EVALUATION OF AQUIFER PERFORMANCE AND WATER SUPPLY CAPABILITIES OF THE WASHITA RIVER ALLUVIUM IN .

FINAL REPORT Submitted to

THE OKLAHOMA WATER RESOURCES BOARD

By Douglas C. Kent Principal In~estigator

AND Ronald J. Neafus, James W. Patterson, Jr. and Mark R. Schipper

Dept. of Geology Oklahoma State University

June. 1984 EUALUATION OF AQUIFER PERFORMANCE AND WATER SUPPLY CAPABILITIES OF THE WASHITA RIVER ALLWIl.t1 IN OKLAHlJ1A.

FINAL REPORT Submi tted To THE OKLAHlJ1A WATER RESOURCES BOARD

By Douglas C. Kent Pr inc ipal Invest i gator And Ronald J. Neafus, James W. Patterson, Jr. and Mark k. Schipper

Department of Geology Oklahoma State Univ.rsity

• June, 1984

Contents of this report are for administrative purposes and may not be published or reproduced in any form without prior consent of the cooperators involved. PERSONNEL INVOLVED OKLAHOMA STATE UNIVERSITY

Douglas C. Kent Professor of Geology and Principal Investigator Fred E. Witz and Lorraine LeMaster Computer Specialists Peter Bayhy Ronald J. Neafus, Graduate Research James W. Patterson, Jr. Assistants Mark R. Schipper

James W. Patterson, Jr. Associate Editor

OKLAHOMA WATER RESOURCES BOARD

James R. Barnett Executive Director Michael R. Melton Assistant Director Duane Sm i th Chief - Ground-Water Division Rick Smith Chief - Plan".;ng Dannie E. Spiser Grou;.d-Water Geologist

ACKNOWLEDGEMENTS The cooperation and assistance of the personnel of the Oklahoma Water Resources Board is gratefully acknowledged. TABLE OF CONTENTS Page

INTRODUCTI lJ'j •• ••••••••••••••••••••••••••••••••••••••I ••••••••••••• I •• 3

GROUND-wATER MODELING •• ..... , . 10 S illu 1at i on Pl'ocedur•••••••••••••.•• ·...... 10 Ca 1i brat i on •••••.•...••.••.. I •••••••• · . 12 Simulation P.riod••••• ...... 12 Al1oc~tion •••••••••••• •I •••••• I ••••••••• ... 13

REACH I ..... ••••••••••••••••••••••••••••••••••••••••••••••••• I ••••••• 15 REACH 2...... 23 REACH 3...... 32

REACH 4 •••••••.•••••••••••••••••••• I •••••••• I ••• I•••••••••••••••••••• 39

RESULTS ••••••••• •I ••••••••••••••••••••••••••••••••••••••••••••••••••• 45

CONCLUSIONS •..••...... 46

REFERENCES CITED •.••.••••...•••••••••••• •••••• I •••••••••••••••••••••• 48 APPENDIX COMPUTER SIMULATION RESULTS APPENDIX A RESULTS FOR MODELLED REACH I...... A-I APPENDIX B RESULTS FOR MODELLED REACH 3.. · . 8-1 APPENDIX C- RESULTS FOR MODELLED REACH 4•.••••••••...••..••....•..•. C-l E~cl-Ilile: Evaluation of Aquifer Performance and Water Supply Capab,-

I ities of the Washita River Alluvial Aquifer in Oklahoma.

EclA~P4l-Ln~esiLQaioc: Douglas C. Kent, Professor, Department of

Geology, Oklahoma State University.

Institution Ellnde.d: Oklahoma State University

Summac)': The objective of this research I•• as tD determine the maximum annual yield of fresh water that can be produced from the Washita River alluvial aquifer in Roger Mills, Custer, Washita, Kiowa, Caddo, GradY,

McClain, Garvin, Murray, Carter, and Johnston Counties, Oklahoma. The determination of maximum annual yield was based on criteria establ ished by

Oklahoma ground-water law (S2 Oklahoma Statutes Supp. 1973, Paragraph

1020.1 et seq) using computer simulation of all prior appropriative and subsequent allocated pumping over the entire aquifer area for twenty years

(July 1, 1973 to July 1, 1993).

The total alluvial aquifer area was subdivided into four subareas:

Reach 1, Reach 2, Reach 3, and Reach 4. The combined maximum annual Yield is 2,IS6,600 acre-feet.

The Oklahoma Water Resources Soard has elected to use a separate allocation proportioned for each alluvial reach as follows:

Reach 1 (State Line to Clinton, OK, Roger Mills and Custer Co.) 2.0 Ac-ft/ac/yr.

Reach 2 ICI inton to eastern edge of Washita County; Note: The eastern portion of Reach 2 ISubreach B) is subject to the allocations specified for the Rush Springs sandstone aquifer. 1.5 Ac-ft/ac/yr.

Reach 3 (Anadarko, DK to Alex, OK; Caddo and GradY Counties) 1.5 Ac-ftlac/yr.

Reach 4 Alex, OK to Lake ; Grady, McClain, Garvin, Murray Carter and Johnston Counties) 1.0 Ac-ft/ac/yr. The above allocations are based on the following parameters: (1) the total area overlying the l,Jashita River alluvial aquifer IS 296,000 acres.

Areas for Reaches I through 4 are: 60,000 ac, 4,000 ac, 70,500 ac, and

161,500 ac respectivel;;, (2) the amount ,~f ground-INater in storage In the

Washita River drainage basin as of July 1, 1973 is 4,700,000 acre-feet.

Storage volumes for Reaches 1 through 4 are: 1,928,000 Af, 57,000 Af,

1,000,000 Af and 1,717,000 Af, respectively, (3) the potential amount of

INater In storage plus return flow over the twent;;-year life of the basin IS

7,341,700 acre-feet. Storage volumes for Reaches 1 through 4 are:

2,600,000 Af, 80,700 Af, 1,423,700 Af, and 3,237,300 Af, (4) the estimated average rate of net recharge from the rainfall is 3.22 inches per year and for each reach the recharge is 3.17 in., 2.65 in., 2.65 in., and 4.41 In., respectively. The assumed irri9atlon return, flow rate for all reaches IS 15 percent, (5) thl? al}eral;le initial transmissivity is 33,700 gallons per da;; per foot and for each reach, the transm i ss i v i ties for each reach are

23,500 9Pd/ft, 12,800 gpd/ft, 16,400 gpd/ft, and 43,100 gpd/ft, respecti',e- ly, and (6) the average specific ;ield of the alluvium is 24.0% and for each re,ch, the specific ;ield is 26.3%,20.4;\,20.4% and 29.2:\, re,nocti"el;,

Ground-water pollution induced b;; ground-IA'ater ",i tndra',;al IS negligible due to a non-significant contribution throu9h upward leaKage b; the under- lying bedrocK and because the Washita River should remain as a 9aining stream after twenty tears of pumping.

2 INTROOUCTION

This is a final report to the Oklahoma Water Resources Board in

fulfillment of Contract No. OWRB 300080 through Oklahoma State University , and the Department of Geology. A hydrogeologic study of the Washita River aquifer was performed using

a mathematical model to determine an annual allocation rate and maximum

annual yield. The establishment of ground-water rights using a model is described in an ASCS symposium proceedings by J. W. Naney and D. C. Kent,

(1980). Similar studies have been prepared for the Tillman Terrace Deposits in Tillman County (D. C. Kent and J. W. Naney, 1978), the North Fork of the Red

River alluvial and terrace deposits in Beckham, Greer, Kiowa, and Jackson Counties (D. C. Kent, 1982), the Enid isolated terrace deposits in Garfield County (D. C. Kent. Y. J. Beausoleil and F. E. Witz, 1982), and of the Elk City AqUifer in Washita, Beckham, Custer and Roger Mills Counties (D. C. Kent, T. Lyons and F. E. Witz, 1982). The Washita River drainage basin contains 7,790 square miles of which 7,310 square miles are in Oklahoma and the remainder are in the Panhandle (Figure 1). The basin area within the confines of Oklahoma was divided into four reaches as shown in Figure 2: Reach 1, from the western edge of Roger Mills county to Clinton (Schipper, 1983); Reach 2, from Clinton to Anadarko; Reach 3, from Anadarko to Alex (Neafus, 1984); and Reach 4, extending from Alex to exclUding the alluvium within the (Patterson, 1984).

3 :T~::"""_.~'L.:..Jh~'!.J'--!'l)--{. ' r- , : __J[!..,~A...!.!-,SL~A-!S~,------r-----:rl---T---f--1~ a I '. " ~ ~ ! '~"" 1 -) ~ : I 1\ I I l-J ;II ~ .:!~ri-- '. ~ L.•..._/ j..:.; •.•• ·,------JL-=--;;--=-....,..--=__-':'- ...... _. T-._. _. I r l f'(.' I J tEl AS! I······. r--'---- I I I ...... , i : -w.. ; : C.,,\

<:~/';.'.~ .".:. .. ',";';: ,".

, , , , ••• _- .... f'.••••••• ",,1 ~(

.--... Ow l,,:-"7 ' Ll-, .••. I. , ...I

Figure 1. Map Showing The Washita River Drainage Basin Within Oklahoma. •

COLO a IANSAS I "~ I ...~. If I •I VI •9 : (' 'r'-~~ I J I 0 :. : "I:I ,'-'/-' III :.... __ C.,. )" : I i I.. I I' I "'-----&-1 t' ~ 1 r-'·"'T·_··J ~"----'-"l------J;c./···l 1 (--.-., ------'--,;---;--;;--:--::-: __--'! i I ·1:~_.. J I I" :"---, 1 : T I I AS: I :- •••----: I I -, :I I I I I I II I 1• I t I "'1 '• .-'" II I 1 I I I ''''-"1 ''', I t I ,.__._,. _ , I I : •••••••••., .•.0.. I··...... I I I .. --·r-··---· ..-- .... -~r·----·rj--·--··r-- -r-' . i L._--- I '·'&"·",7.1 : ... ~ - ••ch 1 : I : .. \··-r---- ... -·~ 1L c a~ : • ) I: II I I r-- 0·- r-\...··..--'-", II I I I f ""-1 '':·_·1 I I I I I "1 ' ...... __ i . r~·-·I1···~···-T--·-·---·: r-··----L, r-L.---., r--·"·LL _..."';-.C a II I. I •.•.. I ~- "-'-.--I '.11 • I ,; .••. . -.-"-'.....""'"-'lj,. I t ~ I ~.,. J • IS' >- , I I I • ...... I.., • .'.I ·._w..... t------_·.. .. ,I IL , _.11 J:- •, I ", I I I I. I ,_ " • • ... II t J , ••~ ".j ~ , ... ----~-•...... f-,....-t I ~"... I:" : '. J-••..••• ~ 1 I.. I I I ( r·. I • T· -l I II : : : i' ··"f'·i. j·..··Jl: I r J ... \ J" -t' I 1 I 7 I : L._ L .. t--·.1 ";'> I ,.1 ....., 1 I : ,J.\...: • : " , I ...1 .. ~.... i" .-_.:I r:.Jf r.'··----t ; : ,-r··" ~·r····' l I '. [, : : ,.I I• ,.l ... _. __ ,..J..•·--····1 , I .• I .....

Figure 2. Reach Division Of The Washita River Drainage Basin. The primary objective of the study was to determine the maximum annual yield and thus, the maximum allocation of fresh water in acre-feet per acre per year that could be produced from the Washita River alluvium. Under

Oklahoma Statute No. 82 S 1020.4 and 82 S 1020.5, the Oklahoma Water

Resources Board is-responsible for completing hydrologic surveys of each fresh ground-water basin or sub-basin within the state of Oklahoma and for determining a maximum annual safe yield which will provide a 20-year minimum I ife for each basin.

Oklahoma Statute No. 82 S 1020.5 states the following:

After making the hydrologic suruey, the Board shall make a determination of maximum annual yield of fresh water to be produced from each ground-water basin or sub-basin. Such determination must be based on the following:

1. The total land area overlying the basin or sub-basin;

2. The amount of water in storage in the basin or SUb-basin;

3. The rate of natural recharge to the basin or sub-basin and total discharage from the basin or SUb-basin;

4. Transmissivity of the basin or sub-basin; and

5. The possibi Ii ty of pollut ion of the basin or sub-basin from natural sources.

The maximum annual yield of each fresh ground­ water basin or sub-basin shall be based upon a minimum basin or sub-basin I ife of twenty (20) years from the effective date of this act. An annual allocation in terms of acre-feet per acre per year is to be determined based on the maximum annual yield and used as a basis for issuing permits to owners whose land is located within the aquifer area (Oklahoma Water Resources Board Rules and Regulations, 665.2).

The annual allocation in terms of acre-feet per acre per year is that which can be produced by the aquifer to cause one-half of the area of the

aquifer to be depleted of water (to a saturated thickness of 5.5 feet or

6 less) over a 20-year pumping period starting July 1, 1973 and ending on

July 1, 1993.

The Washita River alluvial aquifer is an unconfined or water table

aquifer. Permian aged bedrock underlies most of the aquifer except in the

• southern most portion of Reach 4 where the bedrock ranges from Precambrian to Cretaceous in age as shown in Figure 3. The bedrock underlying the

alluvial aquifer serves as an aquitard and a lower boundary of the aquifer. The average depth to water is 22 feet and the average saturated thickness

is 61 feet but can be as much as 189 feet. The sediments grade from coarse sands and the gravels at the base to finer sands and silts near the surface. The average permeabil ity and transmissity are 770 gpdlft**2 and 33,700 gpdlft, respectively.

