Supercontinents and Landforms Warm up 1/31

Total Page:16

File Type:pdf, Size:1020Kb

Supercontinents and Landforms Warm up 1/31 Supercontinents and Landforms Warm Up 1/31 1. What are the 3 types of plate boundaries? 2. Which layer/sphere of the Earth are the plates made of? 3. Which layer/sphere contributes to the movement of the plates? 4. Which Hawaiian Island is the youngest? Hawaii Article Discussion Supercontinents and Landforms Continental Drift • Continental Drift is a theory proposed by the German scientist, Alfred Wegener in 1912 • He believed that the continents are slowly drifting around the Earth and were once a single supercontinent which he called Pangaea Continental Drift The single ocean surrounding Pangaea is called Panthalassa Continental Drift Wegener’s theory was not accepted until the late 50’s after his death Pangaea Pangaea formed roughly 270 million years ago It split into Laurasia and Gondwanaland roughly 200 million years ago Evidence for Continental Drift 1) The shape of the continents fit together like a puzzle Evidence for Continental Drift 2) Fossil Evidence – Fossils of the same species were found across the continents These are spread so far apart that there is no way the organisms could have crossed the oceans Evidence for Continental Drift 3) Glacier Grooves – Wegener found grooves left by the movement of glaciers in continents that are now too hot to have glaciers Evidence for Continental Drift 4) Rock Composition- Wegener also found that there were matching rock formations on the continents Again, these were very unlikely to occurred separately Landforms of Earth Landforms are the natural features and shapes that exist on Earth Landform Hunt Travel around the room and locate the definitions for the landforms of Earth. Fill in your landform chart by writing the definition in the box next to the picture. Hang on to this so you can study from it!! Your World Project This will be a project that runs through multiple units so you need to hang on to it! You will receive a grade for each section of this project. This is probably the largest project of the year so take it seriously! Your World Project - Beginning For the first section: • Start by drawing your own supercontinent (like Pangaea) and giving it a name • Be sure to label all of the landforms and assign them names (such as Ascavaris Ocean, Pintapu Peninsula, Gulf of Saberi, etc.) • You can also add forests, deserts, lakes, rivers, etc… • You must have at least 20 named landforms! • If you finish early, you can start to think about what type of lifeforms inhabit your planet?.
Recommended publications
  • Assembly, Configuration, and Break-Up History of Rodinia
    Author's personal copy Available online at www.sciencedirect.com Precambrian Research 160 (2008) 179–210 Assembly, configuration, and break-up history of Rodinia: A synthesis Z.X. Li a,g,∗, S.V. Bogdanova b, A.S. Collins c, A. Davidson d, B. De Waele a, R.E. Ernst e,f, I.C.W. Fitzsimons g, R.A. Fuck h, D.P. Gladkochub i, J. Jacobs j, K.E. Karlstrom k, S. Lu l, L.M. Natapov m, V. Pease n, S.A. Pisarevsky a, K. Thrane o, V. Vernikovsky p a Tectonics Special Research Centre, School of Earth and Geographical Sciences, The University of Western Australia, Crawley, WA 6009, Australia b Department of Geology, Lund University, Solvegatan 12, 223 62 Lund, Sweden c Continental Evolution Research Group, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia d Geological Survey of Canada (retired), 601 Booth Street, Ottawa, Canada K1A 0E8 e Ernst Geosciences, 43 Margrave Avenue, Ottawa, Canada K1T 3Y2 f Department of Earth Sciences, Carleton U., Ottawa, Canada K1S 5B6 g Tectonics Special Research Centre, Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia h Universidade de Bras´ılia, 70910-000 Bras´ılia, Brazil i Institute of the Earth’s Crust SB RAS, Lermontova Street, 128, 664033 Irkutsk, Russia j Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway k Department of Earth and Planetary Sciences, Northrop Hall University of New Mexico, Albuquerque, NM 87131, USA l Tianjin Institute of Geology and Mineral Resources, CGS, No.
