Research Article

Total Page:16

File Type:pdf, Size:1020Kb

Research Article Egypt. J. Exp. Biol. (Bot.), 7(2): 285 – 291 (2011) © The Egyptian Society of Experimental Biology RESEARCH ARTICLE El-Kassas H. Yassin Abdel Aziz N. El-Said CONTROL OF FISH FUNGAL PATHOGEN SAPROLEGNIA PARASITICA USING ROTIFER BRACHIONUS PLICATILIS AND SODIUM CHLORIDE ABSTRACT: This investigation was designed to compare INTRODUCTION: between the inhibiting effect of sodium There is a steady increase in chloride and the rotifer Brachionus plicatilis constructing Fish Farms in Egypt especially on the growth of a fish pathogen, Saprolegnia during the last fifty years as a source of parasitica as safe remediation techniques in alternative protein due to the rapid increase aquacultures. The results showed that the in population and also the high prices of addition of 100 cells of B. plicatilis, caused animal protein. Outbreaks of waterborne decrease in spores count of S. parasitica, by fungal infections (saprolegniasis) on fish, 34% after 2 hours, and 79% after 6 hours, fish eggs and water continue to cause respectively. Increasing the number of B. problems among cultured fish (Ali, 2009; plicatilis to 150 cells decreased the spores Refai et al., 2010). count of S. parasitica by 80.00%. The two way Members of the genus Saprolegnia analysis of variance showed that the tested cause saprolegniasis; a devastating disease, rotifer species exhibited a great efficiency in with symptoms of visible white or grey grazing fungal zoospores (P<0.001). On the patches of filamentous mycelium on the body other hand, NaCl solution reported stronger or fins of freshwater fish. Great losses in effect on the growth of the tested fish weight are sometimes observed due to the pathogen as compared to that occurred by the infection by this genus, as well as water rotifer species. After 14 days of incubation, S. mould (Lartseva, 1986) and loss of total parasitica was markedly suppressed incubated eggs (Dudkai et al., 1989; Sati and (P<0.001) at different concentrations of NaCl Khulbe, 1981). Kitancharoen and Hatai solution. (1997) stated that surrounding hyphal growth could reduce the water circulation around the KEY WORDS: eggs and block oxygen transportation, thus Saprolegnia parasitica, Sodium chloride, contributing to the death of the eggs. Brachionus plicatilis, Pathogenic inhibitors, Disease also reduces hatchery efficiency and Lake Edku. production. Several aquatic fungi, including chytrids and soil Hyphomycetes have been reported from two lakes on Soignée Island (Ellis Evans, 1985). CORRESPONDENCE: Prevention and control of saprolegniasis are especially difficult, even Hala Yassin El-Kassas under fish-farming conditions, owing to the Hydrobiology Laboratory, Marine Environment ubiquitous nature and the rapid spreading of Division, National Institute of Oceanography and such fungi (Alderman, 1994). Fisheries, Alexandria, Egypt. E-mail: [email protected] Up till 2002, Saprolegnia infections in aquaculture were kept under control with malachite green (an organic dye) that is very efficient at killing the pathogen. However, the Nagwa El-Said Abdel Aziz use of malachite green has been banned worldwide due to its carcinogenic and Hydrobiology Laboratory, Marine Environment toxicological effects and this had resulted in Division, National Institute of Oceanography and a dramatic re-emergence of Saprolegnia Fisheries, Alexandria, Egypt. infections in aquaculture. As a consequence Saprolegnia parasitica is now, economically, a very important fish pathogen, especially on catfish, salmon and trout species, and warrants further investigation to develop new ARTICLE CODE: 35.02.11 alternative control strategies (West, 2006). ISSN: 1687-7497 On Line ISSN: 2090 - 0503 http://www.egyseb.org 286 Egypt. J. Exp. Biol. (Bot.), 7(2): 285 – 291 (2011) Magaraggia et al. (2006) studied the