The Washita River is a gaining stream which is sustained by base flow

from the aquifer during the drier months. The loss from the aquifer is

replaced by a net recharge of approximately 3.72 in/yr, or approximately

11.5 percent of a mean precipitation of 32.2 in/yr. The average evapo­

transpiration is 28.6 in/yr. This information is summarized in Table 1. A computer model was used to simulate the response of the aquifer to pumping stress over a 20-year period in the Washita River alluvium. The

model used was the Trescott, Pinder, and Larson (1976) t"~-dimensional finite difference model with options for artesian, water table, and combined aquifers. The water table version was used.

7 81,•• IZ] 8",1,

Alluvium • ,.,... 'u,call ! . ~:.: t.-,~r:::I.ed • I' '."datona ![0 ITI III & •0 i Fel,mont [ill Shal. ..·0 Garb" Anti••• '.nd r:I I.ndalo". l[ mJ W...."a'on ~ Formation

Cloud Chla' , 0. FormaUon lIuah 'prlngl ~ Oaea, Oroup f1J.. FormaUon i 0 R••Ch~- ...rlow i- D•••• Oroup 0 fI] I • ~ Formation .-' -..J.~ • . ~ • Darnlck Hilla L. " 0 ..• r- I r Dog Cr••k" .. Group I 0 Fo~::~'Ton 0 ," ,.L" - -. ) ,',1,', Chich'" ~ ""I Formation N Duncan Goddard Ih,l. Dala.I'. C•••k I E2l ""datona f[.. Ihal.

Figure 3. Geologic Map Showing The Formations That Underlie The Washita River Alluvial Aquifer. •

TABLE 1

Summary Parameters Used To Determine Allocations By Reach

Average Average Percent Depth Average Average Average Annual of Total Average To Saturated Perme- Transmissi- Precipi- Net Precipi- Annual Water Thickness abilitY2 vity tation Recharge tation E.T (ft) (ft) (gpd/ft ) (gpd/ft) (in/yr) (in/yr) (7.) (in/yr) 1973 1993 1973 1993 1973 1993

Reach 1 Schipper 17 115 118 13 260 23,550 2,900 24.9 3.2 12.7 21. 7

Reach 2 A 17* 52 250 12,850 28.9* 2.9 * 10.4* 26.1*

(not B 53 280 14,900 '" modeled)

Reach 3 Neafus 17 69 67 6 260 16,400 1,400 33.0 2.] 8.0 30.4

Reach 4 Patterson 26 55 38 8 1,180 43,100 11,700 34.9 4.4 12.6 30.5

Total Combined Reaches (weighted average) 22.0 71 61 8.4 770 33,700 7,400 32.2 3.7 11.5 28.6

*averaged using Reaches 1 and 3. GROLt4D-wATER MODELING

Slmulalioa. procedure

Initial ground-water levels, pumping rate, and transmissivity are primary variabales used in the model of the aquifer. Quantitative values must be assigned to the hydrogeologic parameters of the aquifer in order to model the aquifer within the accuracy of the data used. The quantitative values are either assigned directly by the hydrogeologist or generated by the computer model. A value for each hydrogeologic parameter is assigned to every eighth quarter mile section (node) in the aquifer. The model output consists of a mass balance and estimated volume of ground water in storage, as well as maps of predicted ground-water table elevations and saturated thicknesses at 5-year intervals throughout the 20-year minimum basin life as shown in the Appendix by river reach.

The model ing program used in this investigation was originally written by Pinder (1970) and revised by Trescott, Pinder, and Larson (1976). The finite difference model simulates ground-water flow in two dimensions for an artesian aqUifer, a water table aqUifer, or a combination of the two.

Some of the data management procedures in the model were modified for this OWRB project. The approach used to process the data for model simulation is shown by the flow diagram in Figure 4. The Input data were divided into matrix and constant parameters (Figure 4). The matrix parameters include: water-table elevations; land, top, and bedrock eleva­ tions; river bed thickness and hydraul ic conductiVity; and well pumping rate and recharge rate. The matrix parameters were mapped, contoured, and digitized for the study area. A grid spacing of one-half mile was used to represent quarter sections to establish a matrix; however, a grid of

10 RAW DATA DATA PROCESSING COMPUTER II\PUT COMPUTER Slf>otJLATION AND DATA OUTPUT

I. RECHARGE RATES 2EI.IIPOTRAN­ I.AQUlFER -SO::WAffi1 SPlRATION 2.WATER TABLE RATES MAP CALIBRATION ADJUSTMENT I. PATTERN RECHARGE 3. BED ROCK CON- DIGITIZING CALIBRATION I=!-f'l- TOUR ~LEI#\TIONS ==: -===:::!-- 2.DISCHARGE C="-_-' 4.COEFFlCIENT OF a.CONSTANT GRAD

Figure 4. Flow Diagram of Data Processing for Model Simulation. one-quarter mile spacing was used for Reach 1. The storage coefficient of the river bed is a constant parameter.

Basic contoured data which was to be entered as a matrix was gridded and digitized for input into the computer model. A grid, drawn at the same scale as the topographic maps for the area, was overlain onto each contour map. Values were assigned to each node of the grid by a perimeter-. averaging technique developed by Griffen (1949). Griffen's method involves averaging the values at the corners and center of each node to obtain an average value for that node.

Calibration

The Washita River Alluvium Aquifer is considered to be a quasi­ homogeneous aquifer occurring in a recharge-discharge equilibrium. The main objective in cal ibration of the model, was to maintain this recharge­ discharge equil ibrium. Equil ibrium is establ ished when the mass balance shows the inflow; and outflow as being equal and i> indicated by negligible fluctuations in the water-table elevations.

To cal ibrate the mod. I , a river program option was used to simulate ground-water discharge into the str.ams which are present in the area.

This river option was used in conjunction with net recharge and constant gradient discharge node values.

Simulation Period

The model was used to simulate pumping and corresponding water-level

changes over a one-year and a 20-year period. The one-Year simulation run was used to cal ibrate the model. Twenty-year simulation runs were

initiated for July 1, 1973 to July 1, 1993. The longer simulation period

is based on Oklahoma Water Law Statute 82, Paragraphs 1020.4 and 1020.5

which requires that new annual pumping allocations be assigned based on a

12 minimum aquifer I ife of 20 Years. The 20-year simulation included two simulation runs: (1) prior appropriative rate only; and (2) prior appropriative rate with allocation pumping.

Allocati OQ

The final 20-year computer simulation was conducted for the 1973 to 1993 period for each subbasin using pumping rates of prior appropriative right owners. This simulation was repeated with allocation pumping in conjunction with prior appropriative pumping. Maxiquq annual yield was determined by adjusting the amount of allocated puqpage that would cause 50 percent of the nodes to go dry by the end of the simulation period (20 years). The maximuq annual yield and allocated pumpage was optimized by repeating 20-year simulation in order to obtain the required 50 percent dry area. A saturated thickness of five feet was considered dry due to size limitations of screen length and size of a submersible pump which would be set at the bottom of a fully penetrating well capable of pumping the annual allocation rate. Each node was pumped continuously for a four-month period during the summer of each year at three times the annual allocation rate. This schedule was continued throughout the 20-year period unless the node became dry prior to that time. It is assumed in the model that everyone pumps the same average maximum legal limit. This rate corresponds to an instantaneous pumping rate continuously pumped for the four-month period between June 1 and September 30 of each year. Under these conditions, various parts of the area go dry at different times; this is due to the nonhomogeneous nature of the alluvium (variable transmissivity and corresponding specific yield). The 50 percent dry criteria was used to accommodate this variability. The wells are turned off in the model when

13 the five-foot saturated thicKness is reached; and will turn on periodically to remove accumulation due to recharge. A series of 20-year simulation runs are made in order to select the pumping rate which will cause 50 percent of the total area to become less than or equal to 5.5 feet of saturated thicKness ('dry') at the end of 20 years.The maximum annual yield

is the resulting amount of water recovered over the 20-year period during which wells are being turned off and on as the aquifer is depleted and recharged. Because of these factors, the maximum annual yield does not simply equal the product of allocation rate times the area.

The computer simulation results are summarized in a ground-water budget for each model reach. Simulated changes in saturated thicKness and of areas that become 'dry' (i 5.5 feet) for 1973, 1983, and 1993 are shown as saturated thicKness maps in the appendix.

A 20-Year ground-water budget is computed for the final computer allocation run of each model reach and is shown in the Appendix. Other

computer simulation results for the same period include transmissivity, water-table elevations and water depth (see Appendix).

14 REACH 1

Reach 1, located in Roger Mills and Custer counties, is described by

Schipper (1983) who divided the reach into three subreaches; Subreach A,

Subreach B, and Subreach C. The alluvial aquifer in Reach 1 is underlain by

Permian aged material; especially the Rush Springs and Cloud Chief Formations (see Figure 3).

The Rush Springs Sandstone is the oldest rock outcropping in R.ach 1. This Permian formation is primarily an orange-brown, fine-grained, calcite and gypsum cemented, quartzose sandstone; it outcrops on the northern side of the Washita River in Custer County. East of Reach 1, it is up to 430 feet thick, but averages approximately 200 feet thick in w.stern Custer County. In many places the sandston. is crossb.dded. The Rush Springs

contains some gypsum beds that are laterally continuous. One of these, the Weatherford bed, is a gypsum or dolomite and occurs near the top of the formation. It is up to eight feet thick and caps escarpments over much of Custer County (Fay, 1978).

East of Reach 1, wells in the Rush Springs yield 200 to 700 gpm of water with suitable qual ity for municipal and irrigation use. However, within Reach 1, yields may be less than 50 gpm. Smajl~r yields are mainly

due to a reduced saturated thickness. The decreas~ in yield is accompanied by a decrease in water quality. Water quality is poor due to the percolation of water through the soluble gypsum in the overlying Cloud Chief Formation and in the Rush Springs, which causes higher concentrations of calcium sulfate. Use of water from the Rush Springs in the southwestern corner of Custer County is limited because the water is highly mineral ized (Hart, 1978).

15 The Cloud Chief Formation outcrops both north and south of the river

in a wide band that parallels the river course within Reach 1. Through most of this length, the Washita River alluvium rests upon the Cloud Chief.

Approximately 80 feet of the Cloud Chief is exposed in the area.

The total thickness is about 190 feet (8owers, 1967). Orange-brown shale and siltstone with some orange-brown sandstone make up most of the formation. Dolomite and gypsum are also found in the Cloud Chief. Two members, the Day Creek bed and the Moccasin Creek bed, have been named.

They are in the lower half of the formation and are each about five feet

thick (Hart, 1978).

The Washita River alluvium within Reach 1 consists of discontinuous

layers of sand, silt, clay, and gravel derived from the Tertiary and

Permian bedrock through which the river cuts. Drillers' logs show that its

thickness is up to 223 feet northwest of Cheyenne in Roger Milis County.

Well yields are more than 100 gpm in several areas. Numerous irrigation wells are completed in the alluvium.

The river basin area in Roger Mills and Custer counties is approximately

1,600 square miles. The average depth to water is 17 feet and the average saturated thickness is 118 feet. Water table maps for subreaches A, 8, and

C are shown in Appendix A. The average permeability is 257 gpd.Jft**2

and the average transmissivity is 28,568 gpdlft. Average depth to water, saturated thickness, permeability, and transmissivity for 1973 and 1993 for

Reach 1 are summarized in Table 1. The water budget for Reach 1 is shown

in Figure 5. Saturated thickness and transmissivity maps are shown in

Appendix A for 1973 and 1993. Maps showing depth to water for 1973 and 1993

for Reach 1 are also shown in Appendix A. A relationship

between saturated thickness and the percent of aquifer area which is dry for

each subreach within Reach 1 is shown in Table 2.

16 20 YEAR GROUND WIlTE'" ~UP6Er A...... A,~tftGIi T'TAL AftEA ~"U.UPI"G PAKIIMETEICl ' ....M" fI'••M" I.."", I"n"... rEAn'''.IlUl'' SrcCtrlCY,fL' ISA'U""TfPlilt"'","., liNt'"ISSIWITI' A"rEt\ 5uIU"A~' WAnA LiiC ""PIr,'1 126.3 7;] IuLftl 1 28,568 ';'PffTo 1 L!!iL!60 k··A I NA 11",..1 (F'"." I'tn,,,,. ONLY) - ~sul1fI!Q!!l/ A"ffIN.. ~UCAn", ~"TW\H Flew EF,.cn~" ANNUAL R.....F....RAl£ Rt,cHA.."RATE (G".ss lift"'" Llnl') A...uUNlC. . Au..cAn... (<& ... 6".,,, rUntiMe) ('f; •• RA,.FA") I 2.18 Af/.q 1 .32 AF/A' I 1.86 AflAl 115 ~l 112.75 !l BUDGET GRI.. run,."" RlOTu" EFrEC'TlVG Ra:c.....l' fFFE.nve (II.., HE"") Fuw P'.. FACTI" RAIN..A"- f\e cHA''';;E r•• 20 Y'MS ',1lG Ut1..... i 388 072 IIf 1><. '" AI' 2,029.861 IIf 90.6 1 2,494,980 Al'1 I 317 634 Af. l AVER/IGEP 17 ,911 0.)0 '1 OF r, • ..IY,. 1 '" IH/M F.. 20 Y'AOS P.II"H" 119 ,4041~i:9 1~J;.493I,1. 69 IIFti-.. 11 IAI',y.. IIF/U ... Af/A 11 &mmAl r...... E:'fA'OTAAIlSn."TION 420 075 Ii ., n, IIF 357 06' IIf 15.9 1 2 177 346 IIA A"KI>l'RIAt.... 21.004 0.35 ~.297 I, H IN/v,1 r'",.. 6 3)151 ~~ 1;iJ.53 , " OF IIFIY.A IiIAt AF ..... AI'... Al'/A1I Bn,,'" litAIIS'....r EfAr",,'UIsnl\ArNlII 4.1 N",n.-'I1Y 11,928,366 NI A,••",rs: 1/ '- I 118 fT.1 128,568 GPPlF"r.1 . . • ~ 1 '00' ~]B ffi.",S"'•••• (1993 ) Fi.AL SATltIlAl'" IJD ( N."~ItIt,vc«"'lE I 210,818 ¥I rlllc,.:".n .'...... "'••"'ll' I¥ B...... r ,,,. F.. F,••, SOt \.lu) A"UAUS; k~~ h. 922 GPP7fjJ -1: 1, ll~ «II - , Figure 5. Ground-water Budget For Modeled Reach 1. TABLE 2

