - p-xylene 0.058 0.131 0.000 0.083 0.000 - styrene 0.356 0.304 0.293 0.227 0.273 - o-xylene 0.062 0.047 0.044 0.039 0.035 - propyl-benzene 0.000 0.011 0.000 0.014 0.000 - Annex B: Detailed analytical results for the pilot plant experiments XVII

n-C9 0.015 0.000 0.000 0.000 0.000 - 1Et-3Me-benzene 0.000 0.012 0.000 0.015 0.000 - 1,3,5-triMe-benzene 0.000 0.013 0.000 0.011 0.000 - 1Et-2Me-benzene 0.000 0.006 0.000 0.017 0.000 - 1,2,4-triMe-benzene 0.000 0.114 0.000 0.057 0.000 - 2-propenyl-benzene 0.016 0.000 0.000 0.000 0.000 - Me-styrene 0.011 0.000 0.000 0.000 0.000 - decane 0.048 0.013 0.050 0.019 0.000 - Me-2,3dihydro-indene 0.018 0.000 0.022 0.000 0.015 - 1,2,3-triMe-benzene 0.000 0.023 0.000 0.034 0.000 - 1Me-3iprop-benzene 0.000 0.017 0.000 0.021 0.000 - indene 0.014 0.041 0.048 0.053 0.032 - 3Me-indene 0.000 0.000 0.000 0.000 0.033 - naphthalene 0.271 0.166 0.393 0.122 0.169 - unidentified 0.000 0.032 0.000 0.000 0.000 - 2-Me-naphthalene 0.051 0.041 0.044 2.460 0.027 - Et-naphthalene 0.035 0.028 0.031 0.000 0.000 - 1,2dihydro-Me-naphthalene 0.000 0.000 0.046 0.000 0.000 - 2-ethenylnaphthalene 0.016 0.000 0.000 0.000 0.000 - 1,5-diMe-naphthalene 0.025 0.000 0.033 0.000 0.000 - bi-phenylene 0.000 0.000 0.000 0.000 1.026 - n-nonadecane 0.232 0.000 0.000 0.000 0.000 - 2-M-1,1'biphenyl 0.000 0.000 0.142 0.000 0.000 -

Annex B: Detailed analytical results for the pilot plant experiments XVIII internal standard AFTER coolers n-hexane Run nr. 1 2 3 4 5 6 7 Conditions Feed HC-flow (kg/hr) 4.008 4.008 4.044 4.008 4.002 3.996 4.002

H2O-flow (kg/hr) 2.004 2.034 2.352 1.986 1.986 2.010 1.974 Dilution (kg/kg) 0.500 0.507 0.582 0.496 0.496 0.503 0.493 T-profile reactor Cell 3 OT (°C) 599 599 600 598 600 602 598 Cell 4 (°C) 656 657 657 656 656 657 655 Cell 4 (°C) 689 689 689 688 688 688 688 Cell 4 (°C) 704 705 704 704 703 703 703 Cell 4 OT (°C) 701 701 700 700 699 700 700 Cell 5 (°C) 754 754 750 750 751 750 750 Cell 5 (°C) 763 764 762 763 763 764 764 Cell 5 (°C) 779 780 777 777 778 778 778 Cell 5 OT (°C) 782 783 780 780 780 780 780 Cell 6 (°C) 797 797 795 795 796 796 796 Cell 6 (°C) 808 808 806 806 807 807 807 Cell 6 (°C) 823 823 820 820 820 820 820 Cell 6 OT (°C) 822 823 820 820 820 820 820 Cell 7 (°C) 834 835 834 836 835 835 833 Cell 7 (°C) 835 836 835 837 837 837 834 Cell 7 (°C) 843 844 844 846 845 845 843 COT (°C) 849 850 850 850 851 850 848 p-profile reactor exit cell 2 (bar abs) 2.09 2.12 2.21 2.21 2.15 2.24 2.32 inlet cell 5 (bar abs) 2.05 2.06 2.13 2.13 2.08 2.15 2.23 inlet cell 7 (bar abs) 1.83 1.83 1.87 1.85 1.85 1.86 1.91 COP (bar abs) 1.71 1.71 1.79 1.76 1.74 1.75 1.84 Residence time (s) 0.279 0.278 0.266 0.289 0.285 0.291 0.303 Yields (wt%) Σ C4 - 90.716 89.128 87.338 88.891 88.688 88.968 88.377 [C5 +,C6H6[ 3.614 4.418 5.326 4.887 4.671 5.094 - [C6H6, naphthalene[ 5.795 4.549 5.228 4.576 5.304 4.813 - Pyrolyse gasoil ([naphthalene, ...[) 0.291 0.134 0.269 0.455 0.215 0.099 - TOTAL 100.417 98.228 98.161 98.809 98.879 98.975 - P/E 0.423 0.424 0.427 0.426 0.424 0.426 0.422 hydrogen 0.939 0.922 0.890 0.963 0.896 0.869 0.930 CO2 0.215 0.153 0.115 0.103 0.093 0.095 0.096 CO 0.911 0.791 0.589 0.553 0.513 0.468 0.523 methane 15.768 15.334 15.027 15.234 15.348 15.002 15.418 ethylene 41.464 41.020 40.253 41.091 41.129 41.496 40.954 acetylene 0.522 0.547 0.561 0.577 0.582 0.599 0.581 ethane 4.715 4.435 4.351 4.406 4.455 4.204 4.491 propylene 17.519 17.393 17.175 17.493 17.434 17.673 17.281 propane 0.568 0.555 0.544 0.557 0.555 0.552 0.549 MeAc 0.287 0.295 0.300 0.307 0.268 0.328 0.330 C3H4 0.197 0.197 0.198 0.203 0.206 0.209 0.198 cy-C3 0.026 0.020 0.018 0.014 0.007 0.005 0.009 i-C4H10 0.113 0.073 0.039 0.038 0.028 0.026 0.017 i-C4H8 0.233 0.183 0.171 0.263 0.151 0.159 0.136 1-C4H8 1.600 1.716 1.730 1.712 1.652 1.843 1.655 Annex B: Detailed analytical results for the pilot plant experiments XIX

1,3-C4H6 4.580 4.551 4.536 4.643 4.672 4.774 4.595 n-C4H10 0.359 0.274 0.170 0.166 0.142 0.122 0.085 t2C4H8 0.370 0.374 0.401 0.300 0.293 0.290 0.307 c2C4H8 0.330 0.296 0.269 0.269 0.264 0.255 0.222 Et-Ac 0.014 0.032 0.019 0.000 0.022 0.015 - 1,2-C4H6 0.000 0.000 0.000 0.000 0.000 0.061 - 1,4-C5H8 0.074 0.062 0.100 0.057 0.088 0.000 - DiMe-Ac 0.026 0.032 0.023 0.000 0.024 0.009 - 1-C5H10 0.140 0.164 0.191 0.157 0.156 0.165 - n-pentane 0.020 0.020 0.029 0.016 0.030 0.022 - t-2-C5H10 0.226 0.191 0.252 0.209 0.227 0.227 - 3,3-diMe-C4 0.050 0.053 0.060 0.055 0.054 0.055 - c-2-C5H10 0.025 0.046 0.041 0.043 0.024 0.033 - 2Me-2C4= 0.011 0.007 0.014 0.007 0.010 0.010 - t-1,3-PD 0.221 0.207 0.263 0.213 0.247 0.223 - 1,3-cyPD 0.679 0.654 0.958 0.813 1.008 0.858 - 2,2-diMe-C4 0.126 0.111 0.161 0.137 0.140 0.116 - cy-C5= 0.148 0.167 0.173 0.163 0.148 0.162 - 3Me-C5 0.000 0.000 0.000 0.000 0.035 0.000 - 2Me-1C5= 0.021 0.034 0.036 0.045 0.000 0.040 - hexane 1.572 2.439 2.608 2.660 2.076 2.780 - c3-C6H12 0.009 0.000 0.000 0.000 0.000 0.000 - 2-Me,2-C5H10 0.016 0.000 0.000 0.000 0.000 0.000 - Me-cyC5 0.073 0.050 0.089 0.063 0.080 0.023 - 3,4-diMe-1-C5= 0.087 0.085 0.163 0.154 0.171 0.162 - 1Me-cyC5= 0.076 0.000 0.146 0.000 0.131 0.000 - 2,4-diMe-C5 0.000 0.064 0.000 0.095 0.000 0.133 - benzene 3.885 3.120 3.484 3.225 3.583 3.359 - 4methyl-1-hexene 0.047 0.000 0.066 0.000 0.057 0.000 - 2,3-diMe-C5 0.000 0.000 0.000 0.000 0.022 0.000 - 1,3-cyhexadiene 0.000 0.057 0.000 0.064 0.000 0.099 - 2-hexen-4yne 0.000 0.000 0.000 0.024 0.000 0.043 - 3Me-C6 0.000 0.046 0.000 0.000 0.000 0.000 - toluene 1.026 0.733 0.923 0.753 0.913 0.748 - 2,2,4-TriMe C6 0.000 0.000 0.024 0.000 0.000 0.000 - diMe-C7 0.025 0.000 0.000 0.000 0.000 0.000 - 2Me-C8 0.000 0.090 0.000 0.000 0.000 0.000 - Et-benzene 0.096 0.074 0.110 0.107 0.101 0.093 - m-xylene 0.000 0.019 0.000 0.052 0.092 0.043 - p-xylene 0.053 0.000 0.021 0.000 0.000 0.052 - styrene 0.387 0.235 0.379 0.236 0.332 0.245 - o-xylene 0.034 0.033 0.029 0.043 0.014 0.041 - 2,5-DiMe C8 0.019 0.000 0.021 0.000 0.006 0.000 - propyl-benzene 0.000 0.000 0.000 0.000 0.003 0.000 - 4iPr-C7 0.017 0.000 0.000 0.000 0.000 0.000 - 1Et-3Me-benzene 0.000 0.000 0.000 0.000 0.020 0.000 - 1,2,4-triMe-benzene 0.000 0.026 0.000 0.000 0.000 0.000 - 2-propenyl-benzene 0.002 0.000 0.000 0.000 0.000 0.000 - 1-Me,4-Et benzene 0.002 0.000 0.000 0.000 0.000 0.000 - 1,3,5-triMe-benzene 0.013 0.000 0.000 0.000 0.000 0.000 - decane 0.036 0.027 0.026 0.000 0.005 0.000 - 1-propenyl-benzene 0.032 0.000 0.000 0.000 0.000 0.000 - Me-2,3dihydro-indene 0.032 0.000 0.030 0.000 0.031 0.000 - 2,6-DiMe C9 0.015 0.000 0.000 0.000 0.000 0.000 - Annex B: Detailed analytical results for the pilot plant experiments XX

1,2,3-triMe-benzene 0.000 0.024 0.000 0.000 0.000 0.030 - indene 0.051 0.065 0.060 0.072 0.074 0.060 - 1Me-indene 0.000 0.000 0.014 0.000 0.012 0.000 - 3Me-indene 0.024 0.000 0.041 0.000 0.040 0.000 - naphthalene 0.243 0.134 0.183 0.128 0.178 0.099 - 2-Me-naphthalene 0.032 0.000 0.024 0.327 0.014 0.000 - Et-naphthalene 0.000 0.000 0.062 0.000 0.023 0.000 - 1,2dihydro-Me-naphthalene 0.008 0.000 0.000 0.000 0.000 0.000 - 1,5-diMe-naphthalene 0.008 0.000 0.000 0.000 0.000 0.000 -

Annex B: Detailed analytical results for the pilot plant experiments XXI

C4 fraction ARAL Run nr. 1 2 3 4 5 6 7 8 Conditions Feed

HC-flow (kg/hr) 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000

H2O-flow (kg/hr) 2.190 2.202 2.166 2.178 2.202 2.190 2.202 2.202 Dilution (kg/kg) 0.548 0.551 0.542 0.545 0.551 0.548 0.551 0.551 T-profile reactor

Cell 3 OT (°C) 601 601 603 599 600 603 599 600 Cell 4 (°C) 653 651 653 651 652 654 650 651 Cell 4 (°C) 685 683 683 682 684 685 682 683 Cell 4 (°C) 702 700 700 700 701 701 699 700 Cell 4 OT (°C) 702 700 700 700 700 701 698 700 Cell 5 (°C) 736 733 740 740 746 747 743 747 Cell 5 (°C) 750 748 757 757 765 765 762 767 Cell 5 (°C) 759 758 768 768 777 777 774 779 Cell 5 OT (°C) 762 760 771 771 780 780 777 782 Cell 6 (°C) 785 784 793 793 801 801 799 803 Cell 6 (°C) 797 796 804 804 812 812 809 813 Cell 6 (°C) 805 805 812 813 821 821 819 822 Cell 6 OT (°C) 802 802 810 811 820 820 818 821 Cell 7 (°C) 812 813 826 826 840 841 849 850 Cell 7 (°C) 810 810 827 827 845 845 857 858 Cell 7 (°C) 814 814 834 834 854 855 869 870 COT (°C) 821 820 840 840 861 861 878 877 p-profile reactor exit cell 2 (bar abs) 2.02 2.17 2.02 1.98 2.33 2.17 2.12 2.04 inlet cell 5 (bar abs) 1.92 2.03 1.95 1.90 2.20 2.03 2.02 1.94 inlet cell 7 (bar abs) 1.77 1.74 1.79 1.80 1.85 1.82 1.83 1.76 COP (bar abs) 1.62 1.62 1.70 1.61 1.83 1.65 1.72 1.62 Yields (wt%) Σ C4 - 97.040 97.366 96.107 95.678 93.801 95.038 93.477 95.437 [C5 +,C6H6[ 2.377 1.970 2.769 2.905 3.390 2.731 3.775 3.908 [C6H6, naphthalene[ 1.082 0.992 1.715 1.799 3.536 2.979 3.937 3.257 Pyrolyse gasoil ([naphthalene, ...[) 0.013 0.017 0.010 0.010 0.093 0.088 0.104 0.118 TOTAL 100.51 100.35 100.60 100.39 100.82 100.84 101.29 102.72 P/E 1.483 1.557 1.365 1.328 1.103 1.098 0.920 0.957 hydrogen 1.065 0.988 1.168 1.147 1.299 1.353 1.478 1.547 CO 0.450 0.326 0.452 0.396 0.694 0.819 1.686 1.868 CO2 0.206 0.157 0.167 0.125 0.169 0.197 0.228 0.179 CH4 14.652 14.133 16.297 17.098 19.413 19.570 21.616 21.296 C2H6 2.098 2.012 2.222 2.355 2.317 2.329 2.290 2.255 C2H4 14.923 14.157 16.650 17.243 19.992 20.311 22.881 22.656 C3H8 1.809 1.920 1.669 1.615 1.313 1.329 1.026 1.084 C3H6 22.124 22.048 22.722 22.893 22.060 22.294 21.047 21.677 C2H2 0.192 0.187 0.297 0.301 0.500 0.535 0.718 0.626 PD 0.198 0.257 0.164 0.148 0.076 0.079 0.039 0.048 i-C4H10 15.682 16.702 12.364 11.543 7.955 8.040 5.527 5.966 n-C4H10 11.016 11.387 8.197 7.541 4.898 4.889 3.192 3.570 t-2-C4H8 0.300 0.298 0.313 0.302 0.296 0.305 0.270 0.295 1-C4H8 1.515 1.540 1.692 1.622 1.637 1.678 1.462 1.571 i-C4H8 9.007 9.479 9.325 9.000 8.043 8.102 6.494 7.088 c-2-C4H8 0.240 0.238 0.257 0.243 0.251 0.243 0.220 0.243 MeAc 0.374 0.417 0.621 0.611 0.903 0.949 1.123 1.092 Annex B: Detailed analytical results for the pilot plant experiments XXII

1,3-C4H6 1.191 1.121 1.532 1.495 1.985 2.015 2.182 2.376 2,2-DiMe C3 0.000 0.007 0.000 0.000 0.018 0.000 0.021 0.049 3Me-1C4= 0.303 0.005 0.161 0.169 0.066 0.006 0.074 0.015 1,4-C5H8 0.016 0.019 0.040 0.042 0.061 0.040 0.068 0.065 isopentane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.071 DiMe-Ac 0.012 0.007 0.017 0.017 0.028 0.018 0.031 0.030 1-C5H10 0.091 0.097 0.094 0.099 0.090 0.084 0.101 0.091 2-methyl-1-butene 0.764 0.718 0.722 0.758 0.550 0.507 0.612 0.741 isoprene 0.393 0.394 0.484 0.508 0.640 0.617 0.712 0.728 t2C5H10 0.042 0.036 0.044 0.046 0.041 0.041 0.045 0.035 c2C5H10 0.021 0.032 0.020 0.021 0.023 0.024 0.026 0.021 2Me2C4= 0.226 0.211 0.242 0.254 0.168 0.145 0.187 0.170 t-1,3-PD 0.051 0.053 0.084 0.089 0.134 0.110 0.149 0.145 1,3cyPD 0.084 0.122 0.255 0.268 0.599 0.570 0.667 0.575 c-1,3-PD 0.036 0.031 0.043 0.045 0.074 0.067 0.082 0.090 cyclopentene 0.041 0.041 0.045 0.047 0.068 0.075 0.076 0.074 2Mepentane 0.038 0.026 0.035 0.037 0.059 0.027 0.066 0.047 1,5-hexadiene 0.037 0.028 0.042 0.044 0.039 0.032 0.043 0.059 1-hexene 0.027 0.026 0.036 0.038 0.028 0.007 0.031 0.044 trans-3-hexene 0.048 0.005 0.015 0.015 0.090 0.003 0.101 0.103 trans-2-hexene 0.000 0.006 0.017 0.018 0.025 0.081 0.028 0.035 3,4dimethyl-1- 0.036 0.017 0.063 0.066 0.306 0.017 0.341 0.359 2,4dime-1-pentene 0.000 0.009 0.180 0.188 0.021 0.003 0.024 0.035 1Me-cyPD 0.075 0.027 0.130 0.136 0.233 0.226 0.259 0.287 1Me-cyC5= 0.035 0.052 0.000 0.000 0.028 0.029 0.031 0.039 benzene 0.540 0.452 1.050 1.101 2.142 1.834 2.385 1.875 1,4cychexadiene 0.000 0.032 0.000 0.000 0.038 0.019 0.042 0.035 1,3cychexadiene 0.000 0.028 0.000 0.000 0.030 0.021 0.034 0.027 cyclohexene 0.033 0.021 0.023 0.024 0.019 0.030 0.022 0.026 2,2diMe-cis-3hexene 0.015 0.026 0.000 0.000 0.000 0.025 0.000 0.029 toluene 0.230 0.219 0.442 0.463 0.804 0.444 0.895 0.744 Et-benzene 0.060 0.045 0.044 0.046 0.066 0.041 0.074 0.063 m-xylene 0.015 0.018 0.029 0.031 0.058 0.058 0.065 0.060 p-xylene 0.035 0.035 0.033 0.035 0.022 0.076 0.025 0.037 styrene 0.111 0.028 0.056 0.059 0.172 0.140 0.191 0.161 o-xylene 0.014 0.012 0.013 0.013 0.037 0.033 0.041 0.025 1,3,5triMe-benzene 0.000 0.007 0.000 0.000 0.000 0.012 0.000 0.012 isopropylbenzene 0.000 0.008 0.000 0.000 0.000 0.017 0.000 0.000 2-propenyl-benzene 0.000 0.019 0.000 0.000 0.000 0.026 0.000 0.000 o-vinyl toluene 0.000 0.019 0.000 0.000 0.017 0.056 0.019 0.012 1-propenyl-benzene 0.000 0.004 0.000 0.000 0.005 0.020 0.005 0.019 M2,3dihydroindene 0.000 0.000 0.000 0.000 0.015 0.026 0.016 0.017 indene 0.028 0.017 0.025 0.026 0.068 0.049 0.076 0.057 1Me-indene 0.000 0.000 0.000 0.000 0.019 0.022 0.022 0.025 3Me-indene 0.000 0.000 0.000 0.000 0.023 0.029 0.026 0.032 naphthalene 0.013 0.017 0.010 0.010 0.060 0.051 0.067 0.088 2-Me-naphthalene 0.000 0.000 0.000 0.000 0.017 0.017 0.019 0.017 biphenyl 0.000 0.000 0.000 0.000 0.016 0.020 0.017 0.013