treatment of microbiologically polluted aquaculture waters by a novel photochemical technique of potentially low environmental impact. Antifungal agents are essential for the maintenance of healthy stocks of fish and their eggs in intensive aquaculture operations. Ali (2009) reported the antifungal activity of sodium chloride on Aphanomyces sp. and Saprolegnia diclina. The rotifer Brachionus plicatilis is a euryhaline species that has been most widely used as essential food source for various types of small larvae, in rearing fish and shrimp, as well as crab larvae due to its tolerance to the marine environment (Walkes, 1981; Watanabe et al., 1983; Fig.1. Map showing Lake Edku and the study Lubzens, 1987; Dhert and Sorgeloos, 1994). Farms, Alexandria, Egypt Kagami et al. (2004) reported that the cladocera Daphnia galeata hyalina can Isolation of Saprolegnia parasitica: protect diatoms from fungal parasitism through reducing the abundance of fungal Previously prepared glass bottles each containing eight germinated and sterilized zoospores. sesame seeds was used to capture and Accordingly, this investigation was recovery of the resident zoosporic fungi designed, for studying the occurrence of a (Khallil, 1984). Water samples in these bottles zoosporic fungus in some fish farms and fish were poured under aseptic conditions into in Lake Edku, Egypt. A comparison between equivalent numbers of sterilized Petri-dishes, the Pathogenic inhibitors of sodium chloride and then kept at 22°C for 24 hours for the and Brachionus plicatilis as safe remediation colonization of sesame seeds by fungal techniques in aquacultures were carried out. propagules. Colonized sesame seeds were then transferred into other clean and sterile Salinity in Lake Edku and in Boughaz Petri-dishes containing sterile distilled water El-Maadiya fluctuated between a minimum of to which crystalline penicillin (2000 units per 0.48 ppt and a maximum of 35.69 ppt (Abdel- liter of water) was added (Roberts, 1963). Aziz and Dorgham, 1999). Therefore, These dishes were incubated at 22°C for suppression tests using sodium chloride on twenty days during which the fungal growth the two tested pathogens were performed was daily examined. The water surrounding using sodium chloride concentrations ranged the seeds contained numerous motile from 5 ppt to 30 ppt. secondary zoospores. Zoospore suspensions As far as the authors knowledge, this were then obtained by filtering this water could be considered as the first trial to follow through double layers of Whatman 541 filter up the grazing effect of Brachionus plicatilis paper (Carballo and Munoz, 1991). on Saprolegnia parasitica. Identification of the recovered fungus: The isolated fungus was identified to the MATERIAL AND METHODS: species level at the Regional Center for Mycology and Biotechnology (RCMB), Al- Sampling and collection: Azhar University, Cairo, Egypt (Khulbe, 2001; Surface water samples and about 10 random Watanabe, 2002). The most dominating fungal fishes (Tillapia spp. and Mugil spp.) were species identified was Saprolegnia parasitica. collected. Each water sample (three Media: replicates) was collected during March 2011 Glucose peptone (GP) agar medium was from eight basins from fish farms at Lake used for purification of S. parasitica and in a Edku (Fig. 1) and put in brown and sterilized broth form for estimation of the zoospores glass bottles (400 ml capacity each). Some counts as affected by the different treatments fungal isolates were collected from skin, gills of the rotifer: Brachionus plicatilis. The fungal and stomachs of the collected fish samples. isolate namely S. parasitica which dominated The rotifer Brachionus plicatilis was kindly in fish farms and fish hatcheries were used for provided by Dr. Heba Saad, Aquaculture further studies. S. parasitica was preserved in division, National Institute