Saturated Thickness and the Respective Percent Dry Aquifer Area For

Modeled Reach 1

Saturated Thickness Percent Dry Aquifer Area

1973 1978 1983 1988 1993 1973 1978 1983 1988 1993

Subreach A 150 113 75 39 13 0 0.4 1.4 8.0 49.9

Subreach B 91 68 45. 27 14 0 a 9.3 31.4 48.6 CD

Subreach C 93 69 46 27 11 a a 14.8 23.6 50.0 The average recharge is approximatelY 3.17 in/yr which is 12.7 percent of the total average precipitation of 24.9 in/yr. The average evapotranspiration for Reach 1 is 21.7 in/yr. This data along with the preceeding data is summarized in the ground-water budget for Reach 1 in

Figure 5. Prior appropriative pumping rights and water distribution summaries are shown in Appendix A. An allocation rate of 2.18 acre-feet/acre/year was determined for Reach 1. Table 3 shows the method used to calculate this weighted allocation rate. The water quality in the Washita River alluvium is affected bY the composition of the underlying bedrock and the alluvium itself. If water from the bedrock is characteristically high in dissolved solids, and if the bedrock contributes appreciable water to the alluvium through upward leakage, then this should be reflected in the water quality of the alluvium. The Cloud Chief Formation underlies the alluvium for most of Reach 1 except for relatively short distances near Hammon and Clinton, where the alluvium rests on the Rush Springs. The Cloud Chief contains interbedded gypsum with two gypsum and dolomite members up to eight feet thick identified in the lower portion of the formation. The Rush Springs Formation also contains interbedded gypsum. The Weatherford gypsum and dolomite is up to eight feet thick (Fay, 1978) and occurs near the top of the Rush Springs. Quality of runoff, which may at times be added to the ground-water storage, can also influence the water qual ity in the alluvium. Two analyses of water from the Washita River alluvium were included in the Clinton Hydrologic Atlas (Carr, et al., 1976). They are presented in Figure 6. 80th wells are located in the vicinity of Cheyenne; drillers' logs do not indicate penetration of the redbed in either case. The well northwest of Cheyenne is 190 feet deep and produced water with total dissolved sol Ids of 3450 mg/l. The second well is east of Cheyenne and is 128 feet deep. Coarse

19 TABLE 3

WEIGHTED AVERAGE ALLOCATION FOR REACH 1 INCLUDING ALLOCATION BY MODELED SUBREACa

Area, Extended Allocation by Weighted Aru

Nlddlc ttoJeled 13,720 Ih'ach (II) 11,600 )),720 60,11'0 22.B x I. 75 0,00

I.owe rHode I ed 19,160 Head, (C) 8,6/,0 19,160 60,160 31.9 x I. 75

Total aquifer Net allocation for total ot;'ca (acres) 60,160 aquifer area 2.18 •

___Weighted Allocation

Upper Heach Middle Reach Lower Reach Total area, A. B, and C (A) (B) (C) including unmodeled areas l\\\llcatlnn .,,- It I udy r 2.70 1.75 1. 75 2,18 R23W R22W R21W

T14N

Il::l

T13N HC031611'~_"'=::::::::1::1e~:::~~::~::::= N 1501 Ca+ Mg ... 5°41481 - __

5 3P lp (} lp i !!!!!Iiiiil!!!!liiiiiiiil!!!!ii0iiiiiiiiiiiiiiiiiiiiii5 miles acale Mlllequivalent. Per liter .128 CHEMICAL ANALYSIS, WATER F.ROM ALLUVIUM sw nw ,ec.16 T13N R22W Sample Well locations ;"lit (Ie '.c. 20 T14N R24W Number indlcat•• well depth· "eplh-190 II. deplh - 12811. Ne+K . 207 115 WATER QUALITY DIAGRAMS Ce+M9 1900 2000 Number on top of diagram Indicates total CI 70 42 dillol.ed soilds In milligrams per iller HCO. 61 244 Numberln brackets Is a multiplying 'actor. SO. 2112 1872 Multiply It by mlllequl.olenta 10 gal milligrams per liter. dissol.ed solids 3450 2920 ROE el 180'C

Figure 6. Groun9-Wat~r Quality Analyses For Modeled Reach 1. sand and gravel were penetrated in the lower 52 feet. It reportedly

yielded 1000 gpm upon completion; total dissolved sol ids were 2920 mg/l,

Hardness (Ca + Hg) and sulfate (SO**4) are the main cause of the relatively

high values of dissolved solids. The hardness and svlfate are probably related to the gypsum (CaSO**4 2H**20) in the underlying Cloud Chief and

Rush Springs.

Analyses of 15 water samples from the Cloud Chief (Carr, et aI" 1976) showed an average dissolved solids of 2850 mg/l. Total hardness averaged 1700 mg/l and the average sulfate concentration was 1700 mg/l. Four water samples taken from the Rush Springs Formation in the Washita River basin above Clinton had an average total dissolved solids of 2428 mg/l with an average total hardness of 1488 mg/l and sulfate concentration of 1416 mg/l.

Further east in Caddo County, water quality in the Rush Springs is better and dissolved solids average 280 mg/l. The higher dissolved solids in

Reach I are probably due to solution of gypsum in the overlying Cloud

Chief, Downward percolation carries the dissolved minerals into the Rush Springs Formation, Gypsum contained in the Rush Springs may also contribute to the poor ground-water qual ity.

22 REACH 2

Reach 2 extends from Cl inton to Anadarko (Figure 2). The western one­ third of the reach is primarily in Washita County and is underlain by the

Cloud Chief Formation; whereas, the eastern two-thirds is primarily in

Caddo County and is underlain by the Rush Springs Formation as shown In

Figures 7 and 8, respectively. The average saturated thickness of the alluvium in Reach 2 is 53 feet and the average transmissivity is 13,900 gpd/ft (see Table 1). Maps showing water table elevations, saturated thickness, and transmissivity are illustrated in Figures 9-14, respectively. The transmissivity values are based on assigned permeability ranges of 10,60,350 and 700 gpd/ft2, respectively, using sample logs (see discussion of permeability ranges in Kent, et aI, 1973).

That portion of Reach 2 (subreach A, Washita County) underlain by the

Cloud Chief Formation (Figure 7) was not modeled because of lack of data and because it is hydrogeological ly simi Jar to Reach 3; thus, the allocation determined for Reach 3 (1.6 acre-feet/acre/year) was also used in Reach 2, subreach A. The remaining portion of Reach 2 (subreach S,

Caddo County), is similar to subreach A but is unoeria,n Oy the Rush

Springs formation (see Figure 8). Subreach S (Caddo County) was excluded from both model ing and allocation because of the large number of 'lie 1Is which are either totally completed in the underlying Rush Springs sandstone aquifer or are commingled with the alluvial aquifer. Therefore, Subreach S is only subject to the allocation specified for the Rush Springs sandstone aqUifer.

23 ." c I 1 I ~.~.:\~ d)~.·I~ '~ 0 j " • I) .. .JH ip0 ~l)~ ~ I Q" _1 I~ o 01 ! '- . 0 P, ~Q~ .~, e .- , ~, 0 I,;' • 0 1/ • , £"" ~G °o'l.Vf:~ " , '~,'r< ~~1fJ L ",oj -,...,:.j •", t 0 '1[. "'1: 0_- r7'1:!Itt; "r. .;Ii..., ~ , 17---' .. ~,,_0o!0"1 I ... ~ ,~ ' . ".. i--~ Pe e , ..- - ::>, , , '.1-' I \.,)_\ -e:::.' ..- i , 1 ,...:t:\;."ti:. " \ -.. :\ i , 1>., , "". I "" " ',\, 1 "" "-..,.... ' Pee-f-- ,\~.,\:'I;:/~ ....,.....-:(. ,- ..- I \i!i' ~ ;\ "f.}K1; I-- ! {.t!. t) i-- .... ! i - , i I( &,:- \\ 1 I , i ','; ... \' I I I. -I I , I I I p, Figure 7. Geologic Map

Reach 2 Subreach A o 2 4

Q a I Alluvium mil e s Qt Terrace Depollts

Pee Cloud Chle' Fm.

Pr Rush Springs Fm

Pm Marlow Fm.

Per EI Reno Group

Phy Hennessey Group

24 ~.. •.. Figure 8. GeologIc Map

Reach 2 Subreach B a.1 Alluvium o 2 4 at '.rr.e. D.po.lI.

Pee Cloud Chi.' Fm. mile s

Pr Ru.h Spring. Fm.

Pm U.rlow Fm.

P.r EI R.no Group

Phw H.nn •••• y Group 1-'''\ j t ..- I! I I

...

I .. ,I\I' ,~...... ,,~

! .... ! I I I I I t ~ ,) I TIL I I II I

Figure 9. Water Table Map,

Subreach A, Reach 2. o 2 4 ~ mil e s CI.=20ft. I

26 ••• •.. ...

Figure 10,. Water Table Map,

o 2 4 Subreach B, Reach 2. & mil e s C 1.= 20ft. . fl.1 ~> "" .. . !_- rR~ I· '1-- I{~I I ~. I ". I-+-+--+--+I---!"'''''Q'''';';''~::::'t~\-"-o -I-~ n. o I I

~ I· .II i ~I (I· . i ~ .\1. . I I~) ~. . I ••- ~\ III 1'/ 1 ..\1 II't."- .- r-+-+-~...... ~~~~...l-~+---:j.~M:.=r-17.-\--\--J..---+--I ... -1-- I-+-+-+-+-+- ? 14117/5 ••• ~1 ~. ! 1 1M -

I• ~ j 'I IIIIII

Figu.e 11. Saturated Thickness Map,

Subreach A, Reach 2. 2 4

mil e s

8 V g. ¥ a I u. I n f •• t/no. 0 t w. I 1. for a" g .

28 "",., I 'M • • ~~ ~ 1/, - J M'. , .... , .... -

--+-If-+-++-+-I-I--f-+-+--I--t- - -

.- r I,...-

'"

-L....!.-.L-.L-.l-yJ--l_~._l-....,.L---'--t---L-..L._ --'---J--t--1--I--f-t-t-t-IH-+-+-j--t--j--j--j­ •••• II• • I-I-If-I-I-f-I--t--+-t--+--t-+-+-~ -

•••• Mo• M ••

Figul.e 12. Saturated Thickness Map, 024 F Subreach B, Reach 2. m /Ie s • v II. v. I u. In' •• tin o. 0' w. II. '0' • v II •

p. - p " I 0' RI II h t • : A II u v I u m 0 n I r ,.... 1 I

~ .- :-+-~,;¢,+-,-+-+-+--I--lI" I '-1',1 I' I ... I-+-I.-+~ .... 2 2 9 2 I 6-+-~ i\.T~~,. I II

~~....!~. I ... I-+-+-+-.l---!,-<--:":::~':'--t--.:... I ''''-WI I 3807/5~ ~i I - I I.I ,; , \ _I· .II 11, i {i· . i

R.~I. . I\ '0.\ I ..- r\~ \\\ II I~

1- -.Iii'? 1 9 8. I \... ~-'I-:1-+-1 ! I .~ _ I\ !\::;'Y;; I'-- • I 1'11<:[\ "- Ii -\, I i ~ \ I IIIIIIII rl-:"",---+,-:-I~:7i-;-.:..,-+,-+-,+-,-+-,-+-,+,-+,-1

Figure 13. Transmissivity,

Subreach A, Reach 2. o 2 4

mil e s a y 9. y a I u. I n 9 p d I I t/no. 0 I w. I I. for a y 9 •

30 I 'M -=" Ll l~, - --f- 1 I------~1 ) "...... - V. I "" ' . rT' f.l / _ 2886/3_ \':) IJ.J .. - - ;; '" v -- - .- irJ" ri:.1' 181 - 2 7 .2 1 • ( I? is-- . . - - o P. rll=~ o : } . I..". v, ._.- ! ~ II' ') M ,,.... ~'" ~'1"6~ ~l ~ S I\~ I~~ 1 lJJ --....~-1\ ';:: ./ V'" ~ .1'\ I I ~ / oc f+ P ...... ' P.."'.. :J 8 8 5 1 1 1 ~ ~ 2 2 e 0 1'1 0- 1"-r- \. rz.:: ~ /1-( ... & J< I~ •• It' r I-- .,- tv ~t~r- 3822/7 -IF'~J: l~ 1,-.J1 '" - -v-t::: - 1-- 1- , . . . 0 I--' -- --~ .... II .... II - - - '-c I". ... .,.