Annex B: Detailed analytical results for the pilot plant experiments XXIII

C4 fraction PETRO Run nr. 1 2 3 4 5 6 7 Conditions Feed HC-flow (kg/hr) 4.000 4.000 4.000 4.000 4.000 4.000 4.000

H2O-flow (kg/hr) 2.202 2.232 2.178 2.226 2.220 2.196 2.184 Dilution (kg/kg) 0.551 0.558 0.545 0.557 0.555 0.549 0.546 T-profile reactor Cell 3 OT (°C) 599 598 603 600 599 597 597 Cell 4 (°C) 649 648 651 649 647 647 647 Cell 4 (°C) 680 680 682 681 679 680 680 Cell 4 (°C) 699 700 701 700 698 699 699 Cell 4 OT (°C) 699 700 700 700 698 699 699 Cell 5 (°C) 734 734 742 742 748 747 746 Cell 5 (°C) 747 748 759 759 767 767 766 Cell 5 (°C) 756 758 769 769 778 778 777 Cell 5 OT (°C) 759 760 771 771 780 780 778 Cell 6 (°C) 784 786 794 795 803 802 801 Cell 6 (°C) 796 796 804 805 812 811 810 Cell 6 (°C) 804 804 813 814 822 821 819 Cell 6 OT (°C) 800 800 810 811 821 820 819 Cell 7 (°C) 810 811 825 826 840 838 848 Cell 7 (°C) 808 807 826 827 845 843 859 Cell 7 (°C) 815 814 836 836 855 852 870 COT (°C) 820 819 841 841 861 859 879 p-profile reactor exit cell 2 (bar abs) 2.14 2.10 1.90 2.24 2.14 2.08 2.24 inlet cell 5 (bar abs) 2.00 2.00 1.81 2.12 2.05 1.97 2.12 inlet cell 7 (bar abs) 1.78 1.78 1.79 1.82 1.87 1.85 1.88 COP (bar abs) 1.67 1.77 1.53 1.76 1.75 1.51 1.57 Yields (wt%) Σ C4 - 93.736 94.694 91.591 91.855 88.146 88.535 84.418 [C5 +,C6H6[ 3.287 2.799 3.900 3.778 4.135 4.035 5.695 [C6H6, naphthalene[ 2.930 2.465 4.387 4.249 7.324 7.050 9.491 Pyrolyse gasoil ([naphthalene, ...[) 0.047 0.041 0.122 0.118 0.396 0.381 0.401 TOTAL 100 100 100 100 100 100 100 P/E 1.586 1.639 1.337 1.331 1.091 1.099 0.909 hydrogen 0.696 0.676 0.842 0.842 0.983 0.934 1.092 CO 0.074 0.080 0.125 0.127 0.205 0.273 0.427 CO2 0.097 0.080 0.147 0.146 0.222 0.385 0.567 CH4 12.992 12.284 15.521 15.155 17.561 17.556 18.941 C2H6 1.783 1.684 2.010 1.912 2.091 2.045 1.981 C2H4 13.514 12.759 16.386 16.130 18.916 19.140 21.164 C3H8 0.921 0.944 0.824 0.800 0.677 0.695 0.548 C3H6 21.428 20.912 21.914 21.468 20.646 21.027 19.228 C2H2 0.256 0.256 0.401 0.405 0.574 0.594 0.823 PD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 i-C4H10 11.723 12.530 8.501 8.755 5.873 5.883 3.968 n-C4H10 11.842 12.859 8.216 8.670 5.530 5.299 3.274 t-2-C4H8 1.406 1.596 1.009 1.059 0.761 0.678 0.472 1-C4H8 1.957 2.130 1.728 1.840 1.639 1.531 1.254 i-C4H8 9.209 9.643 8.385 8.616 7.246 7.090 5.393 c-2-C4H8 1.125 1.292 0.833 0.853 0.000 0.540 0.533 MeAc 0.552 0.545 0.709 0.685 0.935 0.861 1.050 Annex B: Detailed analytical results for the pilot plant experiments XXIV

cyc-C3 0.113 0.121 0.067 0.027 0.013 0.005 0.000 1,3-C4H6 4.047 4.305 3.972 4.365 4.274 3.998 3.702 3Me-1C4= 0.089 0.041 0.064 0.062 0.038 0.055 0.050 1,4-C5H8 0.049 0.031 0.057 0.055 0.058 0.047 0.068 DiMe-Ac 0.023 0.015 0.024 0.023 0.051 0.055 0.051 1-C5H10 0.097 0.070 0.103 0.100 0.066 0.069 0.056 isoprene 0.708 0.524 0.655 0.635 0.592 0.462 0.366 t2C5H10 0.568 0.468 0.673 0.652 0.698 0.669 0.957 c2C5H10 0.107 0.089 0.089 0.086 0.069 0.054 0.068 3Me1,2butadiene 0.075 0.060 0.058 0.056 0.042 0.039 0.055 2Me2C4= 0.174 0.155 0.179 0.173 0.245 0.153 0.173 t-1,3-PD 0.230 0.194 0.252 0.244 0.255 0.286 0.391 1,3cyPD 0.393 0.391 0.667 0.646 0.769 0.930 1.514 c-1,3-PD 0.130 0.103 0.142 0.138 0.152 0.143 0.222 cyclopentene 0.064 0.053 0.080 0.078 0.070 0.079 0.109 2Mepentane 0.041 0.019 0.050 0.048 0.044 0.042 0.049 1,5-hexadiene 0.040 0.026 0.033 0.032 0.038 0.036 0.028 1-hexene 0.040 0.033 0.041 0.040 0.013 0.012 0.023 trans-3-hexene 0.016 0.012 0.019 0.018 0.101 0.097 0.159 cis-3-hexene 0.015 0.011 0.020 0.019 0.028 0.027 0.044 trans-2-hexene 0.013 0.043 0.013 0.013 0.011 0.011 0.018 cis-2-hexene 0.065 0.050 0.082 0.079 0.072 0.069 0.147 2,3,3-trimethyl-1-butene 0.024 0.165 0.035 0.034 0.031 0.030 0.032 3,4diMe-1-pentene 0.178 0.133 0.289 0.280 0.363 0.350 0.585 2,4diMe-1-pentene 0.012 0.009 0.032 0.031 0.029 0.028 0.034 1Me-cyPD 0.127 0.097 0.226 0.219 0.271 0.261 0.453 1Me-cyC5= 0.009 0.007 0.018 0.017 0.031 0.030 0.045 benzene 1.700 1.501 2.441 2.364 4.006 3.856 5.594 1,3cy-hexadiene 0.049 0.011 0.059 0.057 0.051 0.049 0.056 cylcohexene 0.028 0.008 0.011 0.010 0.009 0.009 0.015 2,2dimethyl-cis-3hexene 0.020 0.010 0.031 0.030 0.027 0.026 0.043 toluene 0.807 0.690 1.207 1.169 2.009 1.934 2.125 Et-benzene 0.069 0.051 0.082 0.079 0.186 0.179 0.205 m-xylene 0.060 0.051 0.096 0.093 0.177 0.171 0.177 styrene 0.120 0.082 0.212 0.205 0.460 0.443 0.621 o-xylene 0.033 0.031 0.051 0.049 0.089 0.086 0.088 1,3,5triMe-benzene 0.000 0.000 0.011 0.010 0.052 0.050 0.081 isopropylbenzene 0.000 0.000 0.015 0.015 0.014 0.013 0.021 2-propenylbenzene 0.000 0.000 0.006 0.006 0.005 0.005 0.008 o-vinyl toluene 0.000 0.000 0.008 0.008 0.044 0.042 0.064 1-propenylbenzene 0.000 0.000 0.024 0.023 0.016 0.016 0.025 2,3dihydroindene 0.000 0.000 0.026 0.025 0.023 0.022 0.036 indene 0.031 0.020 0.078 0.076 0.120 0.116 0.263 3Me-indene 0.012 0.010 0.031 0.030 0.035 0.034 0.068 naphthalene 0.047 0.041 0.091 0.088 0.332 0.320 0.320 2-Me-naphthalene 0.000 0.000 0.019 0.018 0.044 0.042 0.049 biphenyl 0.000 0.000 0.012 0.012 0.019 0.019 0.032

Annex B: Detailed analytical results for the pilot plant experiments XXV

Fischer-Tropsch naphtha: cracking experiment Run nr. 1 2 3 4 5 Conditions Feed HC-flow (kg/hr) 4.032 4.032 4.008 3.996 4.008

H2O-flow (kg/hr) 1.818 1.818 1.818 1.734 1.800 Dilution (kg/kg) 0.451 0.451 0.454 0.434 0.449 T-profile reactor Cell 3 OT (°C) 650 650 650 654 652 Cell 4 (°C) 680 680 681 682 681 Cell 4 (°C) 696 696 697 698 697 Cell 4 (°C) 707 707 708 708 708 Cell 4 OT (°C) 700 700 700 700 700 Cell 5 (°C) 722 722 732 730 728 Cell 5 (°C) 731 731 742 740 739 Cell 5 (°C) 741 741 754 752 751 Cell 5 OT (°C) 740 740 753 750 750 Cell 6 (°C) 755 755 771 770 770 Cell 6 (°C) 765 765 783 782 782 Cell 6 (°C) 773 773 793 793 792 Cell 6 OT (°C) 770 770 791 791 790 Cell 7 (°C) 801 801 816 816 815 Cell 7 (°C) 810 810 825 825 824 Cell 7 (°C) 819 819 836 835 835 COT (°C) 820 820 836 835 835 p-profile reactor exit cell 2 (bar abs) 1.92 1.92 2.08 2.00 2.17 inlet cell 5 (bar abs) 1.86 1.86 2.00 1.95 2.09 inlet cell 7 (bar abs) 1.79 1.79 1.78 1.78 1.78 COP (bar abs) 1.62 1.62 1.66 1.65 1.73 Yields (wt%) Σ C4 - 82.320 83.864 83.172 84.880 84.988 [C5 +,C6H6[ 8.232 7.691 6.734 5.871 5.829 [C6H6, naphthalene[ 8.868 7.867 9.660 8.888 8.824 Pyrolyse gasoil ([naphthalene, ...[) 0.580 0.578 0.433 0.362 0.359 TOTAL 100 100 100 100 100 P/E 0.702 0.730 0.626 0.634 0.629 C yield 83.713 83.715 83.835 83.686 83.675 H yield 15.993 16.004 15.928 16.124 16.106 hydrogen 0.697 0.721 0.655 0.800 0.803 CO 0.331 0.306 0.257 0.316 0.314 CO2 0.144 0.145 0.124 0.012 0.054 CH4 13.728 13.197 14.824 15.334 15.225 C2H6 4.272 4.106 3.941 4.272 4.106 C2H4 27.135 27.052 29.673 29.599 30.132 C3H8 0.703 0.730 0.643 0.667 0.660 C3H6 19.039 19.736 18.573 18.762 18.943 C2H2 0.298 0.311 0.429 0.423 0.437 PD 0.320 0.340 0.399 0.398 0.404 i-C4H10 0.286 0.337 0.229 0.228 0.229 n-C4H10 0.465 0.507 0.339 0.340 0.345 t-2-C4H8 0.719 0.975 0.565 0.666 0.625 1-C4H8 2.914 3.364 2.265 2.330 2.461 Annex B: Detailed analytical results for the pilot plant experiments XXVI

i-C4H8 3.786 4.085 3.330 3.777 3.414 c-2-C4H8 0.581 0.638 0.474 0.515 0.483 MeAc 0.366 0.396 0.475 0.486 0.479 cyc-C3 0.793 0.943 0.536 0.526 0.532 1,3-C4H6 5.618 5.910 5.356 5.369 5.282 Et-Ac 0.043 0.000 0.031 0.056 0.055 1,2C4H6 0.081 0.067 0.052 0.005 0.005 3Me-1C4= 0.702 0.704 0.552 0.384 0.381 iC5H12 0.000 0.031 0.000 0.000 0.000 1,4-C5H8 0.077 0.118 0.083 0.089 0.088 DiMe-Ac 0.019 0.027 0.011 0.030 0.030 1-C5H10 0.291 0.298 0.167 0.187 0.186 n-pentane 0.557 0.589 0.419 0.328 0.325 isoprene 0.576 0.529 0.459 0.321 0.318 t2C5H10 1.047 0.960 0.934 0.833 0.827 c2C5H10 0.217 0.219 0.156 0.124 0.123 2Me2C4= 0.141 0.059 0.091 0.091 0.090 3Me1,2butadiene 0.254 0.194 0.207 0.165 0.164 t-1,3-PD 0.632 0.349 0.322 0.342 0.340 1,3cyPD 0.884 0.890 1.188 1.188 1.180 c-1,3-PD 0.239 0.237 0.205 0.213 0.211 cyclopentene 0.162 0.163 0.132 0.135 0.134 2Me-pentane 0.502 0.471 0.359 0.219 0.218 1,5-hexadiene 0.066 0.049 0.000 0.032 0.032 3-Me-C5 0.297 0.273 0.208 0.140 0.139 t-3Me-2-C5= 0.000 0.041 0.000 0.021 0.021 n-C6H14 0.899 0.801 0.568 0.349 0.347 c-3Me-2-C5= 0.000 0.020 0.000 0.012 0.012 Me-cyC5 0.000 0.044 0.000 0.025 0.025 2,2,3-TriMe C4 0.069 0.000 0.000 0.035 0.035 2,4-diMe-C5 0.322 0.314 0.386 0.336 0.334 3,4-diMe-1C5= 0.019 0.027 0.016 0.022 0.022 1Me-cyC5= 0.259 0.285 0.273 0.250 0.248 benzene 3.308 3.013 4.657 4.439 4.407 2,3-diMe-1C5= 0.176 0.113 0.204 0.100 0.100 1,3cy-hexadiene 0.388 0.087 0.258 0.110 0.109 2Me-C6 0.233 0.303 0.149 0.100 0.100 3Me-C6 0.000 0.249 0.000 0.058 0.058 n-C7H16 0.520 0.449 0.337 0.169 0.167 Et-cyC5 0.000 0.000 0.011 0.000 0.000 2,5diMe-C6 0.000 0.000 0.004 0.000 0.000 2,4diMe-C6 0.000 0.000 0.002 0.000 0.000 toluene 1.650 1.570 2.071 2.062 2.047 2-Me C7 0.095 0.024 0.045 0.021 0.021 4-Me C7 0.058 0.139 0.033 0.035 0.035 3-Me C7 0.000 0.079 0.000 0.016 0.015 n-C8H18 0.113 0.160 0.071 0.034 0.034 Et-benzene 0.165 0.202 0.170 0.210 0.208 m-xylene 0.272 0.195 0.244 0.265 0.263 p-xylene 0.127 0.080 0.024 0.097 0.097 2,3-DiMe C7 0.026 0.000 0.007 0.000 0.000 4Et-C7 0.065 0.000 0.020 0.000 0.000 4-Me C8 0.065 0.000 0.007 0.000 0.000 2-Me C8 0.032 0.000 0.017 0.000 0.000 Annex B: Detailed analytical results for the pilot plant experiments XXVII

styrene 0.310 0.282 0.397 0.457 0.454 o-xylene 0.104 0.123 0.101 0.122 0.121 n-C9H20 0.069 0.073 0.042 0.000 0.000 cumene 0.019 0.000 0.021 0.000 0.000 n-propyl benzene 0.107 0.017 0.059 0.033 0.033 4iPr-C7 0.000 0.000 0.000 0.019 0.018 2-propenyl-benzene 0.010 0.000 0.011 0.000 0.000 1Me-4Et benzene 0.013 0.000 0.000 0.000 0.000 Me-styrene 0.136 0.000 0.014 0.000 0.000 4-Et C8 0.072 0.000 0.021 0.000 0.000 1Et-3Me-benzene 0.001 0.000 0.016 0.000 0.000 1,3,5triMe-benzene 0.009 0.000 0.045 0.000 0.000 n-C10H22 0.147 0.068 0.122 0.109 0.108 1Et-2Me-benzene 0.031 0.000 0.017 0.000 0.000 o-vinyl toluene 0.105 0.124 0.045 0.091 0.090 1-propenyl-benzene 0.036 0.000 0.026 0.000 0.000 ethenyl-Me-benzene 0.035 0.082 0.025 0.019 0.018 1,2,3triMe-benzene 0.005 0.000 0.011 0.000 0.000 indene 0.113 0.097 0.161 0.211 0.209 2-Me C10 0.015 0.332 0.004 0.000 0.000 4-Me C10 0.015 0.000 0.014 0.000 0.000 3-Me C10 0.008 0.000 0.004 0.000 0.000 2Me-indene 0.006 0.000 0.010 0.000 0.000 n-C11H24 0.013 0.000 0.008 0.000 0.000 4-Me C11 0.077 0.000 0.000 0.000 0.000 1Me-indene 0.049 0.008 0.054 0.055 0.054 3Me-indene 0.033 0.000 0.045 0.057 0.056 3-Me C11 0.016 0.000 0.026 0.000 0.000 1Me-3n-butyl-benzene 0.019 0.000 0.028 0.000 0.000 naphthalene 0.143 0.152 0.237 0.235 0.233 2,6-DiMe C11 0.000 0.052 0.000 0.000 0.000 2,6,8-TriMe C11 0.000 0.083 0.000 0.000 0.000 2-Me-naphthalene 0.028 0.146 0.050 0.089 0.088 2,3-diMe-naphthalene 0.000 0.065 0.000 0.000 0.000 1,5-diMe-naphthalene 0.006 0.000 0.008 0.000 0.000 Et-naphthalene 0.020 0.000 0.036 0.038 0.038 2-ethenylnaphthalene 0.120 0.000 0.024 0.000 0.000 0.021 0.000 0.021 0.000 0.000 0.243 0.080 0.057 0.000 0.000

Annex B: Detailed analytical results for the pilot plant experiments XXVIII

Fischer-Tropsch naphtha: cracking experiment Run nr. 6 7 8 9 10 11 Conditions Feed HC-flow (kg/hr) 4.002 4.014 4.008 4.014 3.990 3.984