of Oceanography pure culture (water sesame seeds culture). and Fisheries, Alexandria. ISSN: 1687-7497 On Line ISSN: 2090 - 0503 http://www.egyseb.org Yassin & El-Said, Control of Fish Fungal Pathogen Saprolegnia parasitica Using Rotifer Brachionus plicatilis and NaCl 287 Growth of Saprolegnia parasitica in and the result was expressed as the mean of presence of Brachionus plicatilis: two perpendicular radii. Grazing experiments: b. Dry weight (DW) method: Each experiment was triplicates and the Glucose peptone broth (100 ml) amended average result was recorded. At the end of with different NaCl concentrations (0, 5, 10, 15, each experiment the rotifers counts were 20, 25, & 30 ppt), in 250 ml Erlenmeyer flasks recorded to detect if there were mortality then inoculated with 5 mm discs of each fungus among the rotifers during the experiments. separately. The flasks were incubated at 25 ± Experiment 1: 2°C for 7 days. The fungal mats and the spores were removed by filtration and dried at 60 ± 3°C For estimating the grazing efficiency of to constant weight. Fungal dry weights were B. plicatilis on S. parasitica, a set of six 100- expressed as g/l. ml flasks were inoculated with 20 ml of fungal spores suspension (known initial count) c. Germinating spores count: and100 individuals of B. plicatilis were added The tested fungus was grown on glucose to each flask. Flasks were incubated for 2, 4 peptone broth amended with different & 6 hrs under florescent light 40 µmol quanta concentrations of NaCl (0, 5, 10, 15, 20, 25, & m-2 s-1 then zoospore's counts were recorded 30 ppt) and incubated at 25 ± 2°C for 10 days. after each time interval (Fig. 2). The germinating spores were counted at 800x magnification with a compound microscope (CARLZEISS) according to (Guzman and Axtell, 1986). Statistical analyses: Each single treatment was triplicates and the mean value ± standard
Recommended publications
  • Trophic Interactions Among Sympatric Zooplanktivorous Fish Species in Volume Change Conditions in a Large, Shallow, Tropical Lake
    Neotropical Ichthyology, 9(1):169-176, 2011 Copyright © 2011 Sociedade Brasileira de Ictiologia Trophic interactions among sympatric zooplanktivorous fish species in volume change conditions in a large, shallow, tropical lake Rodrigo Moncayo-Estrada1, Owen T. Lind2 and Carlos Escalera-Gallardo1 Significant reductions in the water volume of shallow lakes impose a restriction on species segregation promoting more interactions in the trophic relationships. The diets of three closely related zooplanktivorous silversides belonging to the Atherinopsidae species flock of lake Chapala, Mexico, were analyzed at two sites (Chirostoma jordani, C. labarcae, and C. consocium). Diets were described in critical shallow (August 2000) and volume recovery conditions (August 2005). Diets included mainly cladocerans (Bosmina, Ceriodaphnia, and Daphnia) and copepods (Cyclops). A significant difference in diets was detected when comparing years (MRPP analysis, A = 0.22, p < 0.0001) and sites at different years (MRPP analysis, A = 0.17, p = 0.004). According to niche breadth mean values, species were classified as specialized and intermediate feeders. In shallow conditions, the small range of niche breadth (1.72 to 3.64) and high diet overlap values (D = 0.64, L = 8.62) indicated a high potential for interspecific exploitative interaction. When the lake volume recovered, an increase in the niche breadth range (1.04 to 4.96) and low niche overlap values (D = 0.53, L = 2.32) indicated a reduction of the species interaction. The Mann- Whitney U-test supported this pattern by showing a significant difference between years for niche overlap (p = 0.006). The increased interaction during the low volume suggests alternative segregation in life-history variations and other niche dimensions such as spatial or temporal distribution.