Figure 14. Transmissivity, u 2 4 [ Subreach B, Reach 2. mil e s • v g. v • I u e I n II P d 1 I lin o. 0 I wei I I lor eVil •

P~ Prior Rlllhll:Alluvlum onl, REACH 3

Reach 3 includes the area betwe.n Anadarko and Al.x in Caddo and w.st.rn GradY counti.s. This reach has been ext.nsiv.ly studi.d by personn.l from the Agricultural R.s.arch S.rvic. in Chickasha and Durant,

Oklahoma and from the D.partm.nt of G.ology at the Oklahoma Stat. Univ.rsity in Stillwat.r, Oklahoma. An approach to hydrog.ologic inv.stigations within this r.ach is d.scrib.d in a journal article by D. C. Kent, J. W. Naney and B. B. Barnes (1973). Th. articl. includes maps, cross sections, a description of a hydrogeologic data storage and r.trieval sYstem and procedur.s for determining the hydraulic paramet.rs (permeabi-

1 ity storage coefficient). A M.S. thesis, which has been completed but not publ ished, includes information and results used for this report (s.e

R. Neafus, 19B4).

A detailed model study has been in progr.ss for several years by D. C. Kent and J. W. Naney. Some of the published results of computer simulation are shown in Figure 15 (see D. C. Kent, J. W. Naney and F. E. Witz, 1982). The alluvium in this area is underlain by the Marlow Formation, the

Dog Creek-Blaine Formation, and the Chickasha Formation (see Fig~"e 3). The bedrock formations in Reach 3 represent only the Permiafi System. The oldest formations are in the .ast.rn part of Reach 3 with the formations dipping 5 to 10 degrees to the west. The Chickasha Formation, which crops out in the .astern part of R.ach 3, is the oldest strata and is made up of a layered sequence of m.dium-dark red sandstone, shale, siltstone, and siltstone conglomerate with iron and calcite cement. The outcrops are pr.dominately channeled siltstones with cherty, pebble conglomerate occurring in the bottom of the channels. Overlying and outcropping to the west of the

32 INITIAL 5 YEARS CONDITION

EXPLANATION - MODEL BOUNDARY / o SATURATED THICKNESS >5.5 FEET SCALE WJ1 DRY (CRITICAL SATURATED 10 YEARS 10 THICKNESS) o MirES o 5 10 KILOMETERS

15 YEARS 20YEARS

Fi~yre 15. THE CRITICAL SATURATED THICKNESS FOR THE WASHITA RIVER ALLUVIUM BETWEEN ANADARKO AND ALEX, OKLAHOMA. (D. C. Kent, J. W. Naney. and F. E. Witz. 1982)

33 ChicKasha Formation is the Dog CreeK-Blaine Formation. This formation is mostly darK red, even bedded, dolomitic shale interbedded with thin gypsiferous sandstone. To the west and overlying the Dog CreeK-Blaine

Formation is the Harlow Formation. The Harlow Formation consists mainly of evenly bedded, red, sandy, dolomitic, gypsiferous shale. The Harlow crops out over most of the western half of Reach 3 with outcrops along the western half of the Washita River valley and along most of the length of the Sugar

CreeK tributary to the north.

The Washita River basin between AnadarKo and Alex contains approximately 109 square miles of alluvial deposits. The average depth to water is 17 feet, the average saturated thicKness is 67 feet, the average permeability is 258 gpdlft**2, and the average transmissivity is 16,440 gpd/ft (see Table I).

A generalized water table map for Reach 3 is shown in Figure 16. Average depth to water, saturated thicKness, permeabil ity, and transmissivity for 1973 and 1993 are also presented in Table I. Haps for saturated thicKness, transmissivity and depth to water for 1973 and 1993 water are shown i

Appendix B. Saturated thicKness is compared to percent of aquifer area in Reach 3 which is predicted to be dry in Table 4. Average recharge is approximately 2.65 in/yr which represents 8 percent of the toto, average precipitation of 33 in/yr. These data, along with the pr~ceeding, is summarized in the ground-water budget for Reach 3 as shown in Figure 17. Prior appropriative pumping rights and water distribution summaries are also shown in Appendix B. An allocation of 1.60 acre-feet/acre/year was calculated for Reach 2. Ground-water chemistry is summarized in Figure 18. The major constitutents map in Figure 18 represent patterns of occurrence which can

be generalized for large portions of the study area.

34 D Mile. 6 II a Km la,

Figure 16. Water Table Map,

Modeled Reach 3.

(after Silka, 1975)

35 TABLE 4

Saturated Thic~ness and the Respective Percent Dry Aquifer

Area For

Average Modeled Reach 3 Saturated Thickness (ft) Percent Dry Aquifer Area (ft) 1973 1978 1983 1988 1993 1973 1978 1983 1988 1993

67 38 16 7 6 o 2.3 19.5 47.0 52.0

w '" WU/T'( YEAR G ROUND ATfR UPGET

PARAnErf~1 IHITIAL l,.,nAL An (,,' ... T'TA,- AREA A"'AGO A"'A" A'I''''&E E"u""I"co ----- rUrUADltllY Snc,rlcYlflP ISAlIlIlATfp·IiIl'tl.tffQ 1i.... H'"I~Slrl r I" A.. £" SURF"'" 'vJAlfA i' u~P!!!j 120.4 .,,! , 67 G.di4 lli,400 Au. .. \hOA'''~ L_-= fr.1 ",p!I'·1 sl [ \4, I (r-." P~""I". ONIY RltCHAA~A1F Ut! A"'.Al A~~'(An.'" RUUAN Flow EFffC::Tllf.. ANNUAL RIrTtlCH FlOW RATE A;" rnQ!!Jl (G/"~!o rlll1rlH' lllur) Al.UUAlII.. Au.oc"no" (~ ." G"u:.I'ul1 rtlil,,> ('1. 0,. RA'tolFAu) [-;"''';~A!;A I ~MJAI I 1•.16 Af/A! I 15 'I.) [-H-;;j

BUDGET GROSS FtJ"f."'c; RE7OI. EFfECTIVE REeufry CFfECTJVE (WEll HEAD) Fl.'''"' PUtt",.G rl\euK. RA'.FAll ReCIIAItGE Foil!\. 20YEA(l.J -~ 199 403 Af 1 12q 9 9 AF '12.J 13.812 000 AfI rlID.8.u t A~f;:1\7EP c."".E' 1,32" •.1\2 A~I 110'4/1.''1~ "k OF I 33.0 wY,1 I 2.6\ IN/'(•. !~Il.~OYt:"Ll), P,ttPfNG 9, 970 11. 14 .\6,4\17 .SO /If/Y. f /fIll. /Fly.1t Af/AI AFftA" AF/H f'.flllrjAl CVAra'IlAtlS rll "TI'" PR'''' 39,119 If 5,95. Af 33,76 AF 2.8 13.56'.106 I\ru,oPRJAlI6fr1 It OF I 10.1\ INIy.A~l ('lin,,,,, . I,IJ;'III III .0] 29~ li oll" I/y~88 .02 ~ ~~ M~' AF/ ... AF/A. l~r""f~l 1itA~I""'T II . ...,.. ... E.""1' At'''''''''''''' H.,A"".,,,. 1,289,('.13 AF 19.1.445 AF 1.096,188 Af .19.5 r 0 rUHf,"G 7: OF I A'I (1.1,,1821.92 9.672 1/101..1 5~;,.~09 .78 P 0 Wi, [fQ--' Af~J!.! If(H !-AFlY... ~/A' Af ... /FIAt P,lrl"/IIflAI c::- '·11...... 11I" ~/IIuAl '('flpol - - ~....-l 22 AFI ------~S- ~IWU ~ 1,423,741 l ,AUGE fr.;,;,,"!-K~fll~~jl~.,,;;;_____ 1 IIFI ~~ -~Ci-AFI <_ 8'_. -.-'------r.u,.r'A~ W"UR - -- 1 R"UII'ElA.ILI WAr", f.1t F.HUSo,. WET (IN/PAl 5U ll,Al;.f" I tin [J....lli,118 Afl FF~t PUlt"IH~) 'NFUW £Ufff P~nrall') (= C,".,""" f n..... ~ - 5"TlUfAI"f"P UrIH'T/Al SI"~;;(/<111) f I I. mAL TR"'N~"IHIWIO' -U 1,006,500 AF Ttll(;"'U'~ / . A'flAU'S: ( ('7 FT·I I'&.mG~P/fr. ) 10.639 Af) SA-TUItATfP I froHAL $"",;( ImJ li"",tuu 111'1 rr PIUfIIPMr rl'~ 1)'0 F'N"L 1.,t,.:/IIhS (N.,.,·RE """'AILE 3S9 Afl 0", A~('AGn: I I"J f., F'HA' 507. \.lIT) [6~ (1,380 GPPIFrJ 12 =m - -_.- - -- - .. _ __ -_ .. - I'U

Figure 17. Ground-water Budget For Modeled Reach 3. - .c!J--- ·~

o Miles 6 I I o Km 10 Na ppm C .~~ M94 2 2 .HCOJ 00 00 00 00

""""'.' _'u ~---_",,_'1•

• ....._ ~·-'l

Figure 18. Ground-Water Quality Analyses For Modeled Reach 3. (after Silka, 1975)

38 REACH 4

R.ach 4, locat.d b.tw••n Al.x and Lak. T.xoma in south-c.ntral

Oklahoma in Grady, McClain, Garvin, Murray, Cart.r, and Johnston counties,

is d.scrib.d by Patt.rson (1984). R.ach 4 was subdivid.d into thr.e subr.ach.s; subr.ach A, subr.ach B, and subr.ach C. Th. ar.a within the Arbuckl. Mountains was not includ.d b.cause the alluvium was .ith.r too

th in or abs.nt. Th. formations that und.rl i. the Washita Riv.r allulvium in Reach 4 includ. the Goddard and D.lawar. Cr ••k Shal.s of Mississippian ag., the Dornick Hills, D••s., and Oscar Groups of P.nnsylvanian age, the W.llington Formation, the Garb.r Sandston., the Fairmont Shal., the Purc.ll Sandston., the Bison Shal., and the Duncan Sandston. all of P.rmian ag., and the Antl.rs Sandston. of Cr.tac.ous ag.. Of th.s. formations, two art potential aquifer units; the Garb.r-W.llington and the Antl.rs Sandstone, (s•• Figur. 3). Th. basin ar.a in R.ach 4 cov.rs approximat.ly 2,800 square mil.s of alluvial d.posits. Th. av.rag. d.pth to wat.r is 26 f.et and the av.rag. saturat.d thickn.ss is 38 f••t. Th. av.rag. p.rm.ability and transmissi­ vity art 1,180 gpdlft**2 and 43,120 gpdlft, r.sp.ctiv.ly. Av.rag. d.pth to wat.r, saturated thickn.ss, p.rm.ability, and transmissivity for 1973 and 1993 for Reach 4 art shown in Tabl. 1. Wat.r table .l.vations, d.pth to wat.r, saturat.d thickn.ss and transmissivity maps for 1973 and 1993 art also shown for each subr.ach in App.ndix C. A comparison of saturat.d thickness and p.rc.nt of aquifer area which is pr.dict.d to b. dry for .ach subreach within R.ach 4 is pr.s.nt.d in Table 5. Th. average r.charg. is approximately 4.41 in/yr which is 12.6 perc.nt of the total av.rage precipitation of 34.9 in/yr. The av.rag••vapotran­

spiration for R.ach 4 is 30.5 in/yr. This data along with the prece.ding

39 data is summariz~d in th~ ground-wat~r budg~t for R~ach 4 shown in Figur~

19. Prior appropriativ~ pumping rights and wat~r distribution summari~s for

R~ach 4 ar~ shown in App~ndix C. An av~rag~ allocation of 0.99 acr~­ f~~t/acr~/y~ar was d~t~rmin~d for R~ach 4. Th~ m~thod which is us~d to calculat~ allocation for R~ach 4 is shown in Tabl~ 6.

Various formations und~rli~ the Washita River alluvium in Reach 4

(Figure 3). These formations aff~ct the quality of the ground water found

in th~ alluvium. Ten ground-wat~r qual ity analyses from th~ alluvium ar~ availabl~ in th~ Ardmor~-Sh~rman Hydrologic Atlas (Hart, 1974). Total dissolv~d solids ranging from 510 to 1,020 mg/l, av~rag~ 319 mg/l.

Av~rag~s for ~ach major constitu~nts ar~ as follows: calcium, 95 mg/l; magn~sium, 60 mg/l; sodium, 60 mg/l; bicarbonat~, 44 mg/l; sulfat~, 10 mg/l; and chlorid~, 50 mg/l. Analys~s of th~ ground wat~r-quality in th~

Washita Riv~r alluvium north and south of th~ Arbuckl~ HountaiRs ar~ docum~nt~d and summariz~d graphically in Figur~ 20.