H2O-flow (kg/hr) 1.812 1.830 1.782 1.794 1.800 1.794 Dilution (kg/kg) 0.453 0.456 0.445 0.447 0.451 0.450 T-profile reactor Cell 3 OT (°C) 648 653 652 650 649 648 Cell 4 (°C) 682 683 682 682 680 681 Cell 4 (°C) 700 700 697 698 697 697 Cell 4 (°C) 709 709 707 707 707 707 Cell 4 OT (°C) 702 702 700 700 700 700 Cell 5 (°C) 738 737 735 743 741 741 Cell 5 (°C) 749 747 747 756 755 755 Cell 5 (°C) 762 760 759 771 769 769 Cell 5 OT (°C) 764 760 760 772 770 770 Cell 6 (°C) 779 778 777 788 786 786 Cell 6 (°C) 791 790 790 800 799 799 Cell 6 (°C) 804 802 801 812 811 811 Cell 6 OT (°C) 802 801 800 812 810 810 Cell 7 (°C) 829 829 829 841 842 841 Cell 7 (°C) 837 837 838 852 852 852 Cell 7 (°C) 847 847 848 862 862 862 COT (°C) 850 850 850 865 865 865 p-profile reactor exit cell 2 (bar abs) 2.14 2.07 2.18 2.19 2.19 2.09 inlet cell 5 (bar abs) 2.06 2.00 2.11 2.08 2.12 2.01 inlet cell 7 (bar abs) 1.77 1.77 1.82 1.77 1.81 1.77 COP (bar abs) 1.74 1.69 1.79 1.72 1.73 1.72 Yields (wt%) Σ C4 - 84.795 84.354 84.139 84.050 84.124 82.148 [C5 +,C6H6[ 5.027 5.451 5.526 4.315 4.295 4.412 [C6H6, naphthalene[ 9.697 9.897 10.033 10.900 10.850 12.825 Pyrolyse gasoil ([naphthalene, ...[) 0.481 0.298 0.302 0.735 0.731 0.616 TOTAL 100 100 100 100 100 100 P/E 0.575 0.584 0.577 0.513 0.511 0.511 C yield 83.560 83.672 83.664 83.568 83.595 83.751 H yield 16.200 16.201 16.214 16.298 16.296 16.140 hydrogen 0.896 0.879 0.873 0.959 0.968 0.948 CO 0.292 0.163 0.172 0.198 0.166 0.163 CO2 0.101 0.047 0.033 0.029 0.020 0.022 CH4 16.640 16.224 16.448 17.687 17.605 17.292 C2H6 4.212 4.186 4.216 4.102 4.006 3.995 C2H4 30.866 30.408 30.403 31.897 32.119 31.492 C3H8 0.602 0.609 0.600 0.536 0.529 0.523 C3H6 17.734 17.769 17.531 16.358 16.425 16.102 C2H2 0.513 0.504 0.509 0.640 0.660 0.638 PD 0.431 0.436 0.434 0.470 0.474 0.459 i-C4H10 0.164 0.164 0.149 0.105 0.109 0.108 n-C4H10 0.260 0.280 0.253 0.180 0.177 0.170 t-2-C4H8 0.532 0.533 0.516 0.407 0.414 0.397 1-C4H8 1.716 1.782 1.649 1.126 1.144 1.108 Annex B: Detailed analytical results for the pilot plant experiments XXIX

i-C4H8 3.114 3.122 3.185 2.529 2.720 2.609 c-2-C4H8 0.437 0.718 0.770 0.628 0.325 0.303 MeAc 0.498 0.568 0.601 0.700 0.704 0.671 cyc-C3 0.303 0.397 0.356 0.196 0.174 0.165 1,3-C4H6 5.453 5.490 5.365 5.226 5.307 4.941 Et-Ac 0.030 0.050 0.050 0.046 0.046 0.026 1,2C4H6 0.000 0.026 0.026 0.031 0.031 0.016 3Me-1C4= 0.190 0.300 0.304 0.123 0.123 0.135 iC5H12 0.000 0.000 0.000 0.000 0.000 0.000 1,4-C5H8 0.078 0.077 0.078 0.067 0.067 0.058 DiMe-Ac 0.035 0.037 0.038 0.000 0.000 0.025 1-C5H10 0.120 0.124 0.125 0.066 0.066 0.072 2Me-1C4= 0.000 0.000 0.000 0.000 0.000 0.004 n-pentane 0.216 0.277 0.281 0.179 0.178 0.155 isoprene 0.213 0.279 0.283 0.128 0.127 0.141 t2C5H10 0.844 0.883 0.895 0.679 0.676 0.727 c2C5H10 0.034 0.085 0.086 0.050 0.049 0.047 2Me2C4= 0.018 0.048 0.048 0.026 0.026 0.028 3Me1,2butadiene 0.071 0.132 0.134 0.104 0.103 0.102 t-1,3-PD 0.324 0.329 0.333 0.308 0.306 0.268 3Me-1C5= 0.000 0.000 0.000 0.024 0.024 0.000 1,3cyPD 1.512 1.337 1.355 1.370 1.364 1.497 c-1,3-PD 0.218 0.192 0.195 0.157 0.156 0.162 cyclopentene 0.089 0.134 0.135 0.116 0.116 0.113 cy-C5 0.000 0.000 0.000 0.029 0.029 0.000 2,3diMe-C4 0.000 0.000 0.000 0.026 0.026 0.000 2Me-pentane 0.109 0.164 0.166 0.064 0.064 0.065 1,5-hexadiene 0.021 0.000 0.000 0.021 0.021 0.000 3-Me-C5 0.030 0.080 0.082 0.043 0.042 0.000 t-3Me-2-C5= 0.000 0.000 0.000 0.000 0.000 0.000 n-C6H14 0.133 0.276 0.280 0.167 0.166 0.132 t3-C6H12 0.019 0.000 0.000 0.000 0.000 0.000 c3-C6H12 0.000 0.000 0.000 0.000 0.000 0.000 c-3Me-2-C5= 0.000 0.000 0.000 0.000 0.000 0.000 c2-C6H12 0.000 0.000 0.000 0.000 0.000 0.000 Me-cyC5 0.000 0.000 0.000 0.000 0.000 0.000 2,2,3-TriMe C4 0.000 0.000 0.000 0.000 0.000 0.087 3,3-diMe-1C5= 0.000 0.000 0.000 0.020 0.020 0.000 2,4-diMe-C5 0.441 0.391 0.396 0.325 0.324 0.314 3,4-diMe-1C5= 0.000 0.022 0.022 0.000 0.000 0.026 1Me-cyC5= 0.313 0.286 0.290 0.224 0.223 0.253 1,4-CyHD 0.000 0.000 0.000 0.000 0.000 0.000 benzene 5.350 5.725 5.804 5.915 5.888 7.004 2,3-diMe-1C5= 0.084 0.237 0.240 0.087 0.086 0.236 1,3cy-hexadiene 0.063 0.089 0.091 0.136 0.135 0.035 2Me-C6 0.043 0.041 0.041 0.000 0.000 0.012 3Me-C6 0.000 0.000 0.000 0.000 0.000 0.000 n-C7H16 0.122 0.145 0.147 0.065 0.064 0.055 Et-cyC5 0.000 0.012 0.013 0.000 0.000 0.000 1,1,3triMe-cyC5 0.000 0.000 0.000 0.032 0.032 0.000 2,2diMe-C6 0.000 0.000 0.000 0.025 0.025 0.000 2,5diMe-C6 0.000 0.004 0.004 0.000 0.000 0.000 2,4diMe-C6 0.000 0.004 0.004 0.000 0.000 0.000 toluene 2.097 1.504 1.525 2.406 2.395 2.758 Annex B: Detailed analytical results for the pilot plant experiments XXX

2-Me C7 0.000 0.012 0.013 0.000 0.000 0.004 4-Me C7 0.000 0.006 0.006 0.000 0.000 0.004 3-Me C7 0.031 0.000 0.000 0.000 0.000 0.000 n-C8H18 0.000 0.000 0.000 0.000 0.000 0.000 2,2-diMe-C7 0.000 0.000 0.000 0.021 0.021 0.000 2,4-diMe-C7 0.000 0.000 0.000 0.022 0.022 0.000 Et-cyC6 0.000 0.000 0.000 0.021 0.021 0.000 Et-benzene 0.210 0.183 0.186 0.152 0.151 0.220 m-xylene 0.224 0.260 0.264 0.255 0.254 0.267 p-xylene 0.048 0.055 0.056 0.118 0.117 0.132 2,3-DiMe C7 0.000 0.004 0.004 0.000 0.000 0.003 4Et-C7 0.000 0.004 0.004 0.000 0.000 0.000 4-Me C8 0.000 0.000 0.000 0.000 0.000 0.000 2-Me C8 0.000 0.002 0.002 0.000 0.000 0.000 styrene 0.627 0.559 0.566 0.675 0.672 0.763 o-xylene 0.127 0.119 0.121 0.115 0.115 0.155 n-C9H20 0.000 0.011 0.012 0.000 0.000 0.001 cumene 0.000 0.028 0.029 0.000 0.000 0.032 n-propyl benzene 0.000 0.057 0.058 0.000 0.000 0.044 2-propenyl-benzene 0.000 0.008 0.008 0.000 0.000 0.013 1Me-4Et benzene 0.000 0.012 0.013 0.000 0.000 0.020 Me-styrene 0.000 0.005 0.005 0.000 0.000 0.007 4-Et C8 0.000 0.027 0.027 0.000 0.000 0.043 1Et-3Me-benzene 0.000 0.019 0.019 0.000 0.000 0.000 1,3,5triMe-benzene 0.000 0.032 0.032 0.000 0.000 0.000 4-Me C9 0.000 0.000 0.000 0.041 0.041 0.000 n-C10H22 0.105 0.142 0.144 0.136 0.135 0.249 1Et-2Me-benzene 0.000 0.021 0.022 0.000 0.000 0.000 o-vinyl toluene 0.046 0.047 0.048 0.090 0.090 0.044 1-propenyl-benzene 0.000 0.019 0.020 0.000 0.000 0.053 ethenyl-Me-benzene 0.040 0.026 0.026 0.052 0.052 0.052 1,2,3triMe-benzene 0.000 0.019 0.019 0.000 0.000 0.004 indene 0.281 0.227 0.230 0.306 0.304 0.314 2-Me C10 0.000 0.000 0.000 0.000 0.000 0.020 5-Me C10 0.000 0.000 0.000 0.000 0.000 0.004 4-Me C10 0.000 0.000 0.000 0.000 0.000 0.020 3-Me C10 0.000 0.000 0.000 0.000 0.000 0.004 2Me-indene 0.000 0.000 0.000 0.000 0.000 0.016 n-C11H24 0.000 0.000 0.000 0.000 0.000 0.010 4-Me C11 0.000 0.019 0.020 0.020 0.020 0.000 1Me-indene 0.070 0.072 0.073 0.090 0.090 0.077 3Me-indene 0.129 0.063 0.064 0.087 0.086 0.070 3-Me C11 0.000 0.035 0.036 0.010 0.010 0.040 1Me-3n-butyl-benzene 0.000 0.041 0.041 0.023 0.023 0.039 naphthalene 0.339 0.298 0.302 0.486 0.483 0.338 2,6-DiMe C11 0.000 0.000 0.000 0.024 0.024 0.000 2,6,8-TriMe C11 0.000 0.000 0.000 0.022 0.022 0.000 2-Me-naphthalene 0.084 0.000 0.000 0.104 0.103 0.070 2,3-diMe-naphthalene 0.000 0.000 0.000 0.000 0.000 0.000 Et-naphthalene 0.058 0.000 0.000 0.070 0.070 0.055 2-ethenylnaphthalene 0.000 0.000 0.000 0.029 0.029 0.034 1,5-diMe-naphthalene 0.000 0.000 0.000 0.000 0.000 0.028 phenanthrene 0.000 0.000 0.000 0.000 0.000 0.063 anthracene 0.000 0.000 0.000 0.000 0.000 0.028 Annex B: Detailed analytical results for the pilot plant experiments XXXI

Fischer-Tropsch naphtha: cracking experiment Run nr. 12 13 14 15 16 17 Conditions Feed HC-flow (kg/hr) 2.994 2.982 3.012 5.112 5.100 5.118

H2O-flow (kg/hr) 2.118 2.106 2.094 1.524 1.554 1.488 Dilution (kg/kg) 0.707 0.706 0.695 0.298 0.305 0.291 T-profile reactor Cell 3 OT (°C) 648 649 650 655 647 648 Cell 4 (°C) 680 681 682 680 679 681 Cell 4 (°C) 696 698 698 696 697 699 Cell 4 (°C) 707 708 708 704 706 708 Cell 4 OT (°C) 699 700 700 697 700 702 Cell 5 (°C) 734 736 736 732 733 734 Cell 5 (°C) 748 748 748 745 746 747 Cell 5 (°C) 760 761 760 759 760 761 Cell 5 OT (°C) 760 760 760 760 760 761 Cell 6 (°C) 779 779 779 777 775 775 Cell 6 (°C) 791 791 792 792 788 788 Cell 6 (°C) 801 802 802 805 800 799 Cell 6 OT (°C) 800 800 800 805 800 799 Cell 7 (°C) 830 830 831 830 825 823 Cell 7 (°C) 839 839 840 841 836 834 Cell 7 (°C) 849 849 850 851 846 845 COT (°C) 849 849 850 855 850 847 p-profile reactor exit cell 2 (bar abs) 2.10 2.00 2.06 2.01 2.11 2.12 inlet cell 5 (bar abs) 2.03 1.94 1.99 1.96 2.03 2.01 inlet cell 7 (bar abs) 1.75 1.75 1.79 1.76 1.80 1.79 COP (bar abs) 1.77 1.69 1.74 1.67 1.70 1.69 Yields (wt%) Σ C4 - 85.391 85.138 84.103 84.012 84.120 86.854 [C5 +,C6H6[ 3.813 3.879 5.261 5.573 5.535 3.672 [C6H6, naphthalene[ 10.130 10.305 10.200 9.960 9.892 9.474 Pyrolyse gasoil ([naphthalene, ...[) 0.667 0.678 0.436 0.455 0.452 0.000 TOTAL 100 100 100 100 100 100 P/E 0.549 0.540 0.546 0.594 0.594 0.588 C yield 83.706 83.732 83.727 83.646 83.637 83.533 H yield 16.158 16.128 16.104 16.259 16.260 16.394 hydrogen 0.939 0.930 0.927 0.849 0.869 0.893 CO 0.186 0.207 0.238 0.141 0.119 0.106 CO2 0.041 0.030 0.047 0.020 0.047 0.017 CH4 16.243 16.524 16.156 16.764 16.650 17.477 C2H6 3.675 3.703 3.657 4.737 4.667 4.931 C2H4 32.608 32.466 31.761 29.952 30.087 31.036 C3H8 0.560 0.545 0.542 0.648 0.638 0.664 C3H6 17.889 17.542 17.327 17.784 17.863 18.254 C2H2 0.626 0.631 0.620 0.451 0.448 0.462 PD 0.000 0.512 0.469 0.394 0.423 0.398 i-C4H10 0.575 0.120 0.159 0.155 0.113 0.149 n-C4H10 0.235 0.225 0.227 0.246 0.239 0.235 t-2-C4H8 0.548 0.474 0.483 0.541 0.528 0.619 1-C4H8 1.710 1.586 1.580 1.694 1.648 1.714 Annex B: Detailed analytical results for the pilot plant experiments XXXII

i-C4H8 2.823 2.859 3.038 3.061 3.067 3.313 c-2-C4H8 0.362 0.373 0.365 0.429 0.557 0.519 MeAc 0.669 0.690 0.685 0.545 0.541 0.550 cyc-C3 0.309 0.292 0.290 0.337 0.335 0.294 1,3-C4H6 5.349 5.385 5.468 5.132 5.150 5.222 Et-Ac 0.044 0.045 0.045 0.103 0.102 0.000 1,2C4H6 0.000 0.000 0.020 0.029 0.029 0.000 3Me-1C4= 0.133 0.135 0.253 0.248 0.247 0.336 iC5H12 0.000 0.000 0.000 0.000 0.000 0.000 1,4-C5H8 0.043 0.043 0.063 0.102 0.101 0.000 DiMe-Ac 0.056 0.057 0.022 0.100 0.099 0.000 1-C5H10 0.074 0.075 0.085 0.115 0.114 0.000 2Me-1C4= 0.000 0.000 0.000 0.000 0.000 0.000 n-pentane 0.155 0.158 0.239 0.285 0.283 0.144 isoprene 0.154 0.157 0.251 0.010 0.010 0.265 t2C5H10 0.679 0.690 0.860 0.832 0.826 0.758 c2C5H10 0.000 0.000 0.075 0.089 0.088 0.000 2Me2C4= 0.025 0.025 0.039 0.062 0.062 0.000 3Me1,2butadiene 0.117 0.119 0.111 0.145 0.144 0.053 t-1,3-PD 0.227 0.231 0.295 0.374 0.372 0.330 3Me-1C5= 0.000 0.000 0.000 0.000 0.000 0.000 1,3cyPD 1.201 1.222 1.512 1.223 1.215 1.307 c-1,3-PD 0.112 0.114 0.177 0.209 0.207 0.000 cyclopentene 0.082 0.084 0.125 0.226 0.224 0.000 cy-C5 0.000 0.000 0.132 0.014 0.014 0.000 2,3diMe-C4 0.000 0.000 0.000 0.021 0.021 0.000 2Me-pentane 0.000 0.000 0.000 0.167 0.166 0.000 1,5-hexadiene 0.000 0.000 0.011 0.067 0.067 0.000 3-Me-C5 0.028 0.028 0.059 0.076 0.075 0.000 t-3Me-2-C5= 0.000 0.000 0.000 0.036 0.036 0.000 n-C6H14 0.125 0.127 0.255 0.321 0.319 0.000 t3-C6H12 0.000 0.000 0.000 0.025 0.025 0.000 c3-C6H12 0.000 0.000 0.000 0.024 0.024 0.000 c-3Me-2-C5= 0.000 0.000 0.000 0.000 0.000 0.000 c2-C6H12 0.000 0.000 0.000 0.022 0.021 0.000 Me-cyC5 0.076 0.077 0.000 0.025 0.025 0.000 2,2,3-TriMe C4 0.000 0.000 0.103 0.031 0.030 0.000 3,3-diMe-1C5= 0.000 0.000 0.000 0.000 0.000 0.000 2,4-diMe-C5 0.276 0.281 0.287 0.416 0.413 0.000 3,4-diMe-1C5= 0.000 0.000 0.007 0.000 0.000 0.000 1Me-cyC5= 0.252 0.257 0.300 0.290 0.288 0.478 1,4-CyHD 0.000 0.000 0.000 0.019 0.019 0.000 benzene 5.888 5.990 5.858 5.277 5.241 5.749 2,3-diMe-1C5= 0.000 0.000 0.048 0.085 0.085 0.000 1,3cy-hexadiene 0.036 0.037 0.009 0.100 0.099 0.000 2Me-C6 0.000 0.000 0.004 0.090 0.089 0.000 3Me-C6 0.000 0.000 0.000 0.000 0.000 0.000 n-C7H16 0.044 0.045 0.029 0.180 0.179 0.000 Et-cyC5 0.000 0.000 0.000 0.000 0.000 0.000 1,1,3triMe-cyC5 0.000 0.000 0.000 0.000 0.000 0.000 2,2diMe-C6 0.000 0.000 0.000 0.000 0.000 0.000 2,5diMe-C6 0.000 0.000 0.000 0.000 0.000 0.000 2,4diMe-C6 0.000 0.000 0.000 0.000 0.000 0.000 toluene 2.317 2.357 2.092 2.330 2.314 2.636 Annex B: Detailed analytical results for the pilot plant experiments XXXIII

2-Me C7 0.000 0.000 0.012 0.000 0.000 0.000 4-Me C7 0.000 0.000 0.005 0.000 0.000 0.000 3-Me C7 0.000 0.000 0.000 0.000 0.000 0.000 n-C8H18 0.000 0.000 0.000 0.000 0.000 0.000 2,2-diMe-C7 0.000 0.000 0.000 0.000 0.000 0.000 2,4-diMe-C7 0.000 0.000 0.000 0.000 0.000 0.000 Et-cyC6 0.000 0.000 0.000 0.000 0.000 0.000 Et-benzene 0.192 0.196 0.222 0.242 0.240 0.000 m-xylene 0.245 0.249 0.240 0.274 0.272 0.000 p-xylene 0.122 0.124 0.091 0.086 0.086 0.000 2,3-DiMe C7 0.000 0.000 0.008 0.000 0.000 0.000 4Et-C7 0.000 0.000 0.000 0.000 0.000 0.000 4-Me C8 0.000 0.000 0.000 0.000 0.000 0.000 2-Me C8 0.000 0.000 0.000 0.000 0.000 0.000 styrene 0.619 0.630 0.557 0.569 0.565 0.917 o-xylene 0.134 0.136 0.123 0.150 0.149 0.000 n-C9H20 0.000 0.000 0.004 0.000 0.000 0.000 cumene 0.000 0.000 0.023 0.000 0.000 0.000 n-propyl benzene 0.000 0.000 0.035 0.024 0.024 0.000 2-propenyl-benzene 0.000 0.000 0.028 0.000 0.000 0.000 1Me-4Et benzene 0.000 0.000 0.000 0.000 0.000 0.000 Me-styrene 0.000 0.000 0.013 0.000 0.000 0.000 4-Et C8 0.000 0.000 0.025 0.000 0.000 0.000 1Et-3Me-benzene 0.000 0.000 0.006 0.000 0.000 0.000 1,3,5triMe-benzene 0.000 0.000 0.053 0.000 0.000 0.000 4-Me C9 0.000 0.000 0.000 0.000 0.000 0.000 n-C10H22 0.106 0.108 0.131 0.093 0.092 0.000 1Et-2Me-benzene 0.000 0.000 0.020 0.000 0.000 0.000 o-vinyl toluene 0.000 0.000 0.018 0.070 0.070 0.000 1-propenyl-benzene 0.000 0.000 0.042 0.000 0.000 0.000 ethenyl-Me-benzene 0.028 0.028 0.038 0.013 0.013 0.000 1,2,3triMe-benzene 0.000 0.000 0.010 0.000 0.000 0.000 indene 0.232 0.236 0.235 0.206 0.205 0.172 2-Me C10 0.000 0.000 0.013 0.000 0.000 0.000 5-Me C10 0.000 0.000 0.000 0.000 0.000 0.000 4-Me C10 0.000 0.000 0.009 0.000 0.000 0.000 3-Me C10 0.000 0.000 0.007 0.000 0.000 0.000 2Me-indene 0.000 0.000 0.012 0.000 0.000 0.000 n-C11H24 0.000 0.000 0.006 0.000 0.000 0.000 4-Me C11 0.000 0.000 0.000 0.000 0.000 0.000 1Me-indene 0.064 0.065 0.064 0.085 0.085 0.000 3Me-indene 0.103 0.104 0.054 0.084 0.083 0.000 3-Me C11 0.000 0.000 0.028 0.000 0.000 0.000 1Me-3n-butyl-benzene 0.000 0.000 0.027 0.000 0.000 0.000 naphthalene 0.392 0.399 0.254 0.327 0.325 0.000 2,6-DiMe C11 0.000 0.000 0.000 0.000 0.000 0.000 2,6,8-TriMe C11 0.000 0.000 0.000 0.000 0.000 0.000 2-Me-naphthalene 0.120 0.122 0.049 0.053 0.053 0.000 2,3-diMe-naphthalene 0.000 0.000 0.000 0.000 0.000 0.000 Et-naphthalene 0.119 0.121 0.036 0.075 0.074 0.000 2-ethenylnaphthalene 0.000 0.000 0.019 0.000 0.000 0.000 1,5-diMe-naphthalene 0.000 0.000 0.012 0.000 0.000 0.000 phenanthrene 0.036 0.037 0.031 0.000 0.000 0.000 anthracene 0.000 0.000 0.037 0.000 0.000 0.000 Annex B: Detailed analytical results for the pilot plant experiments XXXIV