    [Show full text]
  • Oocyte Structure and Ultrastructure in the Mexican Silverside Fish Chirostoma Humboldtianum (Atheriniformes: Atherinopsidae)
    Oocyte structure and ultrastructure in the Mexican silverside fish Chirostoma humboldtianum (Atheriniformes: Atherinopsidae) Rodolfo Cárdenas1, Mónica Chávez1, José Luis González1, Patricia Aley2, Jesús Espinosa2 & Luis Felipe Jiménez-García3 1. Laboratorio de Endocrinología de Peces, Unidad de Morfología y Función, F.E.S.-Iztacala, U.N.A.M.; rodolf@servi- dor.unam.mx 2. Laboratorio de Neuromorfología, U.I.I.C.S.E., F.E.S.-Iztacala, U.N.A.M. 3. Laboratorio de Microscopia Confocal, Facultad de Ciencias, U.N.A.M. Received 11-VII-2007. Corrected 30-VI-2008. Accepted 31-VII-2008. Abstract: the structural and ultrastructural features of gonads from endemic Mexican fish have received scarce attention. This study describes the histological and ultrastructural characteristics of the oocyte in Chirostoma humboldtianum. The ovary is asynchronic, and as such, most phases of oocyte development are found in the same ovary. The complete process of oogenesis was divided in five stages: oogonium and folliculogenesis, pri- mary growth, cortical alveoli and lipid inclusions, vitellogenesis and maturation. The presence of big filaments, which appear at the end of primary growth, induces some common follicular adaptation. During primary growth, abundant ribosomes, rough endoplasmic reticulum, and mitochondria are grouped in the cytoplasm. At the end of this stage, the Z1 layer of the chorion is developed, while microvilli start to be evident as well. In the corti- cal alveoli and lipid droplets phase, intense PAS positive vesicles, some of them containing nucleoid material, are observed in the peripheral cytoplasm and the lipid droplets take a more central position. In vitellogenesis, the proteic yolk accumulates in a centripetal way while the chorion is completely formed.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Molecular Identification of Fungi
    Molecular Identification of Fungi Youssuf Gherbawy l Kerstin Voigt Editors Molecular Identification of Fungi Editors Prof. Dr. Youssuf Gherbawy Dr. Kerstin Voigt South Valley University University of Jena Faculty of Science School of Biology and Pharmacy Department of Botany Institute of Microbiology 83523 Qena, Egypt Neugasse 25 [email protected] 07743 Jena, Germany [email protected] ISBN 978-3-642-05041-1 e-ISBN 978-3-642-05042-8 DOI 10.1007/978-3-642-05042-8 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009938949 # Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany, kindly supported by ‘leopardy.com’ Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to Prof. Lajos Ferenczy (1930–2004) microbiologist, mycologist and member of the Hungarian Academy of Sciences, one of the most outstanding Hungarian biologists of the twentieth century Preface Fungi comprise a vast variety of microorganisms and are numerically among the most abundant eukaryotes on Earth’s biosphere.
    [Show full text]
  • The Brook Silversides (Labidesthes Sicculus) , the Other on the Cisco {Leucichthys Artedi) These Have Been Selected As the First Studies Presented for Three Reasons
    THE UNIVERSITY OF ILLINOIS LIBRARY v. If CO "5 Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/ecologicalstudyo11cahn THE LIBRARY OF THE OCT 2 4 1927 UNIVERSITY OF ILLINOIS ILLINOIS BIOLOGICAL MONOGRAPHS Vol. XI January, 1927 No. 1 Editorial Committee Stephen Alfred Forbes Homer Le Roy Shantz Henry Baldwin Ward Published under the Auspices of the Graduate School by the University of Illinois Copyright, 1927, by the University of Illinois Distributed October 21, 1927 AN ECOLOGICAL STUDY OF SOUTHERN WISCONSIN FISHES The Brook Silversides (Labidestkes siccidus) and the Cisco (Leucichthys artedi) in Their Relations to the Region WITH 16 PLATES AND 27 TABLES BY ALVIN ROBERT CAHN Contributions from the Zoological Laboratory of the University of Illinois under the direction of Henry B. Ward No. 297 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY IN THE GRADUATE SCHOOL OF THE UNIVERSITY OF ILLINOIS 1924 CoT TABLE OF CONTENTS Page General Ecological Considerations 7 Introduction 7 The region under discussion 9 Climatology 18 Lake Conditions 19 Ecological Habitats of Fishes 22 Rivers and Streams 22 Lakes 22 Fishes of Southern Wisconsin (Waukesha County) 25 Order Rhomboganoidea 25 Family Lepisosteidae 25 Order Cycloganoidea 25 Family Amiidae 25 Order Isospondyli 26 Family Salmonidae 26 Order Apodes 30 Family Anguillidae 30 Order Eventognathi 30 Family Catostomidae 30 Family Cyprinidae 33 Order Nematognathi
    [Show full text]
  • Redalyc.BIOENCAPSULATION of Bifidobacterium Animalis AND