40 TABLE 5

Saturated Thickness and the Respective Percent Dry Aquifer

Area For

Modeled Reach 4

Saturated Thickness Percent Dry Aquifer Area

1973 1978 1983 1988 1993 1973 1978 1983 1988 1993

Subreach A 38 28 20 13 9 0 0 2.3 18.3 50.7

'".. Subreach B 41 29 20 12 8 0 0.3 8.3 27.8 50.9

Subreach C 36 26 19 14 8 0 5.4, 33.8 44.6 50.4 l/loiflAl Avuft'F. l~"I"'HlI~~IVI1 t' [tl;HLc;Pl'f!i] J 161. 520 A~!;)

EffH:TI'lr ANNUA.L AU G cAII"11 LQ;ii A@ l'Ffcc';'ivE RAINfAll Re-CIIAfl.GE 9 400 9')0 AfJ E'5~~~1 E 34.9 WT~J

[iigure 19. Ground-water Budget For Modeled Reach 4. TABLE 6 WEIGHTED AVERAGE ALLOCATION FOR THE TOTAL AQUIFER AREA INCLUDING ALLOCATION BY MODELED REACH

Total Area All Allocation by Weighted Area, Modeled Modeled Reaches Fraction , Total Modeled Reach Allocation Reach (acres) (acres) Area (ac-ft/ac/yr) (ac-ft/ac/yr)

Upper Modeled 55,200 161,520 55,200 .. 34.2 * 0.882 0.30 Reach (A) 161,520 51,840 .. 32.1 I Middle Modeled 51,840 161,520 * 1.14 0.36 Reach ( B) 161,520 Lower Modeled 44,480 161,520 JLj!Ul .. 27.5 * 1.20 0.33 Reach (c) 161 ,520

co Net allocation for 0.99 " total aquifer area

AllocatLan ~ Modeled Beach Helghted Allocation Upper Reach Middle Reach Lower Reach Total area, A, B, and C

Allocation 0.882 1.14 1.20 o. 9 9 -:::::::;. I. 0 ac-ft/ac/yr ,.nneyl"anla. 1000- Analv ••• I,mpl,. I Qu.'.rn.rv Qu.'"nll. '.rml.n A"".S' TOI An.lv··· An,IV'" An.lv.,. r- .21'r- 100- Orelovlclan North Soulh I,mpla, Crat.eaoy. An,I.". 0' the 0' tha i· An,lv,•• .. Arbuckl., Arl:lucU" Sampl•• A"."g, TDa S.mpl•• S.mpl•• U• • I • ~ i • A"."•• TDS " A"".U' TDS A"'"g, TOS Averill' TOS !" e "0 ... I "'" • r- "" .0- ;100- r- .... .0- l- •e ...... •e f-f- • .1- 10- ~ " f- ~ • .. r- ~ .. ,.' 4; ~ ,p, !I '~! . ~" <. tl- .. • l- ;.~~" l i·. r i'· ." ~; :(', ~ ~ r.,. , ~, ~ f- fp ,I \ ~ i " , "1' ; 1, ,. ., , ,. i ~. ~ ~ !~ .' :~ " '! ~ 1" I f- 1 , r,, .~. .~ ) ~ I ~"f -"~ ~ ,. 10 " • C....N.HC'!.SClc rcr'".N''' 0rf C'''g NaHCO,' f

figure 20. Ground-Water Quality Analyses For Modeled Reach 4. RESULTS

Computer simulations were made for each reach and their subreaches

(except' Reach 2) for a 20-year period extending from 1973 to 1993 for both prior appropriative and allocation pumping. Prior appropriative pumping rates were determined using prior appropriative rights establ ished for each county prior to 1973. Prior rights pumping for each reach are shown in the appropriate appendix (except Reach 2). Prior appropriative pumping simulations showed I ittle to no change in saturated thickness from 1973 to 1993.

The maximum allowable allocation rate was found by adjusting the amount of allocated pumping so that SO percent of each modeled reach would go dry by the end of the simulation period (20 years). The aquifer was considered to be dry if the saturated thickness was 5.5 feet or less. This was done on a node by node basis. The pumping allocation rates were distributed over a four month pumping period (June-September) with the remaining eight months considered to be non-pumping. The model results are shown by Reach as water budgets in Figures 5, 17, and 19 and by maps and graphs in the respective App~nOic~s in the following order: (1) Prior Rights Pumping Haps (2) Water Oistribution Summaries (3) Water Table Haps

(4) Oepth to Water Haps (5) Saturated Thickness Haps

(6) Transmissivity Haps

45 CONCLUSIONS

The allocation pumping rate for the Washita River alluvial aquifer can be analyzed two ways; either by individual reach (Reach I, 2, 3, and 4) or by a weighted allocation combining Reaches 1, 2, 3, and 4. The weighted allocation determined by combining Reaches I, 2, 3, and 4

is 1.3B or approximately 1.4 ac-ft/ac/yr. The method used to determine

this weighted average allocation is shown in Table 7. The Oklahoma Water Resources Board has elected to use a separate allocation proportioned for each alluvial reach as follows: Reach 1 (State line to Clinton, OK, Roger t1ills and Custer Co.) 2.0 Ac-ft/ac/yr. Reach 2 (Cl inton to eastern edge of Washita CountYj Note: The eastern portion of Reach 2 (Subreach B) is subject to the allocations specified for the Rush Springs sandstone aquifer. 1.5 Ac-ft/ac/yr. Reach 3 (Anadarko, OK to Alex, OKG;, CaddO and Grady Counties) 1.5 Ac-ft/ac/yr. Reach 4 Alex, OK to Lake Texomaj GradY, McClain, Garvin, Murray Carter and Johnston Counties) 1.0 Ac-ft/ac/yr. Ground-water pollution was considered to be negl igible after twenty Years of simulated pumping on the Washita River alluvial aquifer. Local ground-water pollution may be found along some areas of the Washita River because of local ized losing stream conditions. However, it is predicted that the Washita River will generally remain as a gaining stream after twenty years of pumpingj and therefore, induced ground-water pollution by

ground~Hater withdrawal is considered to be neg 1igible in the future.

46 TABLE 7

Method Used To Determine The Weighted Allocation For The Entire Washita River Alluvial Aquifer

Total Area All Allocation Weighted Area Modeled Modeled Reaches Fraction 7. Total By Reach Allocation Reach (acres) (acres) Area (ac-ft/ac) (ac-ft/ac)

Reach 1 60,160 296,240 60,160 20.3 * ~2.0 = 0.442 (Schipper) 296,240

Reach 2 4,160 296,240 4,160 Subreach A 296,240 1.4 * ~ I.SO 0.022 ... " Reach 3 70,400 296,240 70,400 ~ (Neafus) 296,240 23.7 * .~ 1. 50 = 0.380 Reach 4 161,520 296,240 161,520 (Pat terson) 296,240 54.5 * ~ 1.00 = 0.539

Total weighted allocation = 1.38

~1.4 ac-ft/ac REFERENCES CITED

Bowers, J.R., 1967. Areal Geology of the Cheyenne Area, Roger Mills County, Oklahoma: University of Oklahoma unpubl ished Masters Thesis (Geologic map revised by R.O. Fay, 1972).

Carr, J.E., and Bergman, D.L., 1976, Reconnaissance of the Water Resources of the Clinton Quadrangle, West-Central Oklahoma: Oklahoma Geological Survey Hydrologic Atlas 5, Scale 1:250,000, four sheets.

Carr, J.E., and Marcher, M.E., 1977, A Prel iminary Appraisal of the Garber­ Wellington Aquifer in Southern Logan and Northern Oklahoma Counties, Oklahoma: U.S. Geological Survey Open File Report 77-27B, 23 pp. Fay, R.O., et aI, 197B Survey, Geology and Mineral Resources of Custer County, Oklahoma: Oklahoma Geological Survey Bulletin 114, BB pp. Griffen, W. E., 1949. Residual Gravity in Theory and Practice: Geophysics. Vol. 14, p. 39-56.

Hart, D.L., Jr., 1974, Reconnaissance of the Water Resources of the Ardmore and Sherman Quadrangles, Southern Oklahoma: U.S. Geological Survey Hydrologic Atlas 3, Scale 1:250,000, four sheets.

Hart, D.L., Jr., 197B, Ground Water in Custer County, lD Fay, Robert 0., 1978, Geology and Mineral Resources (exclusive of petroleum) of Custer County, Oklahoma: Oklahoma Geological Survey Bulletin 114, 88 pp. Hart, D.L., Jr., and Davis, R.E., 1981, Geohydrology of the Antlers Aquifer (Cretaceous), Southeastern Oklahoma: Oklahoma Geological Survey Circular, 81, 33 pp.

Kent, D. C., J. W. Naney, and B. B. Barnes, 1973, An Approach To Hydrogeologic Investigations of River Alluvium by the Use Of Computerized Data: Ground Water, v. II, no. 4, p., 30-42,7 figures, 3 tables. Kent, D. C., and Naney, J. W., 1978, Results of Computer modelling of alluvium and terrace depots in western Tillman County and along the Washita River, southwestern Oklahoma, for water sup~:y capabil ity: Final Report submitted to the Oklahoma Water Resources Board. Kent, D. C., 1980, Evaluation of Aquifer Performance and Water Supply Capabil ities of Alluvial and Terrace Deposits of the North Fork of The Red River in Beckham, Greer, Kiowa and Jackson Counties, Oklahoma: Final Report to the Oklahoma Water Resources Board. Kent, D. C., Beausoleil, Y. J., and F. E. Witz, 1982, Evaluation of Aquifer Performance and Water Supply Capabilities of the Enid Isolated Terrace Aquifer in Garfield County, Oklahoma: Final Report to the Oklahoma Water Resources Board, 58 pp. Kent, D. C., Lyons, T., and F. E. Witz, 1982, Evaluation of Aquifer Perfor­ mance and Water Supply Capabilities of the Elk City Aquifer in Washita,

48 B.ckham, Custer And Roger Mills Counties, Oklahoma: Final Report to the Oklahoma Water Resources Board, 96 pp.

Kent, D. C., J. W. Naney, And F. E. Witz, 1982, Prediction of Economic Potential for Irrigation Using a Ground Water Model: National WAter Well Association, Ground Water Journal, v. 20, no. 5, pp. 577-585.

Naney, J. W., and D. C. Kent, 1980, Establishing ground-water rights using a model: in Proceedings of the Symposium on Watershed Management, Boise, Idaho, American Society Civil Engineering, v. I, p. 117-128. Neafus, R.J., 1984, An Iterative ADIP (Alternating Direction Implicit Procedure) Digital Model For A Multilayered Aquifer Evaluation in the Washita River Alluvium: Oklahoma State University Master of Science Thesis, not completed. Patt.rson, J.W., Jr., 1984, A Ground-Wat.r Management Model of the Washita River Alluvial Aquifer in Grady, McClain, Garvin, Murray, Carter, and Johnston Counties in South-Central Oklahoma: Master of Science Thesis, Oklahoma State University, Stillwat.r, Oklahoma, 285 pp. Pinder, G. F., 1970. An Interactive Digital Model For Aquifer Evaluation: Geological Survey Open-File Report.

Schipper, M.R., 1983, A Ground-Water Management Model of the Washita River Alluvial AqUifer in Roger Mills and Custer Counties, Oklahoma: Master of Science Thesis, Oklahoma State University, Stillwater, Oklahoma, 147 pp. Silka, L.R., 1975, Hydrogeochemistry of the Washita River Alluvium in Caddo and GradY Counties, Oklahoma: Master of Science Thesis, Oklahoma State University, Stillwater, Oklahoma, 98 pp. Trescott, P.C., Pinder, G.F., and Larson, S.P., 1976, Finite Difference Model For Aquifer Simulation in Two Dimensions With Results of Numerical Experiments: U.S. Geological Survey, Techniques of Water Resources Investigations, Book 7, Chapter Cl, 116 pp.

49 APPENDIX COMPUTER SIMULATION RESULTS APPENDIX A

RESULTS FOR MODELLED REACH 1

Page

Prior Rights Pumping . A-2 - A-4

Water Distribution Summaries •••••••••••••••••.•••••..•.•••••• A-5 - A-7

Water Table Elevations . A-8 - A-9

Depth to Water •••••••••••••.•••••••••••••••••.••.• " ..•.••••• A-IO - A-13

Sa tura ted Th i ckness ••••••••••••••••••••••• , ••.•.•••.•.•••.•.• A-14 - A-I?

Transmissivi ty . A-IS - A-21

A-I ~8 R24W R23W I . ,.,. no prior right. in alluvium to t T•••• borde'. PRIOR RIGHTS PUMPING Zone Pumping Rates ,acr. feet/acrel 5 ) 3.0 EXPLANATION 4 2.0-3.0 T 14 N 3 1.0-2.0 Alluvium 2 0.5-1.0 not modeled. 1 <0.5

T 13 N

MODELED REACH A o 1 2 mile.

Prior Rights Pumping, Subreach A, Modeled Reach 1. EX Pl ANAl ION 114N MODELED REACH B Alluvium not mode'ed.

~ Mod.led R.lch sUppled where ~ no prior rights·

» I ~ W HAMMON' I PRIOR RIGHTS PUMPING 113N Zone pumping Alt•• 1 Iler. 1••l/lcr.' 5 >3.0 mllea 4 2·0 -30 3 1.0-2.0 2 0·5-1·0 1 <05

R21W R 20W

Prior Rights Pumping, Subreaches Band C, Modeled Reach 1. R18W R17W R16W

PRIOR RIGHTS PUMPING Zone Pumping Rates ~ lacre-f.et/acrel T12W ~p.;~ 5 >3.0 CLINTON ~4~ 2.0-3.01.0-2.0 0.5-1.0 <0.5

I __ ~~R....£Q. -- - -I-- WASHITA CO· -

o 1 2 MODELED REACH C mile.