Fischer-Tropsch naphtha: coking experiment Run nr. 1 2 3 4 Conditions Feed HC-flow (kg/hr) 3.990 4.008 3.996 4.014

H2O-flow (kg/hr) 1.782 1.788 1.782 1.830 Dilution (kg/kg) 0.447 0.446 0.446 0.456 T-profile reactor Cell 3 OT (°C) 652 651 649 650 Cell 4 (°C) 681 681 680 680 Cell 4 (°C) 697 697 696 696 Cell 4 (°C) 706 706 706 705 Cell 4 OT (°C) 700 700 700 700 Cell 5 (°C) 736 736 735 735 Cell 5 (°C) 747 748 747 747 Cell 5 (°C) 760 761 761 761 Cell 5 OT (°C) 760 761 760 760 Cell 6 (°C) 777 779 778 777 Cell 6 (°C) 788 790 789 789 Cell 6 (°C) 802 802 801 800 Cell 6 OT (°C) 800 801 800 800 Cell 7 (°C) 829 829 829 828 Cell 7 (°C) 836 837 837 837 Cell 7 (°C) 846 847 847 847 COT (°C) 850 850 850 850 p-profile reactor exit cell 2 (bar abs) 2.07 2.04 2.09 2.03 inlet cell 5 (bar abs) 1.99 1.97 2.01 1.96 inlet cell 7 (bar abs) 1.78 1.76 1.79 1.76 COP (bar abs) 1.70 1.67 1.71 1.66 Yields (wt%) Σ C4 - 84.178 83.936 83.696 84.127 [C5 +,C6H6[ 4.873 5.048 5.251 5.148 [C6H6, naphthalene[ 10.562 10.659 10.750 10.406 Pyrolyse gasoil ([naphthalene, ...[) 0.387 0.356 0.303 0.319 TOTAL 100 100 100 100 P/E 0.566 0.562 0.564 0.566 C yield 83.554 83.639 83.693 83.689 H yield 16.242 16.220 16.225 16.238 hydrogen 0.928 0.912 0.897 0.893 CO 0.304 0.215 0.132 0.116 CO2 0.043 0.024 0.010 0.010 CH4 16.493 16.506 16.464 16.484 C2H6 4.227 4.212 4.204 4.213 C2H4 30.929 30.920 30.922 31.127 C3H8 0.583 0.580 0.577 0.579 C3H6 17.516 17.392 17.437 17.628 C2H2 0.501 0.512 0.509 0.511 PD 0.418 0.441 0.408 0.432 i-C4H10 0.136 0.106 0.143 0.128 n-C4H10 0.216 0.212 0.210 0.212 Annex B: Detailed analytical results for the pilot plant experiments XXXV

t-2-C4H8 0.566 0.578 0.474 0.498 1-C4H8 1.656 1.600 1.603 1.589 i-C4H8 3.162 3.197 2.919 3.062 c-2-C4H8 0.442 0.446 0.695 0.379 MeAc 0.578 0.590 0.577 0.590 cyc-C3 0.292 0.295 0.283 0.300 1,3-C4H6 5.132 5.165 5.178 5.352 Et-Ac 0.039 0.020 0.031 0.019 1,2C4H6 0.019 0.012 0.023 0.008 3Me-1C4= 0.242 0.231 0.255 0.260 1,4-C5H8 0.072 0.068 0.065 0.057 DiMe-Ac 0.029 0.026 0.024 0.031 1-C5H10 0.103 0.102 0.098 0.108 n-pentane 0.241 0.218 0.235 0.241 isoprene 0.234 0.231 0.257 0.248 t2C5H10 0.804 0.826 0.824 0.820 c2C5H10 0.073 0.062 0.080 0.077 2Me2C4= 0.043 0.038 0.052 0.048 3Me1,2butadiene 0.111 0.118 0.129 0.146 t-1,3-PD 0.315 0.285 0.280 0.298 1,3cyPD 1.125 1.349 1.311 1.253 c-1,3-PD 0.174 0.162 0.165 0.167 cyclopentene 0.120 0.124 0.123 0.136 cy-C5 0.008 0.000 0.000 0.000 2,3diMe-C4 0.003 0.000 0.012 0.005 2Me-pentane 0.144 0.140 0.150 0.150 1,5-hexadiene 0.027 0.017 0.021 0.021 3-Me-C5 0.069 0.049 0.075 0.074 t-3Me-2-C5= 0.019 0.016 0.017 0.022 1-t-4-Hexadiene 0.000 0.016 0.012 0.008 n-C6H14 0.245 0.231 0.263 0.250 t3-C6H12 0.013 0.013 0.015 0.013 c3-C6H12 0.007 0.011 0.010 0.018 c-3Me-2-C5= 0.007 0.012 0.012 0.011 c2-C6H12 0.000 0.013 0.018 0.011 2,2-diMe-C5 0.032 0.032 0.037 0.039 Me-cyC5 0.080 0.074 0.076 0.065 2,2,3-TriMe C4 0.016 0.017 0.022 0.017 2,4-diMe-C5 0.266 0.304 0.317 0.294 3,4-diMe-1C5= 0.024 0.016 0.021 0.017 1Me-cyC5= 0.203 0.231 0.250 0.229 1,4-CyHD 0.025 0.017 0.024 0.016 benzene 5.581 5.816 5.857 5.801 2,3-diMe-1C5= 0.097 0.086 0.091 0.075 1,3cy-hexadiene 0.150 0.171 0.166 0.154 2Me-C6 0.077 0.054 0.068 0.073 2,3-diMe-C5 0.037 0.030 0.039 0.031 1,1-diMe-cyC5 0.016 0.016 0.025 0.020 3Me-C6 0.004 0.000 0.004 0.004 1,c2-DiMe CyC5 0.027 0.021 0.016 0.021 3Et-C5 0.015 0.012 0.015 0.014 n-C7H16 0.136 0.126 0.131 0.125 Me-cyC6 0.025 0.030 0.026 0.034 2,2diMe-C6 0.011 0.000 0.008 0.004 Annex B: Detailed analytical results for the pilot plant experiments XXXVI

Et-cyC5 0.000 0.000 0.013 0.017 2,4diMe-C6 0.000 0.000 0.004 0.000 1,t2,c4TriMeCy C5 0.000 0.000 0.002 0.000 toluene 2.278 2.309 2.315 2.235 2-Me C7 0.030 0.031 0.025 0.037 4-Me C7 0.019 0.008 0.012 0.008 3,4-DiMe C6 0.016 0.021 0.012 0.015 2,2,4-TriMe C6 0.018 0.018 0.020 0.017 n-C8H18 0.034 0.033 0.034 0.040 Et-benzene 0.214 0.210 0.217 0.206 m-xylene 0.253 0.231 0.265 0.234 p-xylene 0.085 0.098 0.075 0.081 styrene 0.563 0.511 0.512 0.451 o-xylene 0.126 0.128 0.124 0.116 2,7-DiMe C8 0.030 0.021 0.028 0.026 cumene 0.017 0.000 0.000 0.000 2,5-DiMe C8 0.000 0.013 0.016 0.015 n-propyl benzene 0.043 0.039 0.045 0.042 4iPr-C7 0.015 0.011 0.017 0.018 2-propenyl-benzene 0.008 0.018 0.015 0.013 1,3,5triMe-benzene 0.046 0.042 0.036 0.035 n-C10H22 0.122 0.112 0.102 0.086 o-vinyl toluene 0.043 0.047 0.040 0.042 1-propenyl-benzene 0.049 0.036 0.036 0.026 ethenyl-Me-benzene 0.052 0.037 0.036 0.044 1,2,3triMe-benzene 0.020 0.015 0.021 0.011 indene 0.179 0.176 0.163 0.138 5-Me C10 0.000 0.010 0.000 0.007 1Me-indene 0.043 0.039 0.038 0.031 3Me-indene 0.055 0.058 0.045 0.040 3-Me C11 0.000 0.000 0.010 0.000 1Me-3n-butyl-benzene 0.029 0.024 0.021 0.017 naphthalene 0.257 0.227 0.196 0.197 2-Me-naphthalene 0.057 0.056 0.043 0.051 Et-naphthalene 0.038 0.056 0.042 0.041 2-ethenylnaphthalene 0.005 0.000 0.000 0.009 1,5-diMe-naphthalene 0.030 0.018 0.022 0.021

Annex B: Detailed analytical results for the pilot plant experiments XXXVII

Fischer-Tropsch naphtha + 100ppm DMDS Run nr. 1 2 Conditions Feed HC-flow (kg/hr) 1.794 1.794

H2O-flow (kg/hr) 3.918 3.990 Dilution (kg/kg) 2.184 2.224 T-profile reactor Cell 3 OT (°C) 652 649 Cell 4 (°C) 679 677 Cell 4 (°C) 696 695 Cell 4 (°C) 708 706 Cell 4 OT (°C) 703 700 Cell 5 (°C) 741 737 Cell 5 (°C) 752 749 Cell 5 (°C) 763 760 Cell 5 OT (°C) 763 760 Cell 6 (°C) 786 782 Cell 6 (°C) 796 794 Cell 6 (°C) 806 803 Cell 6 OT (°C) 803 799 Cell 7 (°C) 836 834 Cell 7 (°C) 841 840 Cell 7 (°C) 849 850 COT (°C) 850 850 p-profile reactor exit cell 2 (bar abs) 2.17 2.13 inlet cell 5 (bar abs) 2.03 2.00 inlet cell 7 (bar abs) 1.78 1.77 COP (bar abs) 1.67 1.64 Yields (wt%) Σ C4 - 88.425 88.479 [C5 +,C6H6[ 5.310 5.285 [C6H6, naphthalene[ 6.119 6.091 Pyrolyse gasoil ([naphthalene, ...[) 0.145 0.145 TOTAL 100 100 P/E 0.553 0.560 C yield 83.438 83.678 H yield 16.173 16.184 hydrogen 1.003 0.957 CO 0.407 0.178 CO2 0.215 0.050 CH4 14.508 14.440 C2H6 3.207 3.195 C2H4 33.639 33.667 C3H8 0.606 0.607 C3H6 18.591 18.840 C2H2 0.873 0.865 PD 0.711 0.738 i-C4H10 0.142 0.134 n-C4H10 0.255 0.265 t-2-C4H8 0.528 0.536 1-C4H8 2.522 2.599 Annex B: Detailed analytical results for the pilot plant experiments XXXVIII

i-C4H8 3.250 3.403 c-2-C4H8 0.435 0.430 MeAc 0.912 0.906 cyc-C3 0.460 0.494 1,3-C4H6 6.163 6.177 1,2C4H6 0.000 0.000 3Me-1C4= 0.315 0.314 1-C5H10 0.000 0.000 2Me-1C4= 0.000 0.000 n-pentane 0.397 0.396 isoprene 0.448 0.446 t2C5H10 0.903 0.898 c2C5H10 0.000 0.000 2Me2C4= 0.000 0.000 3Me1,2butadiene 0.115 0.114 t-1,3-PD 0.352 0.350 1,3cyPD 1.183 1.177 c-1,3-PD 0.332 0.330 2Me-pentane 0.149 0.148 1,5-hexadiene 0.000 0.000 3-Me-C5 0.000 0.000 n-C6H14 0.472 0.470 Me-cyC5 0.000 0.000 2,4-diMe-C5 0.357 0.356 1Me-cyC5= 0.287 0.286 benzene 3.758 3.740 1,3cy-hexadiene 0.168 0.167 2Me-C6 0.000 0.000 1,c3-diMe CyC5 0.000 0.000 n-C7H16 0.161 0.161 1,1,3-triMe-cyC5 0.073 0.073 toluene 1.179 1.173 1,1,2-triMe-cyC5 0.000 0.000 4-Me C7 0.000 0.000 Et-benzene 0.177 0.177 m-xylene 0.112 0.112 p-xylene 0.078 0.078 2-Me C8 0.000 0.000 styrene 0.291 0.289 o-xylene 0.000 0.000 n-propyl benzene 0.000 0.000 indene 0.122 0.122 naphthalene 0.145 0.145

Annex B: Detailed analytical results for the pilot plant experiments XXXIX

Syntroleum naphtha + 100ppm DMDS: coking experiment Run nr. 1 2 3 4 Conditions Feed HC-flow (kg/hr) 3.984 4.008 3.990 3.990

H2O-flow (kg/hr) 1.812 1.764 1.776 1.812 Dilution (kg/kg) 0.455 0.440 0.445 0.454 T-profile reactor Cell 3 OT (°C) 650 650 651 647 Cell 4 (°C) 681 680 680 680 Cell 4 (°C) 699 698 697 697 Cell 4 (°C) 707 706 705 706 Cell 4 OT (°C) 701 699 700 700 Cell 5 (°C) 737 735 733 732 Cell 5 (°C) 747 745 745 744 Cell 5 (°C) 761 759 759 758 Cell 5 OT (°C) 762 760 760 759 Cell 6 (°C) 780 778 777 777 Cell 6 (°C) 792 790 791 791 Cell 6 (°C) 805 802 803 802 Cell 6 OT (°C) 802 800 800 800 Cell 7 (°C) 828 826 827 827 Cell 7 (°C) 836 836 837 837 Cell 7 (°C) 848 848 849 850 COT (°C) 850 850 851 850 p-profile reactor exit cell 2 (bar abs) 1.99 1.97 1.91 2.11 inlet cell 5 (bar abs) 1.92 1.91 1.85 2.01 inlet cell 7 (bar abs) 1.75 1.75 1.75 1.75 COP (bar abs) 1.64 1.64 1.60 1.69 Yields (wt%) Σ C4 - 85.802 85.259 85.086 85.138 [C5 +,C6H6[ 4.761 4.153 4.153 4.341 [C6H6, naphthalene[ 9.052 10.044 10.168 9.996 Pyrolyse gasoil ([naphthalene, ...[) 0.385 0.545 0.594 0.525 TOTAL 100 100 100 100 P/E 0.584 0.585 0.579 0.588 C yield 83.693 83.820 83.787 83.813 H yield 16.270 16.150 16.178 16.154 hydrogen 0.888 0.883 0.892 0.867 CO 0.056 0.048 0.058 0.056 CO2 0.008 0.003 0.003 0.002 CH4 16.349 15.985 16.308 16.096 C2H6 4.237 4.114 4.344 4.291 C2H4 31.297 31.206 31.278 31.203 C3H8 0.605 0.597 0.607 0.610 C3H6 18.269 18.270 18.102 18.335 C2H2 0.520 0.503 0.508 0.513 PD 0.447 0.448 0.441 0.438 i-C4H10 0.132 0.136 0.126 0.139 n-C4H10 0.228 0.233 0.216 0.226 t-2-C4H8 0.525 0.531 0.513 0.628 1-C4H8 1.827 1.778 1.666 1.761 Annex B: Detailed analytical results for the pilot plant experiments XL

i-C4H8 3.103 3.399 3.204 3.015 c-2-C4H8 0.681 0.443 0.407 0.395 MeAc 0.614 0.609 0.600 0.599 cyc-C3 0.318 0.343 0.313 0.317 1,3-C4H6 5.645 5.700 5.500 5.608 Et-Ac 0.040 0.030 0.000 0.039 1,2C4H6 0.015 0.000 0.000 0.000 3Me-1C4= 0.255 0.162 0.131 0.182 1,4-C5H8 0.079 0.072 0.070 0.062 DiMe-Ac 0.042 0.022 0.035 0.032 1-C5H10 0.097 0.092 0.083 0.083 n-pentane 0.230 0.189 0.173 0.201 isoprene 0.225 0.125 0.137 0.176 t2C5H10 0.842 0.716 0.693 0.722 c2C5H10 0.073 0.044 0.051 0.048 2Me2C4= 0.044 0.036 0.033 0.030 3Me1,2butadiene 0.125 0.087 0.094 0.098 t-1,3-PD 0.327 0.280 0.284 0.289 1,3cyPD 1.072 1.199 1.300 1.235 c-1,3-PD 0.211 0.197 0.161 0.174 cyclopentene 0.129 0.106 0.114 0.113 2Me-pentane 0.128 0.093 0.068 0.078 1,5-hexadiene 0.032 0.000 0.032 0.021 3-Me-C5 0.055 0.036 0.016 0.035 n-C6H14 0.232 0.160 0.123 0.171 2,2diMe-C5 0.026 0.000 0.000 0.000 Me-cyC5 0.099 0.096 0.090 0.098 2,4-diMe-C5 0.229 0.248 0.257 0.280 1Me-cyC5= 0.208 0.193 0.208 0.213 benzene 5.109 5.383 5.667 5.461 2,3-diMe-1C5= 0.097 0.096 0.052 0.059 1,3cy-hexadiene 0.096 0.140 0.101 0.096 2Me-C6 0.059 0.000 0.000 0.027 n-C7H16 0.106 0.080 0.069 0.070 1,1,3triMe-cyC5 0.000 0.026 0.000 0.000 toluene 2.075 2.177 2.241 2.275 2-Me C7 0.000 0.000 0.000 0.023 Et-benzene 0.171 0.170 0.166 0.177 m-xylene 0.220 0.251 0.228 0.227 p-xylene 0.075 0.092 0.097 0.081 styrene 0.544 0.643 0.641 0.611 o-xylene 0.111 0.118 0.118 0.100 cumene 0.000 0.032 0.028 0.049 n-propyl benzene 0.033 0.000 0.032 0.029 4Me-C9 0.000 0.000 0.000 0.014 1Et-2Me-benzene 0.000 0.000 0.000 0.017 n-C10H22 0.106 0.173 0.130 0.129 o-vinyl toluene 0.000 0.086 0.046 0.064 1-propenyl-benzene 0.000 0.109 0.066 0.069 ethenyl-Me-benzene 0.055 0.051 0.049 0.038 indene 0.124 0.239 0.261 0.233 1Me-indene 0.025 0.042 0.050 0.051 3Me-indene 0.046 0.087 0.084 0.072 3-Me C11 0.000 0.048 0.044 0.024 Annex B: Detailed analytical results for the pilot plant experiments XLI

naphthalene 0.308 0.381 0.432 0.394 2-Me-naphthalene 0.038 0.102 0.095 0.070 Et-naphthalene 0.039 0.062 0.066 0.060

Annex B: Detailed analytical results for the pilot plant experiments XLII

Gas condensate 700B Run nr. 1 2 3 4 5 6 Conditions Feed HC-flow (kg/hr) 3.534 3.534 3.534 3.516 3.528 3.516