    Revista Mexicana de Ingeniería Química ISSN: 1665-2738 [email protected] Universidad Autónoma Metropolitana Unidad Iztapalapa México Vázquez-Silva, G.; Castro-Mejía J, J.; Sánchez de la Concha, B.; González-Vázquez, R.; Mayorga-Reyes, L.; Azaola-Espinosa, A. BIOENCAPSULATION OF Bifidobacterium animalis AND Lactobacillus johnsonii IN Artemia franciscana AS FEED FOR CHARAL (Chirostoma jordani) LARVAE Revista Mexicana de Ingeniería Química, vol. 15, núm. 3, 2016, pp. 809-818 Universidad Autónoma Metropolitana Unidad Iztapalapa Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=62048168012 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Vol. 15, No. 3 (2016) 809-818 Revista Mexicana de Ingeniería Química Ingeniería de alimentos BIOENCAPSULATION OF BifidobacteriumCONTENIDO animalis AND Lactobacillus johnsonii IN Artemia franciscana AS FEED FOR CHARAL (Chirostoma jordani) LARVAE Volumen 8, número 3, 2009 / Volume 8, number 3, 2009 BIOENCAPSULACI ON´ DE Bifidobacterium animalis Y Lactobacillus johnsonii EN Artemia franciscana COMO ALIMENTO DE LARVAS DE CHARAL (Chirostoma jordani) G. Vazquez-Silva´ 2131, Derivation J. Castro-Mej and application´ıa J1, B. of Sanchez´ the Stefan-Maxwell de la Concha equations2, R. Gonzalez-V´ azquez´ 2, L. Mayorga-Reyes2, A. Azaola-Espinosa2* 1Departamento
    [Show full text]
  • Multi-Locus Fossil-Calibrated Phylogeny of Atheriniformes (Teleostei, Ovalentaria)
    Molecular Phylogenetics and Evolution 86 (2015) 8–23 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multi-locus fossil-calibrated phylogeny of Atheriniformes (Teleostei, Ovalentaria) Daniela Campanella a, Lily C. Hughes a, Peter J. Unmack b, Devin D. Bloom c, Kyle R. Piller d, ⇑ Guillermo Ortí a, a Department of Biological Sciences, The George Washington University, Washington, DC, USA b Institute for Applied Ecology, University of Canberra, Australia c Department of Biology, Willamette University, Salem, OR, USA d Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA article info abstract Article history: Phylogenetic relationships among families within the order Atheriniformes have been difficult to resolve Received 29 December 2014 on the basis of morphological evidence. Molecular studies so far have been fragmentary and based on a Revised 21 February 2015 small number taxa and loci. In this study, we provide a new phylogenetic hypothesis based on sequence Accepted 2 March 2015 data collected for eight molecular markers for a representative sample of 103 atheriniform species, cover- Available online 10 March 2015 ing 2/3 of the genera in this order. The phylogeny is calibrated with six carefully chosen fossil taxa to pro- vide an explicit timeframe for the diversification of this group. Our results support the subdivision of Keywords: Atheriniformes into two suborders (Atherinopsoidei and Atherinoidei), the nesting of Notocheirinae Silverside fishes within Atherinopsidae, and the monophyly of tribe Menidiini, among others. We propose taxonomic Marine to freshwater transitions Marine dispersal changes for Atherinopsoidei, but a few weakly supported nodes in our phylogeny suggests that further Molecular markers study is necessary to support a revised taxonomy of Atherinoidei.
    [Show full text]
  • The Taxonomy and Biology of Phytophthora and Pythium
    Journal of Bacteriology & Mycology: Open Access Review Article Open Access The taxonomy and biology of Phytophthora and Pythium Abstract Volume 6 Issue 1 - 2018 The genera Phytophthora and Pythium include many economically important species Hon H Ho which have been placed in Kingdom Chromista or Kingdom Straminipila, distinct from Department of Biology, State University of New York, USA Kingdom Fungi. Their taxonomic problems, basic biology and economic importance have been reviewed. Morphologically, both genera are very similar in having coenocytic, hyaline Correspondence: Hon H Ho, Professor of Biology, State and freely branching mycelia, oogonia with usually single oospores but the definitive University of New York, New Paltz, NY 12561, USA, differentiation between them lies in the mode of zoospore differentiation and discharge. Email [email protected] In Phytophthora, the zoospores are differentiated within the sporangium proper and when mature, released in an evanescent vesicle at the sporangial apex, whereas in Pythium, the Received: January 23, 2018 | Published: February 12, 2018 protoplast of a sporangium is transferred usually through an exit tube to a thin vesicle outside the sporangium where zoospores are differentiated and released upon the rupture of the vesicle. Many species of Phytophthora are destructive pathogens of especially dicotyledonous woody trees, shrubs and herbaceous plants whereas Pythium species attacked primarily monocotyledonous herbaceous plants, whereas some cause diseases in fishes, red algae and mammals including humans. However, several mycoparasitic and entomopathogenic species of Pythium have been utilized respectively, to successfully control other plant pathogenic fungi and harmful insects including mosquitoes while the others utilized to produce valuable chemicals for pharmacy and food industry.