Prior Rights Pumping, Subreach C, Modeled Reach 1. AREA: WASA RUN: A820827 2259 NODE AREA: 40 ACRES PUMPING PERIOD: O. 33 (FRACTION OF VEAR) RETURN FLOW RATE: 15 PERCENT NET PUMPlNG RATE: 85 PERCENT

--_ ..------.------.------SATURATED AREA AVERAGE AVERAGE THICKNESS (PERCENT SATURA TEO SPECIFIC STORED RANGE OF AREA THICKNESS YIELD WATER (FEET ) TOT AL ) (ACRES) (FEET) (PERCENT) (AC.FT. ) ------.------.------50.0-- 60.0 0.6 120 52.6 26.6 1.679 60.0-- 70.0 0.6 .20 67.6 26.6 2.157 70.0- - 80.0 0.2 40 71.0 26.6 755 80.0-- 90.0 0.8 .60 85.3 26.6 3.631 90.0-- '00.0 0.4 80 93.2 26.6 1.984 100.0--' 10.0 1.0 200 108.3 26.6 5.764 "0.0--120.0 5.8 t.160 , 16.9 26.6 36.086 120.0--130.0 9.2 , .840 124. 1 26.6 60.761 130.0-- 140.0 16.8 3.360 136.0 26.6 121.560 140.0-- 150.0 12.2 2.440 144.4 26.6 93.742 150.0--160.0 7.8 1.560 155.8 26.6 64.647 160.0--t70.0 18.S 3.720 165.8 26.6 164.055 '70.0--'80.0 21.8 4.360 174.6 26.6 202.507 180.0--190.0 4.0 800 183. , 26.6 38.954 -.--.-- -.---.--- ALL RANGES 100.0 19.960 150.4 26.6 798.282 ( TOTAL) (TOTAL) (AVERAGE) (AVERAGE) ( TOTAL)

DATA FROM' A820927.2259 ALLOC=2.70AF/A; ~ATE.250GPD•. 075; M-330; RlVER:'; RECH 3

AREA' WASA RUN: 4820827.2259 NoaE AREA; 40 ACRES PUMPING PERIOD: 0.33 (FRACTION OF VEAR) RETURN FLOW RATE: 15 PERCENT NET PUMPING RATE: 85 PERCENT

WATER DISTRIBUTION SUMMAR~ ,JULV '. 1993

SATURATED AREA AVERAGE AVERAGE THICKNESS (PERCENT SATURATED SPEC!F!C STORED RANGE OF AREA THICKNESS ViELD WATER (FEET) TOTAL) (ACRES) (FEET) (PERCENT) (AC. FT. )

0.0- - 5.5 49.9 9.960 4.4 26.6 11.769 5.5-- 10.0 3.8 760 7.6 26.6 t.533 to. 0·- 20.0 19,4 3.880 15.7 26.6 16.219 20.0- - 30.0 18.4 3.680 24.3 26.6 23.835 30.0-- 40.0 6.8 1.360 34.5 26.6 12.490 40.0- - 50.0 1.6 320 42.8 26.6 3.643 ------ALL RANGES 100.0 19.960 13. I 26.6 69.489 (TOTAL) ( TOTAL) (AVERAGE) (AVERAGE) (TOTAL)

DATA FROM: A820827.2259 ALlOC:2.7QAF/A; RATE=250GPO-.Q75; M~330; RIVER+l; RECH 3

Water Distribution Summaries,

Subreach A, Modeled Reach 1.

A-5 AREA: WASB RUN: A820902.0230 NODE AREA: 40 ACRES PUMPING PERIOD: 0.33 (FRACTION OF YEAR) RETURN FLOW RArE: 15 PERCENT NET PUMPING RATE: 85 PERCENT

.------_.~--~ .. _------._---~------_._----_. . _----._-- SATURATED AREA AVERAGE AVERAGE THICKNESS (PERCENT SATURATEO SPECIFIC STORED RANGE OF AREA THICKNESS YIELO WATER ______(FEET) TOTAL) (ACRES)~_e ______(FEET) (PERCENT)~._e ______(AC.FT.)

30.0-- 40.0 1.4 '60 39.0 27.5 1.716 40.0-- 50.0 6.9 800 45.a 27.5 10.075 50.0- - 60.0 6.6 760 55.1 27.5 11.522 60.0-- 70.0 7.9 920 66.2 27.5 16.744 70.0-- ao.o 14.1 1.640 74.5 27.5 33.619 80.0-- 90.0 9.0 1.040 84.8 27.5 24.254 90.0--100.0 14.8 1.720 95.0 27.5 44.929 100.0-~ 1 10.0 13.4 1.560 t05.4 27.5 45.202 110.0--120.0 11.7 1.360 '114.5 27.5 42,816 120.0--130.0 9.0 1,040 125.7 27.5 35.937 130.0--140.0 5.2 600 133.6 27.5 22.043 ------ALL RANGES 100.0 11,600 90.6 27.5 288.858 ~ ______• (TOTAL)______. ______( TOTAL) (AVERAGE) (AVERAGE) • __ e_._.( TOTAL)_____ DATA FROM: A820902.0230 ALlOC~1.75AF/A;RATE~313GPO•. 075:M=330;RIVER+1:RECH 3.2

AREA: WASB RUN: AB209(,~.0230 NODE AREA: 40 ACRES PUMPING PERIOD: 0.33 (FRACTION OF YEAR) RETURN FLOW RATE: 15 PERCENT NET PUMPING RATE: 85 PERCENT

WATER OISTRIBUTION SUMMARY \JULY '. 1993

SATURATED AREA AVERAGE AVERAGE THICKNESS (PERCENT SATURATED SPECIFIC STORED RANGE OF AREA THICKNESS YIELD WATER (FEET) TOTAL) (ACRES) (FEET) (PERCENT) (AC.FT.)

0.0- - 5.5 48.6 5.640 4.3 27.5 0.630 5.5-- 10.0 9.0 1.040 7.4 27.5 2. 123 10.0-- 20.0 19.0 2.200 14.0 27.5 8,459 20.0- - 30.0 8.6 1.000 23.8 27.5 6,541 30.0- - 40.0 5.2 800 35.2 27.5 5.800 40.0-- 50.0 8.6 1.000 43.8 .. 27.5 12.055 50.0-- 80.0 1.0 120 51.3 27.5 1.693 -_._--- .._------ALL RANGES 100.0 11.600 13.6 27.5 43.302 ( TOTAL) ( TOTAL) (AVERAGEl (AVERAGE) (TOTAL) ------_.------OATA FROM: A820902.0230 ALLOC=1.75AF/A:RATE~313GPO·.075;M~330;RIVER+1;RECH3.2

Water Distribution Summaries t

Subreach B, Modeled Reach L

A-6 AREA WASC RUN 4820902.0311 NODE AREA 40 ACRES PUMPING PERIOD 0.33 (FRACTION OF YEAR) RETURN FLOW RATE 15 PERCENT NET PUMPING RATE: 85 PERCENT

SATURATEO AREA AVERAGE AVERAGE THICKNESS (PERCENT SATURATED SPECIFIC STORED RANGE OF AREA THICKNESS VI fLO WATER (FEET) TOTAL) (ACRES) (FEET ) (PERCENT) (AC.FT. ) ------.~------~------.------. 30.0- - 40.0 1.9 160 38.2 25.0 1.526 40.0- - 50.0 1 1 . t 960 45.3 250 10.861 50.0- - 60.0 4.6 400 53.6 25.0 5.359 60.0-- 70.0 4.2 360 65.4 25.0 5.888 70.0- - 80.0 4.2 360 74.9 25.0 6,742 80.0- - 90.0 5.1 440 84.6 25.0 9.309 90.0--'00.0 12.0 , .040 96.1 25.0 24.988 100.0--110.0 30.1 2.600 105.4 25.0 68,513 t'O.0--120.0 21.3 1,840 113.4 25.0 52. 174 120.0-'130.0 5.6 480 124.2 25.0 14.905 -_.--.------.--- ALL RANGES 100.0 8.640 92.7 25.0 200.265 ( TOTALI ( TOTALI (AVERAGE) (AVERAGE) (TOTAL) .----_._------_.-----_.-_.-_._------.------..------DATA FROM~ A820902 . 03 1 1 ALLOC~t.75AF/A;RATE~170CPO. .Q75;M a 330;RIVER+t;RECH 3.4

AREA: WASC RUN' A820902.0311 NODE AREA: 40 ACRES PUMPING PERIOD: 0.33 (FRACTION OF YEAR) RETURN FLOW RATE: 15 PERCENT NET PUMPING RATE: 85 PERCENT

WATER DISTRIBUTION SUMMARY

______• .JULY •..__ •1993 • __ ~c __ • • __ • _ SATURATED AREA AVERAGE AVERAGE THICKNESS (PERCENT SATURATED SPECIFIC STORED RANGE OF AREA THICKNESS YIELO WATER (FEET ) TOT Al) (ACRES) (FEET) (PERCENT) (AC.FT. ) -----.--._-----.------0.0- - 5.5 50.0 4.320 4.7 25.0 5.034 5.5-- 10.0 8.3 720 8.0 25.0 1.441 10.0-- 20.0 28.7 2.480 14.6 25.0 9.031 20.0-- 30.0 6.5 560 25.3 25.0 3.539 30.0-- 40.0 5.6 480 33.8 25.0 4.053 40.0-- 50.0 0.9 80 41.1 25.0 822 ------ALL RANGES 100.0 8.640 11. 1 25.0 23.919 (TOTAL) (TOTAL) (AVERAGE) (AVERAGE) (TOTAL) ------~---.------_._------.------DATA FROM: A820902.0311 ALLOC=1.75AF/A;RATE=170GPO-.075:M=330;RIVER+1;RECH 3.4

Water Distribution Summaries,

Subreach C, Modeled Reach 1.

A-7 R24W R23W R22W

Initial 119731 Water Table Map contour Inl.rv8' 10 ft.

2000 T14N

TUN o 1 mil••

Modeled Heach A - Con".nl Or.dlanl lIound.r~

Water Table Map, July 1, 1973, Subreach A, Modeled Reach 1. R21W R20W

81,0 ~ .!I<.I = - N :I'..I':• I ."...<.1 ~I \",fP I T14N

o

- Modeled Reach B - Conaant Gradient Boundary

R18W R17W R16W

Initial (1973) Water Table Map

contour interval 10 ft. 4-~q T12N ttl' I 1480 CLINTON -

Modeled Reach C

Water Table Map, July 1, 1973, Subreaches Band C, Modeled Reach 1.

A-9 R24W R23W R22W

Depth To Water Julv 1,1873 ~ ZONE 1 0-20 0 100-120 2 20-40 7 120 -140 2 3 40 -00 140 -160 3 >- • I 4 60 -80 8 160 -180 2 >-' T14N 80 -100 0 5 10 180 -200 I Sempl•• min. 1 ft. 1 499 max. 69 ..g- 17 2

2 3 1 1 T13N o 1 2 r-.3-'-"-2' mU••

Modeled R.18Ch A - Cona'ent Gradient L---'-'3 CHEYENNE Boundary

Depth to water. July 1, 1973. Subreach A.• Modeled Reach 1. R24W R23W R22W

Depth To Water Ju1w I, 1893 ~ ZONE 1 o -ao 100-120 a aO-40 •1 lao -140 3 40- 00 140 -1'0 )- • I 4 60 -60 II 160 -160 ... T14N 6 60 -100 10 160-aoo 11 200 - 220 1 S.mpl•• min. 96 II. m••. 211 ••g. 164

T13N 8 9

Modeled Reach A Conal.nt Gradlenl Boundary

Depth to water, July 1, 1993, Subreach A, Modeled Reach 1. R 21W R20W Depth To Water July 1. 1973 8/''0 ~Ic.> t ZONE ij] N I 0-20 6 100- 120 ~ a 20-40 7 120-140 ., 2 ",c.> 3 40-60 8 140 -160 £1 4 60 -80 9 160 -180 5 80 -100 10 180 -200 I T14N

1

o 2 miles

Modeled Reach B Constant Gradient Sampl.. min. 2 It Boundary 290 mu. 91 avg. lS

R18W R17W R l6W

Samples min. 6 ft. 216 mu. 55 ••g. 19

T12N

CLINTON '-o:-~

Modeled Reach C

Depth to water, July 1, 1973, Subreaches Band C, Modeled Reach 1.

A-12 R 21W I I R20W Depth To Water o·1 . July 1. 1993 (,). 0 ~ ZONE ~I(,) N 0-20 6 100-120 ij~ 1 ~ ~ 2 20-40 7 120-140 ~(,) 3 40-60 8 140 -160 £1 4 60 -80 9 160 -180 j 5 60 -100 10 160 - 200 T14N

Modeled Reach 8 - Constant -Gradient Samples min. 45 ft Boundary 290 m... 163 OV9· 92

R18W R17W R 16W

Sampl•• min. 46 ft. 216 m... 143 a.g. 100

T12N 8 CLINTON '"I-I~l-!~

Modeled Reach C

Depth to water, July 1, 1993, Subreaches Band C, Modeled Reach 1.

A-13 R24W R23W R22W

Saturated ThIckness July I, 1973 9 ZONE m dry Ion. ~ 0-1.• 1 U-IO 1 100-tlO I 10-40 r 110 -140 a 40 -10 8 140 -1110 :>-, 4 110 -110 9 1110 - 1110 .-. T14N 1 10 -100 10 1110 -100 j .0- r Somplo. min. 5111. 910ral. 499 m••. 188 ac.n. o.g. 149 798,277

S TUN o I mil••

Modeled Reach A II Con".nl Or.dlent Bounda,y

Saturated Thickness Map, July 1, 1973, Subreach A, Modeled Reach 1. R24W R23W R22W

Saturat.d Thlckn•••· Jul, I, 1993 ZONE ~ dr, IOn. ~ 0-1.1 > I I 1.1-10 I 100-120 .... I 10-40 1 110 -140 '" 3 40 -10 I 140 -1110 4 110 -110 • 1110 -1110 Tl4N I 110 -100 10 lID -100 1 I.mpl•• min. 011. Stor·oe 499 m••. 45 ec.". •••. 13 119,490

TUN o I mil.,

Modeled R.ach A Conatlnt Or.dlen' Boundl',

Saturated thickness Map, July 1, 1993, SUbreach A, Modeled Reach 1. I R 21W R20W I Saturated Thickness July 1. 1973 01 . ZONE <.>. 0 f ~ dry zona .!!I<'> 0-5.5 ;,i N 1 5.5- 20 6 100 -120 -. ."'<.>" 3 2 20 -40 7 120 -140 £1 3 40 -60 8 140 -160 4 60 -80 9 160 -180 T14N 5 80 -100 10 180 - 200 I

HAMMON! o 1 2 mHe.

Modeled Reach B Conltant Gradient Samples min. Siorage 38 11. Boundary 290 mu.137 ac.fL avg. 91 288,880

R18W R17W R16W

Sample. min. 3711. Storage 216 mu. 128 K.II. a.g. 93 200,270

T12N

CLINTON L.--J...J l 1

Modeled Reach C

Saturated Thickness Map, July 1, 1973, Subreaches Band C, Modeled Reach 1.