    [Show full text]
  • Proterozoic East Gondwana: Supercontinent Assembly and Breakup Geological Society Special Publications Society Book Editors R
    Proterozoic East Gondwana: Supercontinent Assembly and Breakup Geological Society Special Publications Society Book Editors R. J. PANKHURST (CHIEF EDITOR) P. DOYLE E J. GREGORY J. S. GRIFFITHS A. J. HARTLEY R. E. HOLDSWORTH A. C. MORTON N. S. ROBINS M. S. STOKER J. P. TURNER Special Publication reviewing procedures The Society makes every effort to ensure that the scientific and production quality of its books matches that of its journals. Since 1997, all book proposals have been refereed by specialist reviewers as well as by the Society's Books Editorial Committee. If the referees identify weaknesses in the proposal, these must be addressed before the proposal is accepted. Once the book is accepted, the Society has a team of Book Editors (listed above) who ensure that the volume editors follow strict guidelines on refereeing and quality control. We insist that individual papers can only be accepted after satis- factory review by two independent referees. The questions on the review forms are similar to those for Journal of the Geological Society. The referees' forms and comments must be available to the Society's Book Editors on request. Although many of the books result from meetings, the editors are expected to commission papers that were not pre- sented at the meeting to ensure that the book provides a balanced coverage of the subject. Being accepted for presentation at the meeting does not guarantee inclusion in the book. Geological Society Special Publications are included in the ISI Science Citation Index, but they do not have an impact factor, the latter being applicable only to journals.
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • Map of How Earth Would Have Looked If Supercontinent Gondwana Had Broken up Differently
    Map of How Earth Would Have Looked if Supercontinent Gondwana Had Broken Up Differently UK EDITION FRIDAY, 14TH MARCH, 2014 News Business Economy Technology Sport Entertainment & Arts Viewpoint Video Science Map of How Earth Would Have IBTIMES TV Looked if Supercontinent Gondwana Had Broken Up Differently By Hannah Osborne March 3, 2014 10:23 GMT + Recreation of Banksy Marks 3 Years of Syrian Crisis How Earth would have looked if rift had split continent differently. Sascha Brune/Christian Heine http://www.ibtimes.co.uk/map-how-earth-would-have-looked-if-supercontinent-gondwana-had-broken-differently-1438639[14/03/2014 12:00:17 pm] Map of How Earth Would Have Looked if Supercontinent Gondwana Had Broken Up Differently A map showing what Earth would have looked like had the supercontinent Gondwana broken up differently has been created by researchers. The map looks at how the world would be completely different if the South Atlantic and West African rift had split, instead of the rift that emerged along the Equatorial Atlantic margins. Geoscientists at the University of Sydney and the GFZ German Research Centre for Geosciences used sophisticated plate tectonic and 2D numerical modelling to create the map. The Gondwana supercontinent broke up 130 million years ago leading to the creation of South America and Africa. However, for millions of years before this, the southern continents of Why advertise with us South America, Africa, Antarctica, Australia, and India were united as Gondwana. READ MORE It is still unclear why Gondwana fragmented, but it is understood if first split along the East Africa coast in a western and eastern part, before South America separated.
    [Show full text]
  • Where Is (And Was) Pennsylvania?”
    Essay: “Where Is (and Was) Pennsylvania?” W.E. Hamilton D.Y. Sillman Penn State University This work is licensed under a Creative Commons Attribution‐Noncommercial‐No Derivative Works 3.0 license. It may be distributed and shared, with attribution, but not altered or used commercially in any way. “Where Is (and Was) Pennsylvania?” Pennsylvania is a pretty obvious place to us. It’s a rectangular, politically defined piece of the eastern United States with a wiggly eastern border that follows the Delaware River and three, very straight other borders on the north, west, and south that were laboriously marked off after a great deal of social and legal travail and even some violence. It’s a hilly to mountainous, river‐rich place with forests and fields and cities. Its statistics are simple: it is about three hundred miles from east to west and a little less than one hundred and seventy miles from south to north. It comprises 46,058 square miles (although the number “45,308” shows up in some references). Its latitude range is thirty‐nine degrees forty‐three minutes N to forty‐two degrees N, and its longitude range is seventy‐four degrees and forty‐three minutes W to eighty degrees thirty‐one minutes W (Netstate 2008). This Pennsylvania, though, hasn’t always been all of that. The great rectangle of Pennsylvania has been, through the geological history of the Earth, in the southern hemisphere, on the equator, and in a great many places in between. It has been oriented with its long, three hundred mile axis east to west and also with this long axis running south to north.