H2O-flow (kg/hr) 2.496 2.466 2.436 2.502 2.49 2.442 Dilution (kg/kg) 0.706 0.698 0.689 0.712 0.706 0.695 T-profile reactor Cell 3 OT (°C) 649 650 650 651 650 650 Cell 4 (°C) 693 692 693 693 693 693 Cell 4 (°C) 716 716 717 717 717 717 Cell 4 (°C) 725 724 725 725 725 725 Cell 4 OT (°C) 719 719 720 721 720 720 Cell 5 (°C) 748 746 747 747 746 746 Cell 5 (°C) 756 755 755 756 755 755 Cell 5 (°C) 767 765 767 767 767 767 Cell 5 OT (°C) 771 769 770 771 770 770 Cell 6 (°C) 790 787 788 788 787 787 Cell 6 (°C) 802 799 800 801 799 800 Cell 6 (°C) 814 810 811 813 811 811 Cell 6 OT (°C) 813 809 810 812 810 810 Cell 7 (°C) 822 820 819 823 822 822 Cell 7 (°C) 816 814 814 816 815 816 Cell 7 (°C) 820 818 815 818 818 818 COT (°C) 821 819 816 821 820 820 p-profile reactor exit cell 2 (bar abs) 2.21 2.48 2.48 2.44 2.35 2.41 inlet cell 5 (bar abs) 2.06 2.33 2.33 2.29 2.20 2.26 inlet cell 7 (bar abs) 2.11 1.92 1.95 2.08 2.16 2.32 COP (bar abs) 1.86 1.77 1.60 1.79 1.61 1.65 Yields (wt%) Σ C4 - 65.722 64.918 67.161 66.506 65.836 65.821 [C5 +,C6H6[ 3.630 3.410 7.333 6.210 5.990 4.140 [C6H6, naphthalene[ 11.310 10.625 11.065 10.067 9.710 12.230 Pyrolyse gasoil ([naphthalene, ...[) 0.975 0.916 0.941 0.767 0.740 0.630 TOTAL 81.637 79.868 86.501 83.550 82.276 82.821 P/E 0.586 0.606 0.617 0.608 0.609 0.609 hydrogen 0.648 0.686 0.736 0.734 0.725 0.645 CO2 0.047 0.044 0.049 0.079 0.074 0.082 CO 0.226 0.178 0.194 0.318 0.305 0.307 methane 12.070 11.339 11.939 12.698 12.248 11.906 ethylene 24.367 24.552 24.538 24.377 24.668 23.736 acetylene 0.301 0.302 0.298 0.299 0.316 0.322 ethane 3.448 3.186 3.678 4.088 3.661 3.658 propylene 14.289 14.866 15.141 14.818 15.031 14.461 propane 0.472 0.479 0.537 0.558 0.535 0.527 MeAc 0.289 0.300 0.295 0.289 0.316 0.323 C3H4 0.242 0.227 0.244 0.222 0.214 0.264 2MeC3H8 0.006 0.006 0.001 0.002 0.002 0.002 i-C4H10 0.111 0.104 0.123 0.101 0.098 0.112 i-C4H8 2.329 2.188 2.330 1.967 1.897 2.432 1-C4H8 1.364 1.281 1.557 1.326 1.279 1.573 1,3-C4H6 3.736 3.510 3.621 3.105 2.995 4.007 n-C4H10 0.512 0.481 0.572 0.480 0.463 0.531 Annex B: Detailed analytical results for the pilot plant experiments XLIII

2,2-DiMe C3 0.001 0.001 0.022 0.009 0.009 0.001 t2C4H8 0.933 0.876 0.732 0.609 0.588 0.565 c2C4H8 0.320 0.300 0.538 0.398 0.384 0.364 3Me-1C4= 0.011 0.010 0.038 0.033 0.032 0.001 1,2C4H6 0.001 0.001 0.001 0.005 0.005 0.001 isopentane 0.329 0.309 1.122 0.831 0.801 0.271 et-Acetylene 0.045 0.043 0.064 0.064 0.062 0.058 DiMe-Ac 0.022 0.020 0.024 0.003 0.003 0.012 1-C5H10 0.069 0.065 0.153 0.124 0.119 0.095 2Me-1C4= 0.000 0.000 0.000 0.008 0.007 0.001 n-pentane 0.126 0.119 0.344 0.306 0.295 0.162 isoprene 0.413 0.388 1.261 0.923 0.890 0.326 t2C5H10 0.536 0.503 0.727 0.673 0.649 0.589 3,3diMe-C4 0.047 0.044 0.122 0.103 0.099 0.055 c2C5H10 0.030 0.028 0.075 0.073 0.070 0.027 2Me2C4= 0.085 0.080 0.144 0.131 0.126 0.097 t-1,3-PD 0.211 0.199 0.277 0.240 0.231 0.240 3Me-1C5= 0.001 0.001 0.002 0.004 0.004 0.001 2,2-dimeC4 0.000 0.000 0.001 0.003 0.003 0.001 1,3cyPD 0.769 0.722 0.857 0.866 0.836 1.096 c-1,3-PD 0.135 0.127 0.201 0.169 0.163 0.149 cy-C5= 0.085 0.080 0.100 0.099 0.095 0.105 cy-C5 0.004 0.004 0.001 0.002 0.002 0.005 2,3diMe-C4 0.017 0.016 0.048 0.028 0.027 0.013 2Me-C5 0.094 0.089 0.345 0.257 0.248 0.083 1,5-HD 0.017 0.016 0.004 0.027 0.026 0.005 3Me-C5 0.005 0.005 0.014 0.024 0.023 0.003 2Me-1C5= 0.015 0.014 0.042 0.128 0.123 0.038 3-Me,t2-C5H10 0.009 0.009 0.023 0.002 0.002 0.017 1-C6H12 0.004 0.004 0.014 0.003 0.003 0.001 1-t-4-Hexadiene 0.183 0.172 0.591 0.430 0.415 0.153 n-C6H14 0.001 0.001 0.001 0.005 0.005 0.002 t3-C6H12 0.001 0.001 0.002 0.003 0.002 0.001 c3-C6H12 0.007 0.006 0.021 0.015 0.015 0.003 t2-C6H12 0.000 0.000 0.001 0.003 0.003 0.001 2-Me,2-C5H10 0.006 0.006 0.009 0.006 0.005 0.005 c2-C6H12 0.001 0.001 0.002 0.003 0.002 0.001 2,3-DiMe-1,3-butadiene 0.001 0.001 0.001 0.002 0.002 0.001 3,3-DiMe,1-C5H10 0.001 0.001 0.006 0.005 0.005 0.002 2,2diMe-C5 0.027 0.026 0.094 0.066 0.063 0.070 Me-cyC5 0.043 0.040 0.070 0.070 0.068 0.003 2,2,3-TriMe C4 0.004 0.004 0.014 0.012 0.012 0.012 3,4-diMe-1-C5= 0.144 0.135 0.271 0.280 0.271 0.245 2,4diMe-C5 0.010 0.009 0.023 0.005 0.005 0.005 1Me-cyC5= 0.126 0.118 0.213 0.202 0.195 0.182 1,4-CyHD 0.001 0.001 0.013 0.002 0.002 0.002 1Me-cyPD 0.002 0.002 0.014 0.004 0.004 0.002 benzene 5.446 5.116 4.183 4.057 3.913 5.609 CyC6 0.034 0.032 0.105 0.059 0.057 0.018 2,3-diMe-1-pentene 0.000 0.000 0.000 0.004 0.004 0.004 4methyl-1-hexene 0.053 0.050 0.054 0.060 0.058 0.039 1,3cychexadiene 0.004 0.004 0.002 0.014 0.014 0.038 2-MeC6 0.001 0.001 0.000 0.003 0.002 0.001 1,1diMe-cyC5 0.026 0.024 0.100 0.033 0.031 0.003 Annex B: Detailed analytical results for the pilot plant experiments XLIV

3,3diMe-C5 0.000 0.000 0.001 0.002 0.002 0.002 cy-C6= 0.012 0.011 0.034 0.019 0.018 0.003 2,3diMe-C5 0.000 0.000 0.000 0.000 0.000 0.003 t1,2diMe-cyC5 0.007 0.007 0.015 0.012 0.011 0.002 2-hexen-4-yne 0.001 0.001 0.000 0.008 0.008 0.001 t1,3diMe-cyC5 0.016 0.015 0.075 0.063 0.060 0.003 3-Me C6 0.001 0.001 0.001 0.003 0.003 0.002 1,c2-DiMe CyC5 0.000 0.000 0.000 0.076 0.074 0.006 1,t3-DiMe CyC5 0.000 0.000 0.002 0.005 0.005 0.002 3Et-C5 0.014 0.013 0.018 0.017 0.016 0.001 1,c3-DiMe CyC5 0.001 0.001 0.001 0.003 0.003 0.001 1,t2-DiMe CyC5 0.001 0.001 0.003 0.006 0.006 0.001 c1,2-DiMe CyC5 0.004 0.004 0.001 0.005 0.005 0.002 n-C7H16 0.083 0.078 0.298 0.242 0.233 0.073 3-C7H14 0.000 0.000 0.001 0.003 0.003 0.001 Me-cyC6 0.001 0.001 0.000 0.004 0.004 0.001 1,1,3triMe-cyC5 0.042 0.039 0.130 0.111 0.107 0.010 2,2-DiMe C6 0.001 0.001 0.005 0.003 0.003 0.002 Et-cyC5 0.001 0.001 0.003 0.005 0.005 0.002 2,5diMe-C6 0.000 0.000 0.001 0.003 0.003 0.003 2,4diMe-C6 0.001 0.000 0.001 0.005 0.004 0.002 1,t2,c4TriMeCyC5 0.004 0.003 0.003 0.004 0.004 0.003 3,3-DiMe C6 0.002 0.002 0.000 0.005 0.005 0.003 1,2,4triMe-cyC5 0.001 0.001 0.004 0.004 0.003 0.001 1,t2,c3-TriMe C5 0.001 0.001 0.004 0.005 0.005 0.002 2,3,4-TriMe C5 0.004 0.003 0.003 0.004 0.004 0.001 toluene 2.453 2.304 2.124 1.971 1.901 2.851 1,2,3+2,3,4-triMeC6 0.000 0.000 0.001 0.003 0.003 0.001 C7-cy-diolefin 0.003 0.003 0.001 0.004 0.004 0.002 2,3diMe-C6 0.001 0.001 0.000 0.003 0.003 0.001 1,1,2triMe-cyC5 0.001 0.001 0.000 0.002 0.002 0.001 2-Me,3-Et C5 0.001 0.001 0.001 0.005 0.005 0.002 2MeC7 0.001 0.001 0.001 0.003 0.003 0.000 4-Me C7 0.005 0.005 0.054 0.007 0.007 0.000 3,4-DiMe C6 0.001 0.001 0.001 0.001 0.001 0.002 3-Me C7 0.001 0.001 0.000 0.004 0.004 0.002 1,c3-DiMe CyC6 0.000 0.000 0.001 0.003 0.003 0.002 3-Et C6 0.001 0.000 0.001 0.003 0.003 0.001 1,c2,t3TriMeCyC5 0.001 0.001 0.006 0.003 0.003 0.002 1,c4-diMe-cyC6 0.001 0.001 0.003 0.003 0.003 0.001 1,t4-DiMe CyC6 0.001 0.001 0.001 0.007 0.007 0.002 1,1diMe-cyC6 0.000 0.000 0.001 0.003 0.003 0.004 1-C8= 0.002 0.002 0.003 0.004 0.004 0.001 1,1-DiMe CyC6 0.015 0.014 0.023 0.006 0.005 0.001 2,2,4-TriMe C6 0.001 0.001 0.001 0.002 0.002 0.002 t1,2diMe-cyC6 0.002 0.001 0.001 0.006 0.005 0.001 1-Me,t3-Et CyC5 0.000 0.000 0.001 0.003 0.003 0.002 1-Me,c3-Et CyC5 0.001 0.001 0.001 0.002 0.002 0.002 1-Me,t2-Et CyC5 0.001 0.000 0.001 0.003 0.002 0.004 1-Me,1-Et CyC5 0.001 0.001 0.000 0.003 0.003 0.027 n-C8 0.030 0.028 0.113 0.054 0.052 0.002 1,1,3triMe-cyC6 0.001 0.001 0.000 0.005 0.004 0.002 2,2-DiMe C7 0.001 0.001 0.001 0.002 0.002 0.002 2,4-DiMe C7 0.001 0.001 0.000 0.003 0.003 0.002 Annex B: Detailed analytical results for the pilot plant experiments XLV

3,5diMe-C7 0.000 0.000 0.000 0.005 0.005 0.002 2,4,4triMe-C6 0.001 0.000 0.000 0.003 0.002 0.002 iPr-C5 0.001 0.001 0.000 0.003 0.003 0.003 diMe-C7 0.001 0.000 0.001 0.004 0.003 0.001 2,3diMe-C7 0.001 0.001 0.003 0.003 0.003 0.001 2,5+3,3diMe-C7 0.001 0.001 0.003 0.006 0.006 0.003 n-propyl CyC6 0.001 0.001 0.001 0.004 0.004 0.002 2,4diMe-C7 0.000 0.000 0.002 0.003 0.003 0.003 2,6-DiMe C7 0.001 0.001 0.001 0.004 0.004 0.002 1,1,2-TriMe CyC5 0.001 0.000 0.001 0.002 0.002 0.002 2,5-DiMe C7 0.002 0.002 0.001 0.004 0.004 0.001 c1,2diMe-cyC6 0.001 0.001 0.000 0.002 0.002 0.000 3,5-DiMe C7 0.000 0.000 0.001 0.003 0.003 0.007 Et-benzene 0.182 0.171 0.236 0.233 0.225 0.211 m-xylene 0.479 0.450 0.539 0.465 0.448 0.540 p-xylene 0.127 0.119 0.144 0.118 0.114 0.145 2,3-DiMe C7 0.001 0.001 0.001 0.000 0.000 0.002 1,c3,c5TriMeCyC5 0.001 0.000 0.001 0.004 0.004 0.002 4Et-C7 0.000 0.000 0.001 0.002 0.002 0.002 4-Me C8 0.001 0.001 0.001 0.006 0.005 0.002 2-Me C8 0.001 0.001 0.006 0.002 0.002 0.000 3-Et C7 0.001 0.001 0.006 0.003 0.003 0.001 styrene 0.668 0.627 0.632 0.534 0.515 0.761 o-xylene 0.231 0.217 0.278 0.260 0.251 0.277 1-C9= 0.001 0.001 0.002 0.006 0.006 0.001 c1Et--4Me-cyC6 0.001 0.000 0.002 0.003 0.003 0.001 1-Me,t4-Et CyC5 0.000 0.000 0.001 0.003 0.003 0.000 1,3,5triMe-cyC5 0.001 0.001 0.000 0.006 0.006 0.002 1-Me,c4-Et CyC5 0.001 0.001 0.000 0.003 0.003 0.002 n-C9 0.001 0.000 0.055 0.021 0.020 0.000 1Et-1Me-cyC6 0.001 0.001 0.000 0.002 0.002 0.001 2,7-DiMe C8 0.001 0.001 0.001 0.000 0.000 0.002 cumene 0.020 0.019 0.020 0.003 0.003 0.022 2,5-DiMe C8 0.001 0.001 0.000 0.000 0.000 0.002 iPr-cyC6 0.001 0.001 0.001 0.000 0.000 0.000 2,6-DiMe C8 0.000 0.000 0.001 0.003 0.003 0.001 3Me-C9 0.000 0.000 0.000 0.003 0.003 0.000 3,3-DiMe C8 0.000 0.000 0.001 0.000 0.000 0.004 n-propyl benzene 0.015 0.014 0.024 0.003 0.003 0.027 4iPr-C7 0.000 0.000 0.000 0.003 0.002 0.001 2,3-DiMe C8 0.001 0.001 0.001 0.003 0.003 0.002 2-propenyl-benzene 0.066 0.062 0.111 0.102 0.099 0.074 1-Me,4-Et benzene 0.029 0.027 0.044 0.032 0.031 0.002 Me-styrene 0.050 0.047 0.072 0.084 0.081 0.049 1-Me,3-Et benzene 0.001 0.001 0.001 0.004 0.004 0.001 1-Me,2-Et benzene 0.001 0.001 0.000 0.003 0.003 0.000 4-Et C8 0.001 0.001 0.000 0.002 0.001 0.002 1-Et-3-Me-benzene 0.001 0.001 0.000 0.002 0.002 0.000 4-Me C9 0.000 0.000 0.000 0.005 0.005 0.002 2-Me C9 0.001 0.001 0.001 0.004 0.003 0.001 1,3,5triMe-benzene 0.057 0.054 0.034 0.028 0.027 0.069 1-Et-2-Me-benzene 0.018 0.017 0.014 0.006 0.005 0.007 decane 0.207 0.195 0.277 0.203 0.196 0.236 o vi toluene 0.071 0.066 0.090 0.083 0.080 0.080 Annex B: Detailed analytical results for the pilot plant experiments XLVI

1-propenyl-benzene 0.183 0.172 0.275 0.212 0.205 0.212 1,2,4-TriMe benzene 0.001 0.001 0.000 0.003 0.003 0.001 dihydroindene 0.001 0.001 0.001 0.003 0.003 0.000 bibenzyl 0.003 0.002 0.025 0.003 0.003 0.003 ethenyl-methyl benzene 0.001 0.000 0.001 0.002 0.002 0.002 Me-2,3dihydroindene 0.076 0.071 0.084 0.077 0.074 0.092 1,2,3triMe-benzene 0.001 0.001 0.000 0.003 0.003 0.002 2,5-DiMe C9 0.024 0.022 0.021 0.003 0.003 0.034 2,6-DiMe C9 0.000 0.000 0.000 0.003 0.002 0.002 indene 0.171 0.160 0.236 0.191 0.185 0.250 2,3,7-triMe C8 0.001 0.001 0.006 0.005 0.005 0.002 butyl cyC6 0.003 0.003 0.003 0.005 0.005 0.001 1-Me,3-prop benzene 0.017 0.016 0.013 0.005 0.005 0.002 3,7-DiMe C9 0.000 0.000 0.001 0.003 0.002 0.002 2,3,3-triMe C8 0.001 0.001 0.027 0.006 0.006 0.003 2-Me C10 0.006 0.005 0.001 0.004 0.004 0.002 5-Me C10 0.013 0.012 0.019 0.004 0.004 0.000 4-Me C10 0.011 0.010 0.002 0.006 0.006 0.000 1-Et,2,3-DiMbenzene 0.038 0.036 0.026 0.007 0.007 0.035 3-Me C10 0.014 0.013 0.024 0.004 0.004 0.004 2Me-indene 0.013 0.012 0.008 0.005 0.005 0.002 n-undecane 0.015 0.014 0.028 0.006 0.006 0.008 1,2,4,5 tetramethylbenzene 0.025 0.023 0.034 0.003 0.003 0.018 1,2,3,5 tetramethylbenzene 0.003 0.003 0.001 0.004 0.004 0.008 1,2dihydronaphthalene 0.001 0.001 0.000 0.002 0.002 0.001 4-Me C11 0.000 0.000 0.001 0.005 0.005 0.000 n-pentyl CyC6 0.001 0.001 0.001 0.005 0.005 0.002 2,5-DiMe C10 0.000 0.000 0.001 0.004 0.004 0.002 1Me-indene 0.059 0.055 0.083 0.077 0.075 0.081 3Me-indene 0.082 0.077 0.126 0.132 0.128 0.108 3-Me C11 0.014 0.013 0.021 0.004 0.004 0.009 1-Me,3-n-butylbenzene 0.002 0.001 0.001 0.004 0.004 0.002 5-Me C11 0.000 0.000 0.001 0.005 0.005 0.001 2-Me C11 0.000 0.000 0.000 0.003 0.003 0.005 naphthalene 0.415 0.390 0.454 0.404 0.390 0.343 n-dodecane 0.001 0.001 0.002 0.003 0.003 0.002 2,6-DiMe C11 0.005 0.004 0.016 0.004 0.004 0.005 2b,1,1,3-TetraMeCyC5 0.001 0.001 0.000 0.003 0.003 0.003 2,6,8-TriMe C11 0.001 0.001 0.001 0.007 0.006 0.000 heptyl CyC6 0.001 0.001 0.002 0.003 0.003 0.002 5-Me C12 0.000 0.000 0.010 0.003 0.003 0.002 1234tetrahydro5Menaphthalene 0.001 0.001 0.001 0.004 0.004 0.001 4,8-DiMe C11 0.001 0.001 0.001 0.003 0.003 0.007 6-Et,2-Me C10 0.001 0.001 0.002 0.003 0.003 0.003 2-Me-naphthalene 0.161 0.152 0.188 0.074 0.072 0.117 bi phenyl 0.001 0.001 0.001 0.004 0.004 0.004 Et-naphthalene 0.098 0.092 0.114 0.144 0.139 0.091 n-tridecane 0.000 0.000 0.001 0.003 0.002 0.002 2,3-diMe-naphthalene 0.001 0.001 0.001 0.004 0.004 0.002 1,2dihydroMeNaphthalene 0.033 0.031 0.036 0.002 0.002 0.002 2-ethenylnaphthalene 0.030 0.028 0.001 0.003 0.003 0.000 dihydrofenantrene 0.017 0.016 0.001 0.002 0.002 0.003 n-tetradecane 0.026 0.025 0.036 0.022 0.022 0.003 n-pentadecane 0.016 0.015 0.032 0.016 0.016 0.006 Annex B: Detailed analytical results for the pilot plant experiments XLVII

n-hexadecane 0.004 0.004 0.002 0.005 0.005 0.001 1,5-diMe-naphthalene 0.029 0.027 0.033 0.004 0.003 0.014 phenantrene 0.105 0.099 0.001 0.004 0.004 0.002 1,2-dihydroacenaphthalene 0.023 0.021 0.001 0.000 0.000 0.004 hexaethylbenzene 0.001 0.000 0.001 0.004 0.004 0.001 2-Me,prop C14 0.001 0.001 0.001 0.004 0.004 0.001 heptyl C11 0.000 0.000 0.000 0.005 0.005 0.002 C17cyC6 0.001 0.001 0.002 0.003 0.003 0.002 antracene 0.001 0.001 0.000 0.005 0.005 0.002 bi-phenylene 0.001 0.001 0.001 0.009 0.008 0.002 n-heptadecane 0.000 0.000 0.000 0.004 0.004 0.001 2-M-1,1'biphenyl 0.000 0.000 0.001 0.004 0.004 0.000 n-octadecane 0.000 0.000 0.000 0.001 0.001 0.002 n-nonadecane 0.000 0.000 0.001 0.002 0.002 0.002