A-16 R 21W R20W Saturated Thickness July 1. 1993 ZONE 1 ~ 8'0 ~ dry zone ~t(,J 0-5.5 =... N :II.! 1 5.5- ZO 6 100-120 .~ .-~(,J 2 20 -«I 7 120 -1«1 3 «I -lIO 6 1«1 -160 21 4 60-60 9 160 -180 r14N 5 80 -100 10 180 - 200 1 2 I 3 1

~ HAMMON.

Modeled Reach B Conat.nt Gradient S.mpIes min. 0 11. Slor·v_ Boundary 290 mu.53 aCo ft. avg. 14 43,307

R1aw R17W R 16W

Sarnp", min. 1 ft. 216 mu.41 ••g. 11 23,920

T12N

CLINTON '-I";:''''''

Modeled Reach C

Saturated Thickness Map, July 1, 1993, Subreaches Band C, Modeled Reach 1.

A-17 9 R24W R23W R22W

Initial t19Tal TransmIsslv I ty gpd/II t ZONE 1. 0 - 2,500 7. 30-40,000

)0- 2. 2,5- 5,000 8.40 - SO,OOO ....I 3. 5 - 7,500 9. SO - 00,000 T14N "' 4. 7,5-10,000 10. 00 -70,000 s. 10- 20,000 11. 70-80,000 i 6. 20-30,000

7

8

T13N 6 89 10 11 8

Modeled Reach A _ Conl'ant Gradient - Boundary"

Transmissivity, July 1, 1973, Subreach A, Modeled Reach 1. 4 R24W R23W R22W 3

Final 119931 TransmlUlvlty spdlll ZONE 1. 0 - 2,500 7. 30-40,000 2. 2,5 - 5,llQO 6, 40-60,000 T14N 3. 5 - 7,500 S. 50 - 60,000 4. 7,5-10,000 10. 60 - 70,000 5. 10-20,000 11. 70 - 60,000 6. 20 - 30,000

TUN 1 o mil••

Modeled Reach A __ Conatenl Or.dlent Boundary

Transmissivity, July 1, 1993, Subreach 4, Modeled Reach 1. R21W R20W Transmissivity gpd/Il 01 ZONE .(J.g. ~I<.I t 1- o - 2,500 S. 20- 30,000 N ij'!~ :z. 2,5 - 5,000 7. 30-<10,000 . .",<.I" 5 3- 5 - 7,500 S. 40- 50,000 ~ .. 7.5-10.000 9. 50 - 60,000 j 5. 10 -20.000 10. 150 -70.000 I r14N

7

HAMMON,! o 2 mil••

Modeled Reach B - Constant Gradient Sampl.. min. 4.603 8ound.ry 290 maL 62,841 a.g. 28.800

R18W R17W R16W

Samplaa min. 2,800 5 216 rnu. 38.167 ·"9· 19.627 T12N

CLINTON ~l-l~l~l

Modeled Reach C

Transmissivity, July 1, 1993, Subreaches Band C, Modeled Reach 1,

A-20 R 21W R20W Transmissivity gpd/lt ZONE 1. 0 - 2.500 5. 20- 30,000 :z. 2.5 - 5.000 7. 3O-~000 3. 5 - 7,500 8. 40- 50.000 4. 7.5-10.000 9. 50 - 60,000 5. 10 -20.000 10. 80 - 70.000 T14N 2

o 1 2 mit••

Modeled Reach B S.mp. min. 248 - Con.tant Gradient Boundary 290 m.... 14.039 ..g. 3.695

R18W R17W R16W

Samp•• min. 187 216 mu. 11,075 ••g. 2,389

T12N

CLINTON ...... ::.~

Modeled Reach C

Transmissivity, July 1, 1993, Subreaches Band C, Modeled Reach 1.

A-21 APPENDIX 8 RESULTS FOR MODELLED REACH 3

Page

Prior Rights Pumping •...... •.....••...... •..••..•••.•..••.• 8-2

Water Distribution Summaries . 8-3

Depth to Water ...••..••••..••..••••..•.••.•...... 0 ••••••••••• 8-4 - 8-5

Saturated ThicKness •.•...... •.••.•..•.•.....•.....•...... , .. 8-6 - 8-7

Transmissivl ty .•...... ••.•.....•.•..•. 0 '" '" ••••••• 0 •••••••• 8-8 - 8-9

8-1 · .. ·§;1' .. ·eJ·

,...,~ .. I ::t; • • [f.s. I I; ; ':to

I IV'"

_. • 00" .....,. • 01-- •••" • "0-'0''''• '0··,0 •• /, 1. ••'0--'.'''.-- ••••/. '00--1".'" • 0""'''.''. ,.•." .,~,...... "...... ,.",., ,,,,,,...... 0'" ,_ ..-.., '.ot ."""., 00._, ·" II." , ..

Prior Rights Pumping,

Modeled Reach 3. AREA: WASH , RUN: A830601.1957 NOOE AREA: 160 ACRES PUMPING PERIOD: 0.33 (FRACTION OF YEAR) RETURN FLOW RATE: 15 PERCENT NET PUMPING RATE: 85 PERCENT

------_.---_._------SATURATED AREA AVERAGE AVERAGE THICKNESS (PERCENT SATURATEO SPECIFIC STOREO RANGE OF AREA THICKNESS YIELD WATER (FEET) TOTAL) (ACRES) (FEET) (PERCENT) (AC.FT. ) ------_._------._------20.0-- 30.0 1.8 1,280 24.4 21.2 6,398 30.0-- 40.0 6.4 4,480 36.5 20. t 33,Ot7 40.0-- 50.0 9.1 6.400 46.0 20.3 59.499 50.0-- 60.0 14.3 to.080 54.9 20.9 1 t5. 780 60.0-- 70.0 21.4 15,040 65.2 19.8 194.467 70.0-- 80.0 22.3 15,680 74.1 21.0 244,297 800-- 90.0 16.6 11,680 84.4 20.9 205.504 900--'00.0 59 4,160 93.8 18.5 72.415 100.0--"0.0 2.3 1.600 t04.3 18.8 31.379 ------ALL RANGES 100.0 70.400 67.1 20.4 962.758 ( TOTALl (TOTAL) (AVERAGE) (AVERAGE) (TOTAL) ------_._------.------_.- DATA FROM: A830601.1957 AlLOC:1.60.HOMO.RECHz 71FPS.NEW AlLoe.NO RIVER INFLOW

AREA: WASH RUN: A830601.1957 NODE AREA: 160 ACRES PUMPING PERIOD: 0.33 (FRACTION OF YEAR) RETURN FLOW RATE: 15 PERCENT NET PUMPING RATE: 85 PERCENT

WATER DISTRIBUTION SUMMARY ~Ul V '. 1993

SATURATEO AREA AVERAGE AVERAGE THICKNESS (PERCENT SATURATE-o SPECIFIC STOREO RANGE OF AREA THICKNESS YIELD WATER (FEET) TOTAL) (ACRES) (FEET) (PERCENT) (AC.FT j ------_._------_.--._------0.0-- 5.5 52.0 36,640 4.8 21 .3 36.723 5.5-- 10 0 45.9 32.320 6.0 19.4 37,336 10.0-- 20.0 0.7 480 14.2 22. 1 1.482 20.0-- 30.0 1 .4 960 25.0 20.9 5.017 30.0-- 40.0 0.0 0 0 40.0-- 50.0 0.0 0 0 ------.lll RANGES 100.0 70.400 5.7 20.4 80,558 ( TOTALl (TOTAL) (AVERAGE) (AVERAGE) ( TOTALl ------_._--_._------_ .._------DArA FROM: A830601.1957 ALLOC=1 .60,HOMO.RECH=71FPS.NEW ALLoe.NO RIVER INFLOW

Water Distribution Summaries,

Modeled Reach 3.

B-3 ., .. .,• ., .. , ., .oil ;-; .. I ..• ;, .,• ., ., , :, .. ., , ., •• :, ,., ;, ;i ;, :, , of ;:

., 0 ....,.. ..0.".... .' .. , .., ;, - .. ;, .. ;, :,

..-. iO-- ... Of , "".. III".." ...... II , :F 5H It ,E H 'OII· ". If . U"~~ .,.,''''; ...... ,~ .. ., It ··,,· ...... ,_ ,,_, ,•., 00,_."""'''0' •• A<' , ..

.,

_. ~; .,

Depth to water, July 1, 1973, Modeled Reach 3. :': • " :: " " .- :: -! U o1~ ;!" ~: " :: -, ;: " -- " " " " " " ., " ;: u !: " :;: " " " " .. -, " .. .. " " .. " ,, " :: " " a: .. " ;: " :': -, :: -. " :. " -, .. :: =: .. " ::

o•••tI TO ."'fl. I _ I, .... Ln'"

-, . .' ...... ' ... .. ,: ,gL.l,t1_ .'...... -:: I~".'...... 'r: ... "_0' .•O' ."",,_, 00 _ .•,," ,,_ 0'''. , w

:: >' "

i ,, ,, .. , .•,

Depth to water, July 1, 1993, Modeled Reach 3...... :: ...... :: , , :1 r"-r--':7+--' " ...... " :: :: '::-: 0" " ., :! " " .. " .. .. " .. :: :: " " .. n :': :: ~: :n :: .n u " :-: " " :: :: :: " .. H :: .. .. :: " " :: I " :: .. .. :': :0: ...... :: :: ':': .. .. H :: " :: :: '", :: .. .. '" :: " _ I. IUt .. " :: :: :: :: .. :: :! :: a: " h " ,1,1 "'" .: .- -:: :: ! ,E ,: H .. "00 .. "_,n ",.,- ...., ...... 0.... "'" ""'"" ...,,, .. .. ::: .... -'...... "'" .... ,."" ••-." In, ."""., 00._ ••C>O_,,,,, .... •-­"ot,'" .,.,. ,...,..

:1 .. :: .. :,: Saturated Thickness Map, ~~~~ ::~: ~: July 1, 1973, Modeled Reach 3. "]D'.. .. ~. .: 3,-- .; ...

:OJ :OJ ." .OJ :, ••

_",t_

:OJ ~': f;-:f: ~, .S ._. " ",-. III " ... ,...... " .. 10 ...... " 10 " ,:,,~~ ~:'.. .::..~.;! ~,~, ...... •• • .. 1 " ..'l< .... _ ...... ~ ...... "" ,,_0, ••t> ."""., 10 _ ,,, ­ , ..

Satur~ted Thickness Map,

July 1, 1993, Modeled Reach 3. ;: .: :: co: :0: , " " F' • i. t;- i. :i~ "I-;-

..

, Cb'" TIl IVIT' -....,. _. I ',CICIO" 1._,, __....,"" '.CICIO·· _,.. • "',_' 00, __,,, 00."".,CICIO··• 00, ___,It,,, • ""CICIO· .... _ '" ...... _...,.. • .... CICIO·· 00._....'n, .....,...... '.""...... ". . . u...., u._, 00._,"_""'''.'''. . . ,,.

Transmissivity,

July 1, 1973, Modeled Reach 3. ·, , ·, ., .. ·, ., ., ·, ., ·, ·, ., ., , , , , ;; , ·, · ·,, ", · · ., " • ., ., ,, i; :; :; :: , ·, " . ., ·, ,, , ·. ,, .. ~: .. ·, ·, .. •, •, ., ., , , , , :: ,, H :': , • . · " ., ·. " ., . · ;:; , , , :; .. ., n ., ,, ., -. · . " il' " , i_ ;; i. iii ., ., , , · " .. ., . n ·. ·. , , , , " ;i :; , " . . . ., ., :: .. , .. i: 0: .. ·. ! · ., ., :: ,, n .. " .. ·. ., ., ., .. ., ., ,, ~'-: Ii'\' ; ., ·. ., I ., .. ., ., ., ., ,, ': I'\' : n i. n , :1;: ': ; ., • ii H .. il; ·. i: ii .. :; .o. n .. i; ·. .. ;; ::: i_ '"I T.a., •• "IVI,,, ·. " " '" , -. il; .. .. ·. .. -- .; ;:: ; : :; ., ., ., ., ';'0 , , , , . 0:": .. · · ., , ' .. ,.. " " , ,, ., , ·, , , , .-.• 1.000 •. _ ,,, _ ...... 1,_· '•.'._-'"__'" · · . :• ::::00,_-' :::00. __::::::'00 :::.::,: :c::: .. ., .. ';::.:: :::: .--,,,:: .'.'-:: ...... ·, , ,, .._t ' ""., ,_ .,. .- 01'" , .. ,, ·, ·, ·, ·, , ·, •, ·, ,, •, ,, ,, ,, , T1 'ansmiss i vity it • D· ,, ,. -, ,. ,, July 1, 1993, Modeled Reach 3. ,, APPENDIX C

RESULTS FOR MODELLED REACH 4

Page

Pr i or Ri gh t s Pump i ng •••••••••••••••••••••••••••••••••••••••••• C- 2 - C- 4

Wa t er Dist r i bu t i on Summar i es •••••••••••••••••.•••••••••••••••• C- 5 - C- 7

Water Table ...... •...... •...... 0" C- 8 - C-l0

Depth to Water ••••••••••••••••••••••••••••••••.•••••.•....•••• C-l1 - C-16

Saturated ThicKness ••••••••••••••••••••••••••••••••.••••••••.• C-17 - C-"

Transmissivi tYIO ••••••••••••••••••••••••••••••••••••••• , •••••• C-23 - C-28

C-l R5W R4W R3W R2W

-) -) ~ "---... PRIOR RIGHTS PUMPING

T5N

GrId, Co. .-.- GIrvin Co.