    [Show full text]
  • The Making and Unmaking of a Supercontinent: Rodinia Revisited
    Tectonophysics 375 (2003) 261–288 www.elsevier.com/locate/tecto The making and unmaking of a supercontinent: Rodinia revisited Joseph G. Meerta,*, Trond H. Torsvikb a Department of Geological Sciences, University of Florida, 241 Williamson Hall, PO Box 11210 Gainesville, FL 32611, USA b Academy of Sciences (VISTA), c/o Geodynamics Center, Geological Survey of Norway, Leif Eirikssons vei 39, Trondheim 7491, Norway Received 11 April 2002; received in revised form 7 January 2003; accepted 5 June 2003 Abstract During the Neoproterozoic, a supercontinent commonly referred to as Rodinia, supposedly formed at ca. 1100 Ma and broke apart at around 800–700 Ma. However, continental fits (e.g., Laurentia vs. Australia–Antarctica, Greater India vs. Australia– Antarctica, Amazonian craton [AC] vs. Laurentia, etc.) and the timing of break-up as postulated in a number of influential papers in the early–mid-1990s are at odds with palaeomagnetic data. The new data necessitate an entirely different fit of East Gondwana elements and western Gondwana and call into question the validity of SWEAT, AUSWUS models and other variants. At the same time, the geologic record indicates that Neoproterozoic and early Paleozoic rift margins surrounded Laurentia, while similar-aged collisional belts dissected Gondwana. Collectively, these geologic observations indicate the breakup of one supercontinent followed rapidly by the assembly of another smaller supercontinent (Gondwana). At issue, and what we outline in this paper, is the difficulty in determining the exact geometry of the earlier supercontinent. We discuss the various models that have been proposed and highlight key areas of contention. These include the relationships between the various ‘external’ Rodinian cratons to Laurentia (e.g., Baltica, Siberia and Amazonia), the notion of true polar wander (TPW), the lack of reliable paleomagnetic data and the enigmatic interpretations of the geologic data.
    [Show full text]
  • The New Global History Toward a Narrative for Pangaea Two
    EWE (previously EuS) 14(2003)1 Main Article / Hauptartikel 75 The New Global History Toward a Narrative for Pangaea Two Wolf Schäfer Summary: The author approaches contemporary history from a position that defines the expression “truly global” as earth-centered. On this ground, two kinds of global history can be distinguished: the non-linear geophysical history of first nature, which is alternately uniting and dividing the world-continent (called Pangaea One), and the revolutionary technoscientific history of second nature, which is beginning to defragment the earth with things like the World Wide Web. The new Global History explores contemporary global history in general and the emerging civilizational unity (called Pangaea Two) in particular. The new historiographical approach is introduced via a critical discussion of Globality, Globalization, Periodization, World History, and Methodology. Zusammenfassung: Der Autor nähert sich der Gegenwartsgeschichte von einer Position, die den Ausdruck “wahrhaft global” als erdzentriert definiert. Auf dieser Basis können zwei Arten von Globalgeschichte unterschieden werden: die nicht-lineare geophysikalische Geschichte der ersten Natur, die den Weltkontinent abwechselnd zusammenfügt und fragmentiert (Pangaea Eins genannt), und die revolutionäre technowissenschaftliche Geschichte der zweiten Natur, die angefangen hat die Erde mit Dingen wie dem World Wide Web zu defragmentieren. Die neue Globalgeschichte erforscht die globale Gegenwartsgeschichte im allgemeinen und die sich anbahnende zivilisatorische Einheit (Pangaea Zwei genannt) im besonderen. Der neue historiographische Ansatz wird anhand einer kritischen Diskussion von Globalität, Globalisierung, Periodisierung, Weltgeschichte und Methodologie vorgestellt. Overview ((3)) In this article, I shall be following an alternative tack to- ward global history. I think that the designation “new global history” is warranted by the novelty of a human-made global ((1)) Titles of the form “The New –” invite the tested response: history.