Annex B: Detailed analytical results for the pilot plant experiments XLVIII

Gas condensate 700A Run nr. 1 2 3 4 5 6 Conditions Feed HC-flow (kg/hr) 3.528 3.522 3.528 3.528 3.522 3.534

H2O-flow (kg/hr) 2.478 2.448 2.484 2.454 2.502 2.466 Dilution (kg/kg) 0.702 0.695 0.704 0.696 0.710 0.698 T-profile reactor Cell 3 OT (°C) 651 650 650 650 650 651 Cell 4 (°C) 694 694 694 694 694 694 Cell 4 (°C) 716 716 716 717 718 718 Cell 4 (°C) 725 725 725 725 725 725 Cell 4 OT (°C) 720 720 720 720 720 721 Cell 5 (°C) 749 746 745 745 746 746 Cell 5 (°C) 756 754 754 754 754 755 Cell 5 (°C) 768 765 766 766 766 766 Cell 5 OT (°C) 773 770 771 770 770 770 Cell 6 (°C) 789 787 789 788 788 788 Cell 6 (°C) 800 798 799 798 798 799 Cell 6 (°C) 812 810 811 810 809 810 Cell 6 OT (°C) 812 810 811 810 810 810 Cell 7 (°C) 820 819 820 819 819 819 Cell 7 (°C) 814 813 815 815 815 816 Cell 7 (°C) 819 817 817 816 817 818 COT (°C) 823 821 821 820 820 821 p-profile reactor exit cell 2 (bar abs) 2.17 1.85 2.34 2.05 2.07 1.84 inlet cell 5 (bar abs) 2.05 1.79 2.22 1.95 1.96 1.79 inlet cell 7 (bar abs) 1.82 1.81 1.87 1.77 1.79 1.80 COP (bar abs) 1.70 1.60 1.88 1.73 1.65 1.56 Yields (wt%) Σ C4 - 70.127 68.733 69.310 69.098 67.558 68.151 [C5 +,C6H6[ 5.582 5.358 7.163 4.542 4.293 4.333 [C6H6, naphthalene[ 13.122 12.595 12.358 12.319 11.642 11.751 Pyrolyse gasoil ([naphthalene, ...[) 1.242 1.192 0.925 1.196 1.131 1.141 TOTAL 90.074 87.878 89.757 87.155 84.624 85.377 P/E 0.575 0.572 0.574 0.562 0.572 0.584 hydrogen 0.604 0.606 0.593 0.615 0.581 0.643 CO2 0.026 0.012 0.085 0.015 0.017 0.016 CO 0.098 0.067 0.084 0.094 0.100 0.091 methane 11.993 11.511 11.382 11.858 11.207 11.311 ethylene 26.427 26.231 26.187 26.537 26.372 26.445 acetylene 0.366 0.361 0.350 0.352 0.376 0.364 ethane 3.615 3.609 3.346 3.750 3.377 3.284 propylene 15.198 14.997 15.023 14.905 15.093 15.453 propane 0.549 0.543 0.537 0.549 0.539 0.549 MeAc 0.364 0.344 0.341 0.325 0.354 0.362 C3H4 0.269 0.258 0.269 0.253 0.239 0.241 2MeC3H8 0.003 0.003 0.003 0.004 0.004 0.004 i-C4H10 0.176 0.169 0.220 0.168 0.159 0.161 i-C4H8 2.201 2.113 2.275 2.083 1.969 1.987 1-C4H8 1.630 1.565 1.817 1.566 1.480 1.494 1,3-C4H6 4.600 4.415 4.601 4.246 4.013 4.051 n-C4H10 0.452 0.434 0.507 0.420 0.397 0.401 Annex B: Detailed analytical results for the pilot plant experiments XLIX

2,2-DiMe C3 0.016 0.015 0.039 0.001 0.001 0.001 t2C4H8 1.134 1.088 1.180 1.000 0.945 0.954 c2C4H8 0.416 0.399 0.478 0.354 0.335 0.338 3Me-1C4= 0.004 0.003 0.028 0.002 0.002 0.002 1,2C4H6 0.003 0.003 0.003 0.002 0.002 0.002 isopentane 0.642 0.616 0.977 0.349 0.330 0.333 et-Acetylene 0.003 0.003 0.005 0.002 0.002 0.002 DiMe-Ac 0.083 0.079 0.104 0.075 0.071 0.072 1-C5H10 0.020 0.019 0.026 0.000 0.000 0.000 2Me-1C4= 0.146 0.140 0.184 0.108 0.102 0.103 n-pentane 0.273 0.262 0.355 0.179 0.169 0.170 isoprene 0.482 0.463 0.692 0.265 0.251 0.253 t2C5H10 0.728 0.699 0.819 0.649 0.613 0.619 3,3diMe-C4 0.099 0.095 0.128 0.069 0.066 0.066 c2C5H10 0.067 0.064 0.084 0.035 0.033 0.033 2Me2C4= 0.129 0.124 0.148 0.086 0.081 0.082 t-1,3-PD 0.282 0.270 0.326 0.275 0.260 0.263 3Me-1C5= 0.003 0.003 0.003 0.002 0.002 0.002 2,2-dimeC4 0.004 0.003 0.003 0.002 0.002 0.002 1,3cyPD 1.001 0.961 1.223 1.157 1.093 1.103 c-1,3-PD 0.189 0.181 0.242 0.180 0.170 0.171 cy-C5= 0.132 0.127 0.153 0.126 0.120 0.121 cy-C5 0.004 0.004 0.003 0.002 0.002 0.002 2,3diMe-C4 0.035 0.034 0.051 0.003 0.003 0.003 2Me-C5 0.178 0.171 0.263 0.095 0.090 0.090 1,5-HD 0.004 0.004 0.034 0.003 0.003 0.003 3Me-C5 0.044 0.042 0.001 0.002 0.002 0.002 2Me-1C5= 0.077 0.074 0.035 0.003 0.003 0.003 3-Me,t2-C5H10 0.006 0.006 0.002 0.002 0.002 0.002 1-C6H12 0.004 0.004 0.006 0.002 0.002 0.002 1-t-4-Hexadiene 0.234 0.224 0.366 0.149 0.141 0.142 n-C6H14 0.005 0.004 0.004 0.035 0.033 0.033 t3-C6H12 0.005 0.005 0.001 0.004 0.004 0.004 c3-C6H12 0.003 0.003 0.018 0.002 0.002 0.002 t2-C6H12 0.003 0.003 0.005 0.002 0.002 0.002 2-Me,2-C5H10 0.004 0.004 0.003 0.006 0.006 0.006 c2-C6H12 0.003 0.003 0.003 0.004 0.004 0.004 2,3-DiMe-1,3-butadiene 0.003 0.003 0.002 0.000 0.000 0.000 3,3-DiMe,1-C5H10 0.007 0.007 0.004 0.003 0.003 0.003 2,2diMe-C5 0.103 0.099 0.111 0.060 0.057 0.057 Me-cyC5 0.110 0.106 0.088 0.097 0.092 0.092 2,2,3-TriMe C4 0.001 0.001 0.002 0.002 0.002 0.002 3,4-diMe-1-C5= 0.234 0.225 0.346 0.275 0.260 0.263 2,4diMe-C5 0.006 0.006 0.002 0.002 0.002 0.002 1Me-cyC5= 0.204 0.196 0.296 0.225 0.213 0.215 1,4-CyHD 0.002 0.002 0.005 0.002 0.002 0.002 1Me-cyPD 0.007 0.007 0.003 0.001 0.001 0.001 benzene 4.528 4.346 4.542 4.998 4.724 4.768 CyC6 0.004 0.003 0.075 0.066 0.063 0.063 2,3-diMe-1-pentene 0.017 0.017 0.003 0.020 0.019 0.019 4methyl-1-hexene 0.034 0.032 0.084 0.002 0.002 0.002 1,3cychexadiene 0.065 0.062 0.037 0.000 0.000 0.000 2-MeC6 0.007 0.006 0.003 0.002 0.002 0.002 1,1diMe-cyC5 0.004 0.004 0.071 0.002 0.002 0.002 Annex B: Detailed analytical results for the pilot plant experiments L

3,3diMe-C5 0.009 0.008 0.003 0.002 0.002 0.002 cy-C6= 0.005 0.005 0.004 0.001 0.001 0.001 2,3diMe-C5 0.004 0.004 0.001 0.001 0.001 0.001 t1,2diMe-cyC5 0.003 0.003 0.004 0.000 0.000 0.000 2-hexen-4-yne 0.003 0.003 0.023 0.008 0.008 0.008 t1,3diMe-cyC5 0.005 0.005 0.037 0.000 0.000 0.000 3-Me C6 0.000 0.000 0.003 0.006 0.006 0.006 1,c2-DiMe CyC5 0.006 0.006 0.006 0.002 0.002 0.002 1,t3-DiMe CyC5 0.004 0.004 0.005 0.004 0.004 0.004 3Et-C5 0.013 0.012 0.003 0.001 0.001 0.001 1,c3-DiMe CyC5 0.003 0.003 0.003 0.002 0.002 0.002 1,t2-DiMe CyC5 0.003 0.003 0.004 0.002 0.002 0.002 c1,2-DiMe CyC5 0.005 0.005 0.001 0.003 0.003 0.003 n-C7H16 0.127 0.122 0.214 0.096 0.091 0.091 3-C7H14 0.007 0.007 0.005 0.001 0.001 0.001 Me-cyC6 0.003 0.003 0.003 0.003 0.003 0.003 1,1,3triMe-cyC5 0.073 0.070 0.095 0.003 0.003 0.003 2,2-DiMe C6 0.000 0.000 0.004 0.003 0.003 0.003 Et-cyC5 0.002 0.002 0.005 0.002 0.002 0.002 2,5diMe-C6 0.000 0.000 0.003 0.007 0.007 0.007 2,4diMe-C6 0.003 0.003 0.004 0.002 0.002 0.002 1,t2,c4TriMeCyC5 0.003 0.003 0.011 0.002 0.002 0.002 3,3-DiMe C6 0.003 0.003 0.007 0.010 0.010 0.010 1,2,4triMe-cyC5 0.003 0.002 0.002 0.001 0.001 0.001 1,t2,c3-TriMe C5 0.025 0.024 0.005 0.002 0.002 0.002 2,3,4-TriMe C5 0.004 0.004 0.004 0.003 0.003 0.003 toluene 2.441 2.343 2.683 2.789 2.636 2.660 1,2,3+2,3,4-triMeC6 0.003 0.003 0.003 0.002 0.002 0.002 C7-cy-diolefin 0.002 0.002 0.010 0.003 0.003 0.003 2,3diMe-C6 0.005 0.005 0.003 0.000 0.000 0.000 1,1,2triMe-cyC5 0.003 0.003 0.005 0.005 0.005 0.005 2-Me,3-Et C5 0.004 0.004 0.003 0.002 0.002 0.002 2MeC7 0.003 0.003 0.003 0.002 0.002 0.002 4-Me C7 0.004 0.003 0.003 0.002 0.002 0.002 3,4-DiMe C6 0.003 0.003 0.002 0.003 0.003 0.003 3-Me C7 0.000 0.000 0.003 0.003 0.003 0.003 1,c3-DiMe CyC6 0.003 0.003 0.005 0.001 0.001 0.001 3-Et C6 0.005 0.005 0.003 0.002 0.002 0.002 1,c2,t3TriMeCyC5 0.005 0.005 0.003 0.003 0.003 0.003 1,c4-diMe-cyC6 0.012 0.011 0.003 0.002 0.002 0.002 1,t4-DiMe CyC6 0.004 0.004 0.003 0.003 0.003 0.003 1,1diMe-cyC6 0.004 0.004 0.005 0.002 0.002 0.002 1-C8= 0.004 0.004 0.005 0.005 0.005 0.005 1,1-DiMe CyC6 0.010 0.010 0.004 0.003 0.003 0.003 2,2,4-TriMe C6 0.005 0.005 0.000 0.002 0.002 0.002 t1,2diMe-cyC6 0.013 0.012 0.000 0.002 0.002 0.002 1-Me,t3-Et CyC5 0.017 0.016 0.004 0.003 0.003 0.003 1-Me,c3-Et CyC5 0.013 0.012 0.003 0.003 0.003 0.003 1-Me,t2-Et CyC5 0.011 0.011 0.000 0.002 0.002 0.002 1-Me,1-Et CyC5 0.006 0.006 0.005 0.015 0.014 0.015 n-C8 0.016 0.016 0.101 0.003 0.003 0.003 1,1,3triMe-cyC6 0.000 0.000 0.003 0.002 0.002 0.002 2,2-DiMe C7 0.004 0.003 0.003 0.004 0.004 0.004 2,4-DiMe C7 0.008 0.008 0.001 0.002 0.002 0.002 Annex B: Detailed analytical results for the pilot plant experiments LI

3,5diMe-C7 0.003 0.003 0.002 0.002 0.002 0.002 2,4,4triMe-C6 0.004 0.003 0.000 0.002 0.002 0.002 iPr-C5 0.003 0.003 0.004 0.003 0.003 0.003 diMe-C7 0.005 0.004 0.003 0.002 0.002 0.002 2,3diMe-C7 0.003 0.003 0.003 0.002 0.002 0.002 2,5+3,3diMe-C7 0.003 0.002 0.004 0.004 0.004 0.004 n-propyl CyC6 0.004 0.004 0.005 0.004 0.004 0.004 2,4diMe-C7 0.003 0.003 0.003 0.002 0.002 0.002 2,6-DiMe C7 0.004 0.004 0.003 0.002 0.002 0.002 1,1,2-TriMe CyC5 0.005 0.004 0.008 0.001 0.001 0.001 2,5-DiMe C7 0.003 0.003 0.003 0.001 0.001 0.001 c1,2diMe-cyC6 0.009 0.009 0.004 0.003 0.003 0.003 3,5-DiMe C7 0.003 0.003 0.001 0.008 0.008 0.008 Et-benzene 0.294 0.282 0.311 0.270 0.255 0.258 m-xylene 0.687 0.659 0.766 0.774 0.732 0.739 p-xylene 0.161 0.154 0.216 0.199 0.188 0.190 2,3-DiMe C7 0.006 0.005 0.003 0.003 0.003 0.003 1,c3,c5TriMeCyC5 0.004 0.004 0.003 0.002 0.002 0.002 4Et-C7 0.007 0.006 0.003 0.004 0.004 0.004 4-Me C8 0.003 0.003 0.000 0.003 0.003 0.003 2-Me C8 0.003 0.003 0.003 0.002 0.002 0.002 3-Et C7 0.000 0.000 0.003 0.002 0.002 0.002 styrene 0.547 0.525 0.658 0.755 0.713 0.720 o-xylene 0.295 0.283 0.300 0.278 0.263 0.266 1-C9= 0.009 0.009 0.004 0.002 0.002 0.002 c1Et--4Me-cyC6 0.013 0.013 0.004 0.003 0.003 0.003 1-Me,t4-Et CyC5 0.010 0.009 0.001 0.004 0.004 0.004 1,3,5triMe-cyC5 0.011 0.010 0.008 0.002 0.002 0.002 1-Me,c4-Et CyC5 0.013 0.013 0.004 0.002 0.002 0.002 n-C9 0.003 0.003 0.017 0.002 0.002 0.002 1Et-1Me-cyC6 0.014 0.013 0.002 0.002 0.002 0.002 2,7-DiMe C8 0.005 0.005 0.003 0.004 0.004 0.004 cumene 0.089 0.086 0.013 0.002 0.002 0.002 2,5-DiMe C8 0.103 0.099 0.004 0.006 0.006 0.006 iPr-cyC6 0.008 0.008 0.004 0.003 0.003 0.003 2,6-DiMe C8 0.109 0.105 0.004 0.002 0.002 0.002 3Me-C9 0.001 0.001 0.003 0.001 0.001 0.001 3,3-DiMe C8 0.103 0.098 0.001 0.003 0.003 0.003 n-propyl benzene 0.010 0.010 0.003 0.002 0.002 0.002 4iPr-C7 0.003 0.003 0.000 0.002 0.002 0.002 2,3-DiMe C8 0.034 0.033 0.000 0.004 0.004 0.004 2-propenyl-benzene 0.002 0.002 0.156 0.154 0.146 0.147 1-Me,4-Et benzene 0.264 0.254 0.062 0.050 0.047 0.048 Me-styrene 0.040 0.039 0.101 0.113 0.107 0.108 1-Me,3-Et benzene 0.083 0.080 0.003 0.000 0.000 0.000 1-Me,2-Et benzene 0.006 0.006 0.003 0.000 0.000 0.000 4-Et C8 0.005 0.005 0.006 0.000 0.000 0.000 1-Et-3-Me-benzene 0.015 0.015 0.003 0.003 0.003 0.003 4-Me C9 0.013 0.012 0.004 0.002 0.002 0.002 2-Me C9 0.299 0.287 0.009 0.000 0.000 0.000 1,3,5triMe-benzene 0.309 0.297 0.011 0.013 0.013 0.013 1-Et-2-Me-benzene 0.002 0.002 0.007 0.022 0.021 0.021 decane 0.281 0.270 0.337 0.362 0.342 0.345 o vi toluene 0.065 0.062 0.095 0.065 0.062 0.062 Annex B: Detailed analytical results for the pilot plant experiments LII