    [Show full text]
  • The Classification of Lower Organisms
    The Classification of Lower Organisms Ernst Hkinrich Haickei, in 1874 From Rolschc (1906). By permission of Macrae Smith Company. C f3 The Classification of LOWER ORGANISMS By HERBERT FAULKNER COPELAND \ PACIFIC ^.,^,kfi^..^ BOOKS PALO ALTO, CALIFORNIA Copyright 1956 by Herbert F. Copeland Library of Congress Catalog Card Number 56-7944 Published by PACIFIC BOOKS Palo Alto, California Printed and bound in the United States of America CONTENTS Chapter Page I. Introduction 1 II. An Essay on Nomenclature 6 III. Kingdom Mychota 12 Phylum Archezoa 17 Class 1. Schizophyta 18 Order 1. Schizosporea 18 Order 2. Actinomycetalea 24 Order 3. Caulobacterialea 25 Class 2. Myxoschizomycetes 27 Order 1. Myxobactralea 27 Order 2. Spirochaetalea 28 Class 3. Archiplastidea 29 Order 1. Rhodobacteria 31 Order 2. Sphaerotilalea 33 Order 3. Coccogonea 33 Order 4. Gloiophycea 33 IV. Kingdom Protoctista 37 V. Phylum Rhodophyta 40 Class 1. Bangialea 41 Order Bangiacea 41 Class 2. Heterocarpea 44 Order 1. Cryptospermea 47 Order 2. Sphaerococcoidea 47 Order 3. Gelidialea 49 Order 4. Furccllariea 50 Order 5. Coeloblastea 51 Order 6. Floridea 51 VI. Phylum Phaeophyta 53 Class 1. Heterokonta 55 Order 1. Ochromonadalea 57 Order 2. Silicoflagellata 61 Order 3. Vaucheriacea 63 Order 4. Choanoflagellata 67 Order 5. Hyphochytrialea 69 Class 2. Bacillariacea 69 Order 1. Disciformia 73 Order 2. Diatomea 74 Class 3. Oomycetes 76 Order 1. Saprolegnina 77 Order 2. Peronosporina 80 Order 3. Lagenidialea 81 Class 4. Melanophycea 82 Order 1 . Phaeozoosporea 86 Order 2. Sphacelarialea 86 Order 3. Dictyotea 86 Order 4. Sporochnoidea 87 V ly Chapter Page Orders. Cutlerialea 88 Order 6.