    [Show full text]
  • Magmatic Records of the Late Paleoproterozoic to Neoproterozoic 14 Extensional and Rifting Events in the North China Craton: a Preliminary Review
    Magmatic Records of the Late Paleoproterozoic to Neoproterozoic 14 Extensional and Rifting Events in the North China Craton: A Preliminary Review Shuan-Hong Zhang and Yue Zhao Abstract The North China Craton (NCC) is characterized by multistages of extensional and continental rifting and deposition of thick marine or interactive marine and terrestrial clastic and carbonate platform sediments without angular unconformity during Earth’s middle age of 1.70–0.75 Ga. Factors controlling these multistages of extensional and continental rifting events in the NCC can be either from the craton itself or from the neighboring continents being connected during these periods. Two large igneous provinces including the ca. 1.32 Ga mafic sill swarms in Yanliao rift (aulacogen) in the northern NCC and the ca. 0.92–0.89 Ga Xu-Huai–Dalian–Sariwon mafic sill swarms in southeastern and eastern NCC, have recently been identified from the NCC. Rocks from these two large igneous provinces exhibit similar geochemical features of tholeiitic compositions and intraplate characteristics. Formation of these two large igneous provinces was accompanied by pre-magmatic uplift as indicated by the field relations between the sills and their hosted sedimentary rocks. The Yanliao and Xu-Huai–Dalian–Sariwon large igneous provinces represent two continental rifting events that have led to rifting to drifting transition and breakup of the northern margin of the NCC from the Columbia (Nuna) supercontinent and the southeastern margin of the NCC from the Rodinia supercontinent, respectively. As shown by the ca. 200 Ma Central Atlantic Magmatic Province related to breakup of the Pangea supercontinent and initial opening of the Central Atlantic Ocean and the ca.
    [Show full text]
  • A Bight Is Born
    Islands in the Stream 2002: Exploring Underwater Oases A Bight is Born FOCUS Limestone The origin and structure of the southeast coastline Taconic Orogeny and continental shelf (South Atlantic Bight) Microcontinent Collisions GRADE LEVEL Alleghenian Orogeny 9 -12 (Earth Science) Equator (may be adapted to 7th-8th grade Earth Science Piedmont Standards) Monadnocks Rift basins FOCUS QUESTION Erosion What is the South Atlantic Bight and how was it Coastal formed? Volcanic Sediment LEARNING OBJECTIVES Continental shelf Students will sequence and model the events lead- Regresses ing to the formation of the southeastern coast of the Ecosystems United States, including the formation of the South Atlantic Bight. The words listed as key words are integral to the unit. There are no formal signs in American Sign Students will examine what forces have changed Language for any of these words and many are the structure of this area over geologic time, pre- difficult to lipread. Having the vocabulary list on dict what changes are yet to occur and how these the board as a reference during the lesson will be changes have and may affect the populations living extremely helpful. This activity presents a great in this area, including man. deal of new material and requires a large amount of reading and attention. Many new words which ADDITIONAL INFORMATION FOR TEACHERS OF DEAF STUDENTS might be unfamiliar are included. This activity is In addition to the words listed as Key Words, the best conducted as a review or as an activity after following words should be part of the vocabulary the concepts have been taught.
    [Show full text]
  • Plate Tectonics the Earth's Tectonic Plates. Three Types Of
    Our Changing Earth – Read and highlight important information then take the quiz on the other side. Plate Tectonics Scientists have investigated the theory of plate tectonics (which states that the Earth's crust is made of several plates, each moving independently of the others) for many years. Studies by NASA and radio astronomy sites around the world support this theory. The Earth's tectonic plates. These plates, a part of the Earth called the lithosphere, are made of the crust & very top part of the mantle. They rest upon the deeper, hot, flowing asthenosphere which is the middle part of the mantle. This inner furnace of the Earth is the engine that powers the movement of the plates through convection. Some move apart, some slide parallel to each other, and some even collide and smash together. Three Types of Faults A fault is a fracture in the Earth's crust along which motion may occur. It marks the boundary between two plates. There are three main types of faults. What happens at a fault boundary depends, in part, on whether the plates next to it are made of continental or oceanic crust. Continental crust makes up the landmasses we live on. It is lighter, less dense, and thicker than the oceanic crust that lies under the seas and oceans of the world. A divergent fault occurs when two plates are moving away from each other. These cause rift valleys on land or ridges if underwater . When two plates come together, the result is a convergent fault. Continental crust plates colliding can form mountains.