1-propenyl-benzene 0.298 0.286 0.327 0.344 0.325 0.328 1,2,4-TriMe benzene 0.003 0.003 0.004 0.000 0.000 0.000 dihydroindene 0.002 0.002 0.003 0.003 0.003 0.003 bibenzyl 0.003 0.003 0.020 0.004 0.004 0.004 ethenyl-methyl benzene 0.003 0.003 0.001 0.002 0.002 0.002 Me-2,3dihydroindene 0.002 0.002 0.026 0.089 0.084 0.085 1,2,3triMe-benzene 0.002 0.002 0.001 0.002 0.002 0.002 2,5-DiMe C9 0.004 0.004 0.010 0.016 0.015 0.016 2,6-DiMe C9 0.001 0.001 0.004 0.000 0.000 0.000 indene 0.043 0.042 0.186 0.221 0.209 0.211 2,3,7-triMe C8 0.003 0.003 0.001 0.000 0.000 0.000 butyl cyC6 0.003 0.003 0.000 0.004 0.004 0.004 1-Me,3-prop benzene 0.015 0.014 0.009 0.002 0.002 0.002 3,7-DiMe C9 0.031 0.030 0.003 0.001 0.001 0.001 2,3,3-triMe C8 0.003 0.003 0.007 0.020 0.019 0.019 2-Me C10 0.003 0.002 0.003 0.020 0.019 0.019 5-Me C10 0.003 0.003 0.035 0.002 0.002 0.002 4-Me C10 0.003 0.003 0.003 0.045 0.042 0.043 1-Et,2,3-DiMbenzene 0.006 0.006 0.081 0.024 0.023 0.023 3-Me C10 0.026 0.025 0.008 0.000 0.000 0.000 2Me-indene 0.018 0.017 0.022 0.009 0.009 0.009 n-undecane 0.008 0.007 0.019 0.002 0.002 0.002 1,2,4,5 tetramethylbenzene 0.004 0.003 0.009 0.003 0.003 0.003 1,2,3,5 tetramethylbenzene 0.008 0.007 0.004 0.003 0.003 0.003 1,2dihydronaphthalene 0.003 0.003 0.003 0.002 0.002 0.002 4-Me C11 0.008 0.008 0.000 0.003 0.003 0.003 n-pentyl CyC6 0.071 0.068 0.003 0.003 0.003 0.003 2,5-DiMe C10 0.015 0.015 0.004 0.002 0.002 0.002 1Me-indene 0.154 0.148 0.087 0.053 0.050 0.051 3Me-indene 0.795 0.763 0.130 0.126 0.120 0.121 3-Me C11 0.004 0.004 0.023 0.006 0.006 0.006 1-Me,3-n-butylbenzene 0.003 0.003 0.002 0.007 0.007 0.007 5-Me C11 0.004 0.004 0.005 0.003 0.003 0.003 2-Me C11 0.004 0.004 0.000 0.002 0.002 0.002 naphthalene 0.379 0.364 0.440 0.470 0.444 0.449 n-dodecane 0.003 0.003 0.003 0.002 0.002 0.002 2,6-DiMe C11 0.005 0.005 0.003 0.034 0.032 0.032 2b,1,1,3-TetraMeCyC5 0.006 0.006 0.001 0.008 0.008 0.008 2,6,8-TriMe C11 0.004 0.004 0.003 0.003 0.003 0.003 heptyl CyC6 0.003 0.003 0.003 0.005 0.005 0.005 5-Me C12 0.001 0.001 0.006 0.003 0.003 0.003 1234tetrahydro5MeNaphthalene 0.004 0.004 0.004 0.002 0.002 0.002 5-Me C12 0.000 0.000 0.000 0.000 0.000 0.000 4,8-DiMe C11 0.065 0.062 0.003 0.002 0.002 0.002 6-Et,2-Me C10 0.010 0.010 0.006 0.003 0.003 0.003 2-Me-naphthalene 0.169 0.162 0.211 0.260 0.246 0.248 bi phenyl 0.003 0.003 0.007 0.003 0.003 0.003 Et-naphthalene 0.091 0.088 0.091 0.187 0.176 0.178 n-tridecane 0.006 0.006 0.004 0.003 0.003 0.003 2,3-diMe-naphthalene 0.001 0.001 0.003 0.002 0.002 0.002 1,2dihydroMeNaphthalene 0.065 0.063 0.024 0.003 0.003 0.003 2-ethenylnaphthalene 0.065 0.063 0.007 0.004 0.004 0.004 dihydrofenantrene 0.042 0.041 0.005 0.002 0.002 0.002 n-tetradecane 0.092 0.089 0.044 0.073 0.069 0.070 Annex B: Detailed analytical results for the pilot plant experiments LIII

n-pentadecane 0.033 0.032 0.009 0.081 0.076 0.077 n-hexadecane 0.003 0.003 0.004 0.002 0.002 0.002 1,5-diMe-naphthalene 0.003 0.003 0.006 0.002 0.002 0.002 phenantrene 0.004 0.004 0.004 0.002 0.002 0.002 1,2-dihydroacenaphthalene 0.003 0.003 0.004 0.003 0.003 0.003 hexaethylbenzene 0.005 0.004 0.003 0.004 0.004 0.004 2-Me,prop C14 0.022 0.021 0.002 0.008 0.008 0.008 heptyl C11 0.052 0.050 0.003 0.005 0.005 0.005 C17cyC6 0.084 0.081 0.006 0.004 0.004 0.004 antracene 0.000 0.000 0.003 0.003 0.003 0.003 bi-phenylene 0.003 0.003 0.003 0.002 0.002 0.002 n-heptadecane 0.004 0.004 0.002 0.002 0.002 0.002 2-M-1,1'biphenyl 0.003 0.003 0.004 0.003 0.003 0.003 n-octadecane 0.004 0.004 0.002 0.002 0.002 0.002 n-nonadecane 0.002 0.002 0.005 0.003 0.003 0.003

Annex C: Simulations: Experimental conditions and results LIV

C. Simulations: Experimental conditions and results

ATOFINA 80%naphtha+20%ethane Exp. conditions 1 2 3 4 5 T-profile reactor (°C) Position (m) 1.140 530 530 529 530 530 1.957 552 552 550 551 551 2.652 560 561 560 561 561 3.362 572 573 572 572 573 3.951 574 575 575 575 575 4.768 632 652 674 693 699 5.463 652 676 700 722 728 6.173 670 697 721 742 7474 6.762 684 710 731 750 755 7.579 730 758 780 796 806 8.274 748 773 793 808 818 8.984 760 787 810 828 841 9.573 758 784 810 830 845 10.390 777 800 821 842 861 11.085 793 816 836 857 878 11.795 803 827 845 868 890 12.384 800 825 844 865 889 P-profile reactor (bar) Position (m) 0.000 2.442 2.424 2.398 2.381 2.374 4.341 2.250 2.235 2.239 2.221 2.192 9.963 1.964 1.952 1.951 1.932 1.924 12.784 1.828 1.818 1.825 1.805 1.796 Feed HC-flow (kg/hr) 5.183 4.978 4.711 4.564 4.411 H2O-flow (kg/hr) 2.589 2.460 2.332 2.277 2.204 Dilution (kg/kg) 0.500 0.494 0.495 0.499 0.500 Residence time (ms) 183 184 186 187 190

ATOFINA 80%naphtha+20%ethane Yields (wt%) COILSIM1D COILSIM1D COILSIM1D Compound name (detailed (neural (Shannon MILANO experimental PIONA) network) entropy) experimental conditions 1 H2 0.552 0.551 0.573 0.660 0.780 Annex C: Simulations: Experimental conditions and results LV

CH4 6.549 7.751 7.129 6.900 6.700 C2H2 0.243 0.280 0.256 0.130 0.140 C2H4 18.662 19.313 17.278 18.570 17.990 C2H6 17.980 17.515 17.834 18.570 18.850 C3H4(MA)+C3H4(PD) 0.221 0.226 0.225 0.250 0.340 C3H6 11.283 11.514 12.173 12.970 12.740 C3H8 0.378 0.496 0.419 0.340 0.400 1,3 C4H6 3.188 2.760 2.359 3.420 2.810 1C4H8 2.555 2.662 2.269 2.490 3.020 2C4H8 0.559 0.727 0.661 1.140 1.120 iC4H8 2.252 3.013 1.689 2.800 2.640 iC4H10 0.049 0.133 0.013 0.140 0.190 nC4H10 0.339 1.027 2.682 0.100 1.680 Benzene 3.937 2.999 4.596 4.030 3.120 Toluene 1.237 2.018 1.182 1.280 0.860 experimental conditions 2 H2 0.699 0.678 0.717 0.820 1.000 CH4 9.378 10.610 10.083 8.800 9.350 C2H2 0.500 0.537 0.513 0.230 0.240 C2H4 25.332 25.260 23.694 23.240 24.800 C2H6 16.425 15.937 16.258 17.520 17.080 C3H4(MA)+C3H4(PD) 0.420 0.426 0.417 0.390 0.570 C3H6 13.002 12.908 13.608 14.120 15.000 C3H8 0.527 0.632 0.568 0.380 0.470 1,3 C4H6 3.872 3.337 2.999 3.980 4.030 1C4H8 2.151 2.093 1.916 2.190 2.820 2C4H8 0.546 0.687 0.612 1.080 1.120 iC4H8 2.267 3.082 1.667 2.760 2.800 iC4H10 0.023 0.075 0.011 0.110 0.100 nC4H10 0.328 0.728 1.702 0.090 0.780 Benzene 4.575 3.640 5.156 4.590 4.780 Toluene 1.367 2.167 1.401 1.460 1.330 experimental conditions 3 H2 0.817 0.783 0.833 0.990 1.210 CH4 11.832 13.010 12.569 10.850 11.600 C2H2 0.767 0.784 0.761 0.380 0.390 C2H4 30.475 29.776 28.725 27.940 29.080 C2H6 14.777 14.373 14.626 16.000 15.600 C3H4(MA)+C3H4(PD) 0.627 0.633 0.608 0.560 0.750 C3H6 12.805 12.614 13.037 14.080 14.680 C3H8 0.599 0.672 0.631 0.390 0.480 1,3 C4H6 4.173 3.615 3.331 4.310 4.180 1C4H8 1.530 1.445 1.371 1.640 1.920 2C4H8 0.450 0.549 0.478 0.890 0.900 iC4H8 1.970 2.676 1.432 2.410 2.450 iC4H10 0.013 0.037 0.009 0.080 0.090 nC4H10 0.262 0.466 0.977 0.070 0.630 Benzene 5.576 4.603 6.035 5.450 5.330 Toluene 1.608 2.435 1.799 1.710 1.370 experimental conditions 4 H2 0.920 0.875 0.934 1.190 1.370 CH4 13.822 14.929 14.528 12.980 13.430 C2H2 1.079 1.067 1.039 0.650 0.610 C2H4 34.307 33.201 32.532 32.540 33.350 Annex C: Simulations: Experimental conditions and results LVI

C2H6 13.119 12.824 13.005 13.790 13.770 C3H4(MA)+C3H4(PD) 0.839 0.847 0.797 0.780 1.030 C3H6 11.379 11.301 11.309 12.590 12.500 C3H8 0.595 0.636 0.614 0.350 0.400 1,3 C4H6 4.236 3.710 3.468 4.370 4.230 1C4H8 0.965 0.909 0.871 1.030 1.020 2C4H8 0.329 0.391 0.332 0.600 0.630 iC4H8 1.549 2.101 1.121 1.790 1.670 iC4H10 0.008 0.016 0.006 0.050 0.040 nC4H10 0.170 0.254 0.481 0.050 0.310 Benzene 6.764 5.717 7.073 6.550 6.210 Toluene 1.892 2.722 2.249 1.960 1.480 experimental conditions 5 H2 1.015 0.961 1.026 1.350 1.550 CH4 15.391 16.458 16.050 14.510 15.200 C2H2 1.430 1.393 1.353 0.950 1.030 C2H4 36.948 35.664 35.190 35.480 36.550 C2H6 11.488 11.284 11.400 11.750 11.690 C3H4(MA)+C3H4(PD) 1.002 1.019 0.938 0.920 1.140 C3H6 9.475 9.560 9.234 10.750 10.740 C3H8 0.533 0.550 0.540 0.300 0.310 1,3 C4H6 4.121 3.661 3.461 4.190 4.010 1C4H8 0.563 0.540 0.513 0.660 0.540 2C4H8 0.225 0.260 0.217 0.400 0.520 iC4H8 1.141 1.554 0.828 1.280 1.180 iC4H10 0.005 0.008 0.004 0.030 0.000 nC4H10 0.092 0.115 0.193 0.030 0.120 Benzene 8.025 6.907 8.188 7.360 7.390 Toluene 2.147 2.956 2.641 2.080 1.720

Annex C: Simulations: Experimental conditions and results LVII

ATOFINA 65%naphtha+35%ethane Exp. conditions 1 2 3 4 5 T-profile reactor (°C) Position (m) 1.140 530 530 530 530 530 1.957 551 551 552 552 553 2.652 560 560 560 562 561 3.362 573 572 572 573 573 3.951 576 575 575 575 575 4.768 637 655 673 693 698 5.463 655 677 699 723 728 6.173 672 697 720 742 747 6.762 686 709 730 751 755 7.579 733 759 780 798 809 8.274 753 775 794 810 821 8.984 767 789 811 829 844 9.573 763 786 810 830 847 10.390 780 802 823 842 864 11.085 796 818 837 858 881 11.795 803 826 847 867 891 12.384 800 825 845 865 890 P-profile reactor (bar) Position (m) 0.000 2.393 2.419 2.395 2.378 2.374 4.341 2.199 2.212 2.206 2.204 2.191 9.963 1.921 1.954 1.939 1.928 1.918 12.784 1.787 1.822 1.810 1.800 1.789 Feed HC-flow (kg/hr) 4.809 4.599 4.470 4.257 4.209 H2O-flow (kg/hr) 2.460 2.340 2.229 2.166 2.115 Dilution (kg/kg) 0.512 0.509 0.499 0.509 0.503 Residence time (ms) 187 186 184 185 182

ATOFINA 65%naphtha+35%ethane Yields (wt%) COILSIM1D COILSIM1D COILSIM1D Compound name (detailed (neural (Shannon MILANO experimental PIONA) network) entropy) experimental conditions 1 H2 0.592 0.602 0.614 0.640 0.700 CH4 5.879 6.967 6.378 5.200 5.460 C2H2 0.206 0.234 0.213 0.090 0.090 C2H4 18.615 19.597 17.612 16.230 16.900 C2H6 30.065 29.172 29.753 31.320 31.490 Annex C: Simulations: Experimental conditions and results LVIII

C3H4(MA)+C3H4(PD) 0.184 0.183 0.185 0.170 0.270 C3H6 9.300 9.500 9.949 9.930 8.810 C3H8 0.378 0.501 0.422 0.280 0.310 1,3 C4H6 2.526 2.130 1.895 2.500 2.650 1C4H8 1.914 1.953 1.694 1.970 2.270 2C4H8 0.403 0.523 0.476 0.890 1.090 iC4H8 1.755 2.349 1.313 2.190 2.450 iC4H10 0.052 0.142 0.015 0.130 0.130 nC4H10 0.391 1.015 2.347 0.100 1.220 Benzene 3.177 2.404 3.719 3.140 3.000 Toluene 0.995 1.622 0.945 0.970 0.740 experimental conditions 2 H2 0.756 0.750 0.778 0.910 1.160 CH4 8.543 9.685 9.143 7.730 8.060 C2H2 0.426 0.457 0.432 0.230 0.210 C2H4 25.676 26.090 24.491 23.790 24.300 C2H6 27.094 26.188 26.730 28.270 28.170 C3H4(MA)+C3H4(PD) 0.334 0.333 0.327 0.340 0.480 C3H6 10.537 10.479 10.928 11.540 11.450 C3H8 0.540 0.657 0.587 0.350 0.460 1,3 C4H6 3.017 2.540 2.374 3.230 3.090 1C4H8 1.550 1.479 1.375 1.640 2.060 2C4H8 0.372 0.464 0.414 0.820 0.870 iC4H8 1.725 2.339 1.259 2.170 2.160 iC4H10 0.027 0.082 0.013 0.090 0.100 nC4H10 0.410 0.788 1.575 0.080 0.790 Benzene 3.633 2.857 4.121 3.720 3.680 Toluene 1.076 1.710 1.087 1.130 0.910 experimental conditions 3 H2 0.894 0.875 0.916 1.270 1.400 CH4 10.888 11.985 11.513 10.780 10.100 C2H2 0.692 0.711 0.683 0.520 0.350 C2H4 31.467 31.324 30.187 32.330 29.840 C2H6 23.994 23.256 23.681 23.190 25.360 C3H4(MA)+C3H4(PD) 0.493 0.490 0.474 0.570 0.630 C3H6 10.189 10.046 10.232 10.670 11.030 C3H8 0.634 0.721 0.672 0.360 0.480 1,3 C4H6 3.271 2.776 2.654 3.520 3.350 1C4H8 1.081 1.004 0.962 0.910 1.360 2C4H8 0.290 0.347 0.303 0.520 0.670 iC4H8 1.451 1.961 1.042 1.540 1.790 iC4H10 0.015 0.039 0.010 0.050 0.050 nC4H10 0.351 0.547 0.965 0.060 0.460 Benzene 4.301 3.499 4.721 4.880 4.800 Toluene 1.217 1.861 1.338 1.400 1.330 experimental conditions 4 H2 1.027 0.997 1.048 1.410 1.610 CH4 13.009 14.033 13.586 11.860 11.930 C2H2 1.019 1.017 0.980 0.690 0.550 C2H4 36.202 35.669 34.856 35.060 34.790 C2H6 20.802 20.241 20.528 21.010 22.200 C3H4(MA)+C3H4(PD) 0.634 0.630 0.596 0.650 1.250 C3H6 8.735 8.693 8.550 9.750 9.940 C3H8 0.655 0.708 0.678 0.340 0.420 Annex C: Simulations: Experimental conditions and results LIX

1,3 C4H6 3.320 2.870 2.785 3.500 3.430 1C4H8 0.664 0.619 0.597 0.700 0.800 2C4H8 0.197 0.225 0.193 0.400 0.510 iC4H8 1.073 1.438 0.764 1.250 1.330 iC4H10 0.009 0.017 0.006 0.040 0.030 nC4H10 0.249 0.327 0.508 0.050 0.240 Benzene 5.190 4.329 5.514 5.320 6.050 Toluene 1.411 2.052 1.669 1.480 1.630 experimental conditions 5 H2 1.164 1.131 1.184 1.630 1.860 CH4 14.834 15.864 15.349 13.370 13.900 C2H2 1.456 1.473 1.381 0.990 0.870 C2H4 39.601 39.185 38.189 38.650 38.700 C2H6 17.319 16.981 17.094 17.550 18.230 C3H4(MA)+C3H4(PD) 0.756 0.742 0.702 0.720 0.900 C3H6 6.907 6.873 6.621 8.120 8.540 C3H8 0.604 0.637 0.613 0.290 0.340 1,3 C4H6 3.545 2.923 3.102 3.370 3.370 1C4H8 0.402 0.368 0.368 0.460 0.430 2C4H8 0.129 0.133 0.121 0.260 0.430 iC4H8 0.706 0.931 0.503 0.840 0.890 iC4H10 0.005 0.007 0.003 0.020 0.000 nC4H10 0.140 0.161 0.212 0.030 0.110 Benzene 6.251 5.314 6.480 5.960 7.530 Toluene 1.592 2.212 1.977 1.550 2.010

Annex C: Simulations: Experimental conditions and results LX

ATOFINA 50%naphtha+50%ethane Exp. conditions 1 2 3 4 5 T-profile reactor (°C) Position (m) 1.140 509 531 530 530 530 1.957 546 561 562 561 562 2.652 557 566 565 565 566 3.362 572 575 574 574 575 3.951 575 576 575 575 576 4.768 637 655 671 691 698 5.463 656 678 698 723 729 6.173 673 698 718 743 749 6.762 687 711 730 752 758 7.579 730 760 784 801 812 8.274 752 777 798 813 825 8.984 765 790 814 831 846 9.573 761 786 812 830 846 10.390 780 803 825 844 866 11.085 795 817 838 858 882 11.795 799 822 842 862 887 12.384 802 825 845 865 891 P-profile reactor (bar) Position (m) 0.000 2.383 2.382 2.382 2.374 2.353 4.341 2.190 2.201 2.194 2.197 2.188 9.963 1.912 1.925 1.928 1.934 1.920 12.784 1.779 1.796 1.800 1.809 1.797 Feed HC-flow (kg/hr) 4.689 4.483 4.318 4.165 4.026 H2O-flow (kg/hr) 2.286 2.247 2.196 2.073 2.043 Dilution (kg/kg) 0.488 0.501 0.509 0.498 0.507 Residence time (ms) 193 185 182 186 183