    [Show full text]
  • Reproductive Biology of Menidia Jordani (Atheriniformes: Atherinopsidae) in Xochimilco Lake, Mexico
    Reproductive biology of Menidia jordani (Atheriniformes: Atherinopsidae) in Xochimilco Lake, Mexico Yolanda Mónica Olvera-Blanco,* José Luis Gómez-Márquez,** Bertha Peña-Mendoza,** Ma. Teresa Gaspar-Dillanes*** and Carlos Pérez*** The reproductive biology of Menidia jordani (Woolman, 1894), a native fish of Mexico and one of the most important commercial fish species in Central Mexico for centuries, was analyzed. A monthly sampling bet- ween April 1995 and March 1996 was carried out. Sex ratio was 1.5:1 (female:male), determined by simple observation. Females were larger than males, the largest sizes being 7.2 cm for females and 6.3 cm for males. Standard length at first maturity was 4.8 cm for females and 5.5 cm for males. Monthly variations in gonadosomatic index (GSI), hepatosomatic index (HIS) and ovarian development stages showed that the spawning season occurred mainly from January to May. Best correlation values were between fecundity and length (r = 0.7383; p = 0.0003), compared to those found between fecundity and weight (r = 0.6132; p = 0.002). Fecundity ranged from 143 to 952 eggs per female; mean fecundity was 324 eggs. Key words: Mesa silverside, gonadosomatic index, gonadic maturity, sex ratio. Biología reproductiva de Menidia jordani (Atheriniformes: Atherinopsidae) en el Lago de Xochimilco, México Se analizó la biología reproductiva de Menidia jordani (Woolman, 1894), pez nativo de México, que por varios siglos ha sido una de las especies de peces comercialmente más importantes en el centro de México. Los muestreos se realizaron mensualmente de abril 1995 a marzo 1996. El sexo de los peces fue determi- nado macroscópicamente y la proporción de machos fue significativamente más baja que la de hembras, 1.5:1 (hembra:macho).
    [Show full text]
  • Connecticut Aquatic Nuisance Species Management Plan
    CONNECTICUT AQUATIC NUISANCE SPECIES MANAGEMENT PLAN Connecticut Aquatic Nuisance Species Working Group TABLE OF CONTENTS Table of Contents 3 Acknowledgements 5 Executive Summary 6 1. INTRODUCTION 10 1.1. Scope of the ANS Problem in Connecticut 10 1.2. Relationship with other ANS Plans 10 1.3. The Development of the CT ANS Plan (Process and Participants) 11 1.3.1. The CT ANS Sub-Committees 11 1.3.2. Scientific Review Process 12 1.3.3. Public Review Process 12 1.3.4. Agency Review Process 12 2. PROBLEM DEFINITION AND RANKING 13 2.1. History and Biogeography of ANS in CT 13 2.2. Current and Potential Impacts of ANS in CT 15 2.2.1. Economic Impacts 16 2.2.2. Biodiversity and Ecosystem Impacts 19 2.3. Priority Aquatic Nuisance Species 19 2.3.1. Established ANS Priority Species or Species Groups 21 2.3.2. Potentially Threatening ANS Priority Species or Species Groups 23 2.4. Priority Vectors 23 2.5. Priorities for Action 23 3. EXISTING AUTHORITIES AND PROGRAMS 30 3.1. International Authorities and Programs 30 3.2. Federal Authorities and Programs 31 3.3. Regional Authorities and Programs 37 3.4. State Authorities and Programs 39 3.5. Local Authorities and Programs 45 4. GOALS 47 3 5. OBJECTIVES, STRATEGIES, AND ACTIONS 48 6. IMPLEMENTATION TABLE 72 7. PROGRAM MONITORING AND EVALUATION 80 Glossary* 81 Appendix A. Listings of Known Non-Native ANS and Potential ANS in Connecticut 83 Appendix B. Descriptions of Species Identified as ANS or Potential ANS 93 Appendix C.
    [Show full text]
  • Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Parasitology, Harold W. Manter Laboratory of Laboratory of Parasitology 3-2002 Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected] Louis H. Evans Curtin University of Technology Frances J. Stephens Curtin University of Technology Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Aquaculture and Fisheries Commons, and the Parasitology Commons Edgerton, Brett .;F Evans, Louis H.; Stephens, Frances J.; and Overstreet, Robin M., "Synopsis of Freshwater Crayfish Diseases and Commensal Organisms" (2002). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 884. https://digitalcommons.unl.edu/parasitologyfacpubs/884 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Aquaculture 206:1–2 (March 2002), pp. 57–135; doi: 10.1016/S0044-8486(01)00865-1 Copyright © 2002 Elsevier Science. Creative Commons Attribution Non-Commercial No Deriva- tives License. Accepted October 18, 2001; published online November 30, 2001. Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett F. Edgerton,1 Louis H. Evans,2 Frances J. Stephens,2 and Robin M. Overstreet3 1. Department of Microbiology and Immunology, James Cook University, Townsville, QLD 4810, Australia 2.
    [Show full text]