    [Show full text]
  • Earth History
    Earth History Geography 106 LRS Doug Fischer Introduction – Overview of geologic history • Plate positions over time • Major biogeographic events Earth’s tectonic history • Gondwanaland – Southern continents – Formed 650mya Precambrian • Laurasia – Northern Continents – Most converged in Devonian 400mya as “old sandstone continent” • Formation of Pangaea – Late Permian ~ 275 mya Breakup of Pangaea • Started 180 mya (early Jurassic) – Prior to breakup, great mixing of biota – However, regionalization did still occur as it does on (smaller) continents today Breakup of Laurasia • Separated Europe & N. America 100 mya • Beringia rejoined them 75 mya • Intermittent connection via Greenland & Beringia through Tertiary Breakup of Gondwanaland • 180-160mya Gondwanaland started to split – Mesozoic (Triassic/Jurassic) • Mostly finished by 90 mya 152 mya 94 mya Central America and Antilles • Caribbean Plate was sandwiched between N&S America between 80 and 20 mya • Formed ring of islands • Landbridge closed ~ 3.5 mya – Great American Interchange 14 mya Biogeographic consequences of plate tectonics • Fragmentation and dispersal of ancestral biota (vicariance) • Changing barriers and coridors – biotic interchange • Speciation and extinction – changing physical and biological conditions Tour of Geologic History The geologic time scale • Phanerozoic starts with Cambrian explosion of species with hard body parts – (Some multi- cellular algae and animals lived at the end of the Precambrian) Paleozoic Paleozoic Cambrian • Animals with hard-shells appeared in great numbers for the first time • The continents were flooded by shallow seas. • The supercontinent of Gondwana had just formed and was located near the South Pole. Ordivician • ancient oceans separated the barren continents of Laurentia, Baltica, Siberia and Gondwana. • The end of the Ordovician was one of the coldest times in Earth history.
    [Show full text]
  • Muttoni+Kent-2019 RIPS Copy
    Rivista Italiana di Paleontologia e Stratigrafa (Research in Paleontology and Stratigraphy) vol. 125(1): 249-269. March 2019 ADRIA AS PROMONTORY OF AFRICA AND ITS CONCEPTUAL ROLE IN THE TETHYS TWIST AND PANGEA B TO PANGEA A TRANSFORMATION IN THE PERMIAN GIOVANNI MUTTONI1* & DENNIS V. KENT2 1 *Corresponding author. Dipartimento di Scienze della Terra 'Ardito Desio', Università degli Studi di Milano, via Mangiagalli 34, I-20133 Milan, Italy. 2Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08854, USA, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA.. To cite this article: Muttoni G. & Kent D.V. (2019) - Adria as promontory of Africa and its conceptual role in the Tethys Twist and Pangea B to Pangea A Transformation in the Permian. Riv. It. Paleontol. Strat., 125(1): 249-269. Keywords: Paleomagnetism; Adria; Pangea B; Pangea A. Abstract. It has been almost 60 years since the frst results from the Early Permian Bolzano Quartz Porphyries from the Trento Plateau of northern Italy (Southern Alps) showed paleomagnetic inclinations steeper than inclina- tions from broadly coeval units from central Europe. This experimental discrepancy, confrmed ever since at varying levels of magnitude and certitude, implied that northern Italy had paleolatitudes too northerly relative to Europe to be considered part of the European continent. On the other hand, it became progressively more apparent that paleo- magnetic data from northern Italy were more compatible with data from Africa than with data from Europe, and this observation revived and complemented Argand’s original concept of Adria as a promontory of Africa. But if Adria was part of Africa, then the paleolatitude anomaly of Adria relative to Europe translated into a huge crustal misft of Gondwana relative to Laurasia when these landmasses were forced into a classic Wegenerian Pangea as typifed by the Bullard ft of the circum-Atlantic continents.
    [Show full text]