ATOFINA 50%naphtha+50%ethane Yields (wt%) COILSIM1D COILSIM1D COILSIM1D Compound name (detailed (neural (Shannon MILANO experimental PIONA) network) entropy) experimental conditions 1 H2 0.843 0.921 0.890 0.810 0.750 CH4 4.141 4.842 4.400 5.050 4.820 C2H2 0.076 0.085 0.077 0.120 0.080 C2H4 18.144 19.456 17.352 18.940 17.220 C2H6 41.509 40.363 41.071 42.060 40.660 Annex C: Simulations: Experimental conditions and results LXI

C3H4(MA)+C3H4(PD) 0.162 0.166 0.171 0.190 0.230 C3H6 6.377 6.448 6.870 8.330 8.960 C3H8 0.193 0.249 0.207 0.280 0.300 1,3 C4H6 2.089 1.914 1.437 2.150 1.840 1C4H8 1.413 1.436 1.319 1.370 1.880 2C4H8 0.306 0.421 0.406 0.650 0.760 iC4H8 1.140 1.548 0.904 1.690 1.990 iC4H10 0.111 0.088 0.020 0.090 0.110 nC4H10 0.165 0.638 1.778 0.090 1.090 Benzene 2.358 1.767 2.793 2.530 2.410 Toluene 0.779 1.281 0.734 0.740 0.660 experimental conditions 2 H2 1.144 1.209 1.198 1.110 1.090 CH4 6.134 6.852 6.462 7.060 6.340 C2H2 0.162 0.172 0.162 0.270 0.160 C2H4 25.538 26.370 24.507 26.260 23.640 C2H6 37.019 35.849 36.513 37.470 38.940 C3H4(MA)+C3H4(PD) 0.288 0.293 0.294 0.320 0.410 C3H6 7.364 7.252 7.799 8.870 9.130 C3H8 0.263 0.316 0.277 0.330 0.320 1,3 C4H6 2.516 2.283 1.855 2.560 2.040 1C4H8 1.297 1.241 1.231 1.040 1.360 2C4H8 0.305 0.417 0.396 0.530 0.650 iC4H8 1.124 1.524 0.873 1.510 2.000 iC4H10 0.089 0.083 0.025 0.060 0.060 nC4H10 0.169 0.484 1.236 0.080 0.720 Benzene 2.563 1.991 2.985 2.980 2.690 Toluene 0.841 1.353 0.830 0.840 0.670 experimental conditions 3 H2 1.428 1.470 1.478 1.470 1.390 CH4 8.140 8.782 8.485 9.260 8.220 C2H2 0.286 0.289 0.279 0.500 0.300 C2H4 32.381 32.554 31.088 33.800 30.540 C2H6 32.008 31.052 31.550 31.420 34.360 C3H4(MA)+C3H4(PD) 0.420 0.426 0.420 0.430 0.560 C3H6 7.338 7.177 7.645 7.980 9.350 C3H8 0.307 0.345 0.317 0.340 0.360 1,3 C4H6 2.783 2.541 2.196 2.690 2.520 1C4H8 1.081 1.003 1.038 0.620 0.850 2C4H8 0.257 0.346 0.321 0.340 0.430 iC4H8 0.934 1.245 0.716 1.060 1.610 iC4H10 0.065 0.065 0.024 0.040 0.030 nC4H10 0.151 0.339 0.788 0.070 0.450 Benzene 2.875 2.317 3.273 3.670 3.370 Toluene 0.953 1.477 1.004 0.980 0.800 experimental conditions 4 H2 1.668 1.691 1.713 1.590 1.680 CH4 10.047 10.615 10.380 10.010 10.030 C2H2 0.443 0.439 0.424 0.590 0.520 C2H4 37.727 37.405 36.300 35.900 36.040 C2H6 26.916 26.247 26.576 29.380 29.510 C3H4(MA)+C3H4(PD) 0.530 0.534 0.524 0.450 1.050 C3H6 6.656 6.518 6.782 7.460 8.010 C3H8 0.316 0.338 0.319 0.340 0.330 Annex C: Simulations: Experimental conditions and results LXII

1,3 C4H6 2.973 2.755 2.489 2.660 2.830 1C4H8 0.885 0.811 0.850 0.520 0.460 2C4H8 0.196 0.252 0.228 0.280 0.340 iC4H8 0.689 0.890 0.522 0.910 1.200 iC4H10 0.041 0.042 0.019 0.030 0.000 nC4H10 0.121 0.220 0.458 0.060 0.260 Benzene 3.286 2.747 3.654 3.920 4.200 Toluene 1.127 1.661 1.262 1.020 1.100 experimental conditions 5 H2 1.925 1.933 1.963 2.160 2.060 CH4 11.961 12.477 12.277 12.880 11.760 C2H2 0.740 0.724 0.705 1.250 0.770 C2H4 42.261 41.636 40.770 43.850 41.310 C2H6 21.234 20.819 20.993 19.810 23.860 C3H4(MA)+C3H4(PD) 0.630 0.639 0.621 0.500 0.830 C3H6 5.474 5.453 5.499 5.030 6.130 C3H8 0.291 0.301 0.290 0.260 0.260 1,3 C4H6 3.198 3.001 2.823 2.630 2.860 1C4H8 0.736 0.676 0.708 0.260 0.210 2C4H8 0.138 0.165 0.149 0.130 0.250 iC4H8 0.425 0.545 0.325 0.360 0.700 iC4H10 0.020 0.021 0.011 0.010 0.000 nC4H10 0.079 0.119 0.218 0.040 0.130 Benzene 3.765 3.241 4.091 4.840 4.030 Toluene 1.380 1.912 1.606 1.070 0.740

Annex C: Simulations: Experimental conditions and results LXIII

ATOFINA ethane Exp. conditions 1 2 3 4 5 T-profile reactor (°C) Position (m) 1.140 530 530 532 530 530 1.957 560 560 561 561 561 2.652 565 565 565 565 565 3.362 574 574 574 574 574 3.951 575 575 575 575 575 4.768 636 651 669 687 691 5.463 654 675 696 716 721 6.173 671 695 716 739 743 6.762 685 710 730 751 755 7.579 727 759 792 815 828 8.274 751 780 807 824 835 8.984 764 790 818 835 849 9.573 760 784 812 830 845 10.390 783 808 830 847 867 11.085 795 823 842 860 880 11.795 803 825 845 862 884 12.384 799 826 849 866 891 P-profile reactor (bar) Position (m) 0.000 2.338 2.342 2.338 2.314 2.339 4.341 2.146 2.150 2.153 2.150 2.166 9.963 1.922 1.925 1.912 1.924 1.930 12.784 1.804 1.808 1.792 1.813 1.814 Feed HC-flow (kg/hr) 3.849 3.712 3.654 3.497 3.500 H2O-flow (kg/hr) 1.965 1.881 1.851 1.719 1.719 Dilution (kg/kg) 0.511 0.507 0.507 0.492 0.491 Residence time (ms) 183 183 176 182 178

ATOFINA ethane

Yields (wt%)

Compound name COILSIM1D MILANO experimental

experimental conditions 1 H2 1.126 1.330 1.430 CH4 0.435 0.280 0.310 C2H2 0.027 0.040 0.020 C2H4 15.860 18.190 16.670 C2H6 82.048 79.660 82.120 Annex C: Simulations: Experimental conditions and results LXIV

C3H4(MA)+C3H4(PD) 0.001 0.000 0.000 C3H6 0.092 0.110 0.100 C3H8 0.020 0.030 0.010 1,3 C4H6 0.062 0.080 0.110 1C4H8 0.102 0.020 0.000 2C4H8 0.008 0.010 0.090 iC4H8 0.001 0.000 0.000 iC4H10 0.000 0.000 0.000 nC4H10 0.157 0.200 0.280 Benzene 0.001 0.000 0.000 Toluene 0.000 0.000 0.000 experimental conditions 2 H2 1.940 2.210 2.400 CH4 1.038 0.720 0.720 C2H2 0.120 0.150 0.060 C2H4 27.205 29.730 28.650 C2H6 68.675 65.990 70.180 C3H4(MA)+C3H4(PD) 0.004 0.000 0.000 C3H6 0.229 0.300 0.270 C3H8 0.054 0.070 0.040 1,3 C4H6 0.196 0.300 0.320 1C4H8 0.162 0.050 0.100 2C4H8 0.013 0.020 0.000 iC4H8 0.001 0.000 0.000 iC4H10 0.000 0.000 0.000 nC4H10 0.266 0.310 0.360 Benzene 0.006 0.030 0.000 Toluene 0.000 0.000 0.000 experimental conditions 3 H2 2.771 3.200 3.190 CH4 2.015 1.600 1.480 C2H2 0.347 0.380 0.160 C2H4 38.489 41.820 40.040 C2H6 54.618 50.520 53.400 C3H4(MA)+C3H4(PD) 0.010 0.020 0.000 C3H6 0.431 0.610 0.590 C3H8 0.105 0.130 0.080 1,3 C4H6 0.486 0.740 0.840 1C4H8 0.216 0.070 0.160 2C4H8 0.017 0.040 0.000 iC4H8 0.001 0.000 0.000 iC4H10 0.000 0.000 0.000 nC4H10 0.332 0.330 0.400 Benzene 0.028 0.170 0.020 Toluene 0.002 0.030 0.000 experimental conditions 4 H2 3.482 4.110 4.110 CH4 3.306 2.960 2.680 C2H2 0.713 0.800 0.460 C2H4 47.536 51.680 50.150 C2H6 42.256 36.240 40.810 C3H4(MA)+C3H4(PD) 0.021 0.030 0.120 C3H6 0.657 0.920 1.010 C3H8 0.156 0.180 0.110 Annex C: Simulations: Experimental conditions and results LXV

1,3 C4H6 0.932 1.280 1.410 1C4H8 0.256 0.090 0.120 2C4H8 0.021 0.060 0.110 iC4H8 0.001 0.000 0.050 iC4H10 0.000 0.000 0.000 nC4H10 0.338 0.280 0.310 Benzene 0.109 0.550 0.130 Toluene 0.009 0.090 0.010 experimental conditions 5 H2 4.116 4.580 4.650 CH4 4.924 3.960 4.190 C2H2 1.337 1.120 0.740 C2H4 54.522 55.760 56.540 C2H6 31.308 29.090 30.890 C3H4(MA)+C3H4(PD) 0.037 0.050 0.180 C3H6 0.860 1.080 1.430 C3H8 0.198 0.190 0.120 1,3 C4H6 1.462 1.620 2.160 1C4H8 0.284 0.100 0.110 2C4H8 0.023 0.060 0.160 iC4H8 0.002 0.000 0.060 iC4H10 0.001 0.000 0.000 nC4H10 0.267 0.220 0.170 Benzene 0.293 0.940 0.420 Toluene 0.029 0.150 0.000

Annex D: Hyperchrom User Guide LXVI

D. Hyperchrom User Guide

In this user guide, only some topics of the Hyperchrom software are highlighted.

1. How to prepare Hyperchrom

(1) Start up Hyperchrom software by clicking on the Hyperchrom icon. Open GCxGC/FID to view FID spectra or OFF-LINE TRACE to view FID or Tof-MS spectra. (2) Click on “File” and choose “Load method”. Copy the last made method file (extension .mth) to a new folder where the newly gathered information must be saved. Next, open this method file from this new folder. (3) Click on “File”, “Instrument configuration” and check whether the method in use is the proper method. This can also be checked in the main window, in the box “Filename of method in use”. (4) If “Waiting external start” appears in the box “Channel status” in the main window, the GCxGC (FID) is ready for injection. The status changes to “Acquiring” when a sample is being acquired. (5) Click on “Edit” and choose “Sample table” to insert a name for the sample. In this window other sample specifications like the Filename, the Type, the GC method file name, S.A., I.S. and X.F. (see part 2.g) can be entered.

2. How to work with Hyperchrom

a. Enter method settings

(1) Click on “Edit” and choose “Edit Method”. (2) In the “Detection parameters” window, “Time base” must be “Minutes” and the box next to “Start acquisition when GC starts” must be marked. (3) In the “Integration parameters” window, the first and second dimension integration parameters can be specified according to what is needed, see the explanation next to it or click on Help for more information. On the right-hand side, the “Full scale” value for the “Real time plot scale” indicates the highest possible value on the ordinate of the chromatogram that is viewed when clicking on “View”, “View sample being acquired” and is usually chosen to be 1000mVolt. Annex D: Hyperchrom User Guide LXVII

(4) In the “Calculation parameters” window choose “Internal Standard” as “Calculation Method”. The calculation is based on “Peak Area”. The calibration method is “Averaged RF” and the calibration weight “1/C”. (5) In the “Report parameters” window, choose as Report Type “Custom” and click on the icon beside it. A table appears. By clicking on the different boxes in the first column, the parameters that need to be reported can be selected from a list. Leave this window by clicking on “OK”. Check the box next to “Report of calibrated peaks only” in order to avoid components with zero concentration to appear in the Excel report. Choose “Standard report on: Excel file”. (6) Close the “Edit method” window by clicking on OK.

b. Edit GC parameters

(1) Click on “Edit”, “Edit GC parameters” to manually change the GC settings or load a previously used GC method (extension .gcm). From this window the settings can be sent to the GC by clicking on “Command” “Send method to TRACE”.

c. View chromatograms

(1) During acquiring, click “View”, “View sample being acquired”. In this mode, the chromatogram is shown in only one dimension, and zooming is restricted. Therefore, choose in this window “Run”, “Close partial and view chromatogram”. The chromatogram that has been recorded up to that moment is now shown in a new window, where zooming is possible. It can be saved under the name TMPA and afterwards closed. (2) Click “View”, “View 2D-GC chromatograms” to view completely recorded or TMPA chromatograms in two dimensions. Choose “Edit”, “Color plot scale intensity” to adjust the peak and background intensities so that the peaks are better visualized. “Edit”, “2D-GC Initial time offset” offers the possibility to shift the chromatogram up or down by changing the start of the axis for the second dimension retention time. Annex D: Hyperchrom User Guide LXVIII

The peak names can be visualized by clicking on “Show”, “Peak name”. “Show”, “View 3D rendering” shows a three-dimensional version of the chromatogram, “Color plot” shows the most commonly used two-dimensional representation and “View 3D chromatogram” presents the chromatogram consisting of the different peaks in a rectangular axis. (3) Click “View”, “View chromatograms” to view the chromatograms in a one dimensional rendering. (4) To open an overlay of a few chromatograms, click on “View”, “Overlay chromatograms”. Choose “File” “Load chromatogram” and select a chromatogram to make an overlay with by clicking on the empty button next to (I) Chrom. Overlay. In the window of “View”, “View sample being acquired”, click on “View”, “Overlay reference chromatogram” to make an overlay with a reference chromatogram while acquiring a new chromatogram.

d. Enter calibration factors

(1) Click on “View” and select “View Calibration curve”. (2) Click on “Edit” and choose “Enter manual factors”. In the boxes next to the names of the components, the response factors (or calibration factors) can be manually entered. Note that the yield calculation is based on division by the RF instead of multiplication. (3) The previous table needs revision every time the component table is changed. (4) Click on OK to close the window and do not forget to save the changed calibration factors by clicking on the “Save calibration factors” button.

e. Integrate peaks

(1) In “Edit”, “Component table” or “View”, “View 2D-GC chromatograms” click on the peak integration button or “Edit” “Peak integration” and insert proper integration parameters. Click on “OK” and the peaks will be integrated. (2) Peak integration must be performed before peak identification, otherwise the program cannot find peaks to assign names to.

f. Identify peaks Annex D: Hyperchrom User Guide LXIX

(1) If a Tof-MS spectra is recorded, the peaks can be identified with the use of the molecular library implemented in the XCalibur software and the Kovats retention index system. Both the GCxGC/FID and the OFF-LINE TRACE can be used for this application. Click on “View”, “View 2D-GC chromatograms” or “Edit”, “View component table”. By double-clicking on a peak, the spectrum of the single peak is shown below the chromatogram. Double-clicking on the peak again now opens the molecular library. Several possible matches are presented, and by clicking on one of them, the spectrum of the unknown compound and the spectrum of the reference compound are both shown, so that they can be compared. The one that gives the best resemblance is chosen. The previous windows are closed so that the component table appears again. (2) Both for an FID and a Tof-MS chromatogram, the component table can be filled according to the following steps. Right click on an integrated peak and select “Add new window around this peak”. In the table below, a new line is filled with the retention times corresponding to the window drawn around the peak. The peak name and retention times can be manually changed. Choose for every peak as “ID mode” “A: all peaks in window” instead of “H: highest peak in window” in order to take into account every peak that is present in the window. For the methane peak, “Internal standard” must be chosen as “Type”, whenever cracker effluent is analyzed. (3) Click on the identify button (in the component table window) to assign the entered names to the integrated peaks. If a peak is correctly identified, the name appears white instead of black (provided that Show, peak name is checked). Close the component table. (4) Every time a new component table is made, or retention times are adapted to a certain chromatogram, the method file needs to be saved under a new name, because the component table is linked with the method file and the peak identification needs to be preserved for later use. (5) Whenever peaks are identified to determine the composition of the sample afterwards, it is important that every separate peak is taken into account. It needs to be verified whether this is correctly done. Click on “View”, “View 2D-GC peak integration data”. Annex D: Hyperchrom User Guide LXX

Check for every component whether all the peaks are considered, by right clicking on a peak in the chromatogram or clicking in the table below. If this is not the case, right click on the unidentified peak and choose “Assign this point as new Apex peak” or “Assign this cut to current selected peak” and assign the proper name to the peak. In this window it is also checked whether a peak has the right name assigned to it, and if necessary the peak name can be changed in the table at the bottom. (6) After having changed these peak integration data, it is recommended not to click on the identify button again, since the program would perform the identification again using only the information from the component table, and thereby undo the manually made changes. If the “View 2D-GC peak integration data” is adapted while using the GCxGC/FID instead of the OFF-LINE TRACE, it can only be asked for back using the GCxGC/FID and not using the OFF-LINE TRACE, so it is not coupled with the method file as in the case of the component table.

g. Reprocessing, regeneration of the Excel file

(1) Click on “Reprocessing” and choose “Reprocessing”. (2) Choose to review the integration and identification of a single sample, for which the data file name can be selected. If re-integration and re-identification is chosen, the program will redo the automatic peak integration and identification and previous manual work will be lost, so this is not recommended. Values for SA, IS and XF must be entered if samples are taken from cracker effluent (and so an internal standard is used), but not if feedstock is analyzed. Enter 100 as value for SA (Sample Amount), indicating that the amount of internal standard is expressed in weight percentage (on a scale of 100). If 1 is entered as value, the amount of internal standard must correspondingly be expressed on a scale of 1. The value for IS (Internal Standard) corresponds to the wt% of the internal - standard (methane) that is obtained in the C 4 analysis of the corresponding sample. Enter 100 as value for XF (Dilution factor, is a scaling factor) so that the calculated product yields are expressed in weight percentage on a scale of 100. Annex D: Hyperchrom User Guide LXXI

(3) When the sample’s chromatogram re-appears, review the peak integration and click on the identify button (if the peaks are not already identified). Save the chromatogram again under the same name (overwrite the previous one) and close the window. Next, the samples component table re-appears. Review the identification and close the window. The Excel file is now generated and can be found in the same folder where also the used method file is saved. Annex E: Overview of performed experiments LXXII

E. Overview of performed experiments

Experiment/ Simulation/ Analysis Pages in lab journal

Pilot plant experiments:

Gas condensate 700B 28-29, 32, 34-35

Gas condensate 700A 30-31, 32, 34-35

C4 fraction ARAL 41, 43-45

C4 fraction PETRO 42, 43-45 n-hexane: internal standard before coolers 48-49 n-hexane: internal standard after coolers 50-51

Fischer-Tropsch naphtha 63-65, 68-69, 71-72

Simulations:

Co-cracking of ethane and naphtha 27, 33

GCxGC analyses:

Petroleum naphtha 37-39

Kerosene 47, 57

Tuning of GCxGC 53-55

Gas condensate 661 56

Gas condensate 700B 57, 59

Gas condensate 700A 58

Fischer-Tropsch naphtha 60, 67