T4N o I .; u·u

() ...""I"'• -t Pumping RU•• -) I Zone N a .• I.cr.-f••"ac,.) -) I" .1 0.0-0.1 "--...... -) Modeled Reech A 2 0.1-1.0 -) Conitent O,.dllnt a 1.0-2.0 -) Boundlr, 4 2.0-3.0 o 2.1 I 3.0-4.0 Mil--•• 4.0-1.0 - •7 1.0-1.0

Prior Rights Pumping,

Subreach A, Modeled Reach 4. R 1 W R1E R2E

Modeled Re8ch B ~e:a..-~ T4N ~ -4 -> ___-~L-."';;'

T3N

PRIOR RIGHTS PUMPING

Pumpl". R.t•• Zone (.cr.-'••t/.cr.) 1 0.0-0.5 Gerome... T2N 2 0.5-1.0 -_.-,e...--- 3 1.0-2.0 4 2.0-3.0 5 3.0-4.0 I 4.0-5.0 7 5.0-e.o

T1N o-...._.2.5

Prior Rights Pumping,

Subreach B, Modeled Reach 4.

C-3 R2E R3E R4E RSE R6E I ! I • PRIOR RIGHTS PUMPING tll -!u!r!!.E0' Murrav Co. I . Pumping Rata Cartar Co. JOhnaiiiRCo• Zona • (acre-faat/acra) 1 0.0-0.1 2 0.1-1 •.0 cll~ 3 1.0-2.0 T3S U " 4 2.0-3.0 ~a.~° ~I: I 3.0-4.0 u.~.'" I 4.0-1.0 7 1.0-1.0 I () I ~

T4S

Modeled Reach C --'> Conatant Gradient ~ Boundary - t Johnaton Co. .rT·-l- ° . - iI;;;hej. co.- O 2.1 ~ ~e",I'~. I' I 1:.. ,.• --.MAaa u i~

Prio~ Rights Pumping,

Subreach C, Modeled Reach 4. AREA: SCWA RUN, A830730.0942 NOOE AREA' 160 ACRES PUMPING PERIOO, 0.33 (FRACTION OF YEAR) RETURN FLOW RATE: 15 PERCENT NET PUMPING RATE: 85 PERCENT

SATURATED AREA AVERAGE AVERAGE THICKNESS (PERCENT SATURATED SPECIFIC STORED RANGE OF AREA THICKNESS YIELD WATER ( FEET) TOTAL) (ACRES) ( FEET) (PERCENT) (AC. FT .) ------~--- 10.0-- 20.0 9.3 5.120 17.3 25.7 22.752 20.0-- 30.0 15.7 8.640 24.9 25.7 55.353 30.0-- 40.0 33.0 18.240 35.3 25.8 166.335 40.0-- 50.0 27.8 15.360 44.5 25.8 176.418 50.0-- 60.0 11 .6 6.400 54.4 25.9 90.312 60.0-- 70.0 2.6 1.440 63.1 25.8 23.460 ------ALL lUNGES 100.0 55.200 37.5 25.8 534.63t (TOTAL) ( TOTAL) (AVERAGE) (AVERAGE) ( TOTAL) ------OATA FROM: A830730.0942 RUN 20YR.ALL~C.882.RIVeR-20.FT.RATE=7. 1E-6.0RE:4.41IN/YR

AREA: SCWA RUN, A830730.0942 NOOE AREA, 160 ACRES PUMPING PERIOD: 0.33 (FRACTION OF YEAR) RETURN FLOW RATE: 15 PERCENT NET PUMPING RATE: 85 PERCENT

WATER DISTRIBUTION SUMMARY !JULY 1. 1993

SATURATED AREA AVERAGE AVERAGE THICKNESS (PERCENT SATURATEO SPECIFIC STOReD RANGE OF AREA THICKNESS YIELD WATER (FEET) TOTAL) (ACRES) (FEET) (P;:RCENT) (AC . FT .) ------0.0-- 5.5 50. 7 28.000 5.2 25.8 37.296 5.5-- 10.0 19. 1 10.560 7.4 25.8 20.272 10.0-- 20.0 25 .5 14.080 13.7 25.9 49.867 20.0-- 30.0 4 .6 2.560 23.2 25.9 15,383 ------ALL RANGES 100.0 55.200 8.6 25.8 122,818 ( TOTAL) ( TOTAL) (AVERAGE) (AVERAGE) ( TOTAL)

DATA FROM: A830730.0942 RUN 20YR.ALLOC.882.RIVER-20.FT.RATE=7.1E-6.QRE=4.41IN/YR

Water Distribution Summaries,

Subreach A, Modeled Reach 4.

C-5 AREA: scwa RUN: A830725.230a NODE AREA: 160 ACRES PUMPING PERIOD: 0.33 (FRACTION 0, YEAR) RETURN FLOW RATE: 15 PERCENT NET PUMPING RATE: 85 PERCENT

SATURATED AREA AVERAGE AVERAGE THICKNESS (PERCENT SATURATED SPECIFIC STOREQ RANGE OF AREA THICKNESS YIELD WATER (FEET) TOTAL) (ACRES) (FEET) (PERCENT) (AC.FT. )

10 .0-- 20.0 0.3 160 19.7 30.0 946 20. 0-- 30.0 9.0 4,960 27.2 30.0 40.511 30. 0-- 40.0 33.3 18,400 35.6 30.0 196.241 40 0-- 50.0 33.9 la,720 43.9 30.0 246,357 50. 0-- 60.0 14.2 7,840 53.5 30.0 125.874 60 .0-- 70.0 3.2 1.760 63.0 30.0 33.256 ------ALL RANGES 93.9 51,840 41.4 30.0 643, t85 (TOTAL) (TOTAL) (AVERAGE) (AVERAGE) ( TOTAL) ------~------DATA FROM: A830725.2308 RUN 20YR,ALLOC1. 14,RIVER-10.,RATE~9.265E-9,ORE=4.15IN/VR

AREA, scwa RUN: A830725.230a NODE AREA: . 160 ACRES PUMPING PERIOD: 0.33 (FRACTION OF VEAR) RETURN FLOW RATE: 15 PERCENT NET PUMPTNG RATE: 85 PERCENT

WATER DISTRIBUTION SUMMARY JULY 1, 1993

SATURATED AREA AVERAGE AVERAGE THICKNESS (PERCENT SATURATED SPECIFIC STORED RANGE OF AREA THICKNESS VIELD WATER (FEET) TOTAL) (ACRES) (FEET) (PERCENT) (AC."",. )

0.0-- 5.5 47.8 26.400 4.7 30 .0 37,003 5.5-- to.O 25.2 13,920 7. I 30 0 29.555 10.0-- 20.0 16.2 8.960 13.1 30 0 35,087 20.0-- 30.0 4.6 2.560 22.5 30 0 17.267 ------ALL RANGES 93.9 51,840 7.6 30.0 118.913 (TOTAL) ( TOTAL) (AVERAGE) (AVERAGE) (TOT AL)

DATA FROM: A830725.2308 RUN 20VR,ALLOC1. 14,RIVER-tO. ,RATE=9.265E-9,ORE=4.75IN/YR

Water Distribution Summaries,

Subreach B, Modeled Reach 4.

c-6 AREA: SCWC RUN: A830726.2210 NODE AREA: 160 ACRES PUMPING PERIOO, 0.33 (FRACTION OF YEAR) RETURN FLOW RATE: 15 PERCENT NET PUMPING RATE: 85 PERCENT

SATURATED AREA AvERAGE AVERAGE THICKNESS (PERCENT SATURATED SPECIFIC STORED RANGE OF AREA THICKNESS VI ELD WATER (FEET) TOTAL) (ACRES) (FEET) (PERCENT) (AC.FT. )

5.5-- 10.0 0.6 320 8.6 32 .0 881 10.0-- 20.0 14.2 7,840 16.3 32 .0 40.785 20.0-- 30.0 24.6 13.600 23.6 32.0 102.765 30.0-- 40.0 11.6 6.400 34.1 32.0 69.895 40.0-- 50.0 9.3 5,120 45.9 32.0 75.142 50.0-- 60.0 10. 1 5.600 55.4 32.0 99,310 60.0-- 70.0 8.1 4.480 64.8 32.0 92.851 70.0-- 80.0 2.0 1,120 73.4 32.0 26.299 ------ALL RANGES 80.6 44,480 35.7 32.0 507.927 (TOTAL) ( TOTAL) (AVERAGE) (AVERAGE) (TOTAL) ------DATA FROM, A830726.2210 RUN 20VR.ALLOCf.2,RIVER-3,RATE-9.8E-9,ORE=S.OOIN/VR

AREA, SCWC RUN: A830726.2210 NODE AREA: 160 ACRES PUMPING PERIOD: 0.33 (FRACTION OF YEAR) RETURN FLOW RATE: 15 PERCENT NET PUMPING RATE: 85 PERCENT ------WATER DISTRIBUTION SUMMARV JUL V" 1993 ------SATURATED AREA AVERAGE AVERAGE THICKNESS (PERCENT SATURATED SPECIFIC: STOREO RANGE OF AREA THICKNESS VI ELD WATER (FEET ) TOTAL) (ACRES) (FEET) (PERCENT) (AC.FT. )

0·0-- 5.5 40.6 22,400 4.5 32.0 32.412 5.5-- to.o 12.2 6.720 6.3 32.0 13.643 10.0-- 20.0 8.1 4,480 15.3 32.0 21.991 20.0-- 30.0 16.2 8,960 24.2 32.0 69.343 30.0-- 40.0 3.5 1,920 32.3 ~2.0 19.872 ------ALL RANGES 80.6 44,480 11.0 32.0 157.267 ( TOTAL) (TOTAL) (AVERAGE) (AVERAGE) ( TOTAL) ------DATA FROM: A830726.2210 RUN 20VR.ALLOC1.2,RIVER-3,RATE=9.8E-9,QRE=S.OOIN/VR

Water Distribution Summaries,

Subreach C, Modeled Reach 4.

C-7 RS W R4W R3W R2W _I ,; -O---~:'-;':'----- :.:....::::.-;.:e..-__------t----

-) () I• () 1973 -)I~~~ -)L.. ~~ :eI!u ALLOCATION CI' .. f TSN 1:1 WATER TABLE MAP i Gradv.--.-Co. .-.- Garvin Co.

n I T4N 0> o I cl ·0 () .() o '0.'"'Ie-~ ".o c; ••CI Contour Interva' Modeled Reach A I 10 It oil -) Conlant Gr.dlenl o o -> Bounderv '0 -.2.11 -Mlle• •

Water Table Map,

Subreach A, Modeled Reach 4. R1W R1E R2E

Modeled Reach B -"'--'-880 ~e--~ T4N -> 110o _,

t T3N ...0 N • I

1973

ALLOCATION WATER TABLE MAP

T2N ContoOll "'tanal 10 It

T1N

Ci 2.5 8M.... •

-'--'-'-'eo.-GIIvlnCo.

Water Table Map,

Subreach B, Modeled Reach 4. R2E R3E R4E RSE R8E 1, .1 . 1873 Ll! lIur.r~O: -1.1__ John.lon Co. • ALLOCATION WATER TABLE MAP

Conlour Inl.",.I· T3S U°lg" ..~ -0 10 It 1:1....2 U 0 ,~

T4S

Modeled Reach C --'> Con.l.nl Gr.d"nl ~ Bound.rv - -._ . .rT,J-" . 81'~ .. l) " 1:•••• II"•• UJ• •

Water Table Map, Subreach C, Modeled Reach 4. R5W R4W R3W R2W

-) Ii IS -) a,a Depth to Weter ~ 1 3 11 - o 1 "I"• ! a·e,) JUI~ 1, 1873 , I~ t T5N 2 N 1 2 I 0 1 2 2 1 2 2 1 2 Grad. Co. McClain Co. 1 o 1 2 .--.- Garvinco. 2 2 2 .-.- Garvin Co. 23 2 1 20 0 2 1 2 0 2 1 2 n 0 ....I T4N Ii Ii .... a •Ia 1 0 1 1 11 - Zona 8ample. 3411 ... ,"~ 2 3 -4 0 0-20 II 100-120 M•• 102 It 1 -) ci • • 1 1 20-40 II 120-'40 Ave 28 0 -) Modeled Reach A I" 2 40-110 7 140-110 Min 3 ~> Conatanl Gradlenl 3 110-80 8 110-180 -) 8oundar. 4 10-100 8 110-200 0 2.11 -Mil--••

Depth to water, July 1, 1973, Subreach A, Modeled Reach 4. R5W R4W Raw R2W

-)I~:="--. o 0 -) a.a Depth to Water -:lL-.-~r'T-..,,., ~I"- ....•.aJ! ell' U Jul, 1. 1883 T5N 1:1

McCI.ln Co. Gmine. G.rvln Co. 3 I 4 343 3 3 2 3 n 3 I 2 ... T4N 1 '" aci •Iaci ~I"- Zone ••mpl•• ... ~ 3 -) c; •• o 0-20 I 100-120 M.. It -) 1 20-40 8 120-140 Av. 3 1 _) '-'-'-... Modeled Reach A I" 2 40-80 1 140-180 Min -} Coutant G,,,dlant 3 80-80 8 180-180 -) Bound.r, 4 80-100 II 1.0-200 O·-_.2.11 Mil••

Depth to water, July 1, 1993, Subreach A, Modeled Reach 4. R 1 W R1E R2E

Modlled Reech B 2 ~ eon.tIInt CbdIenl T4N 800 _, -4 1 -> __-=-~ L..l._,.,.,

T3N

Depth to Water

Jal, 1, 1973 -

Zona

0 0-20 5 100-120 1 20-40 1 120-140 T2N 2 40-10 7 140-180 3 80-10 1 180-110 4 80-100 9 180-200

Sampl•• 324 II•• 108 It Av. 25 T1N IIln o 1 23 2 1 o 2:5 1 MM.- GeMleo. 1 --.,eo. +_

Depth to water, July 1, 1973, Subreach B, Modeled Reach 4.

C-13 R 1 W R1E R2E

Modelec:l Reach B 3 3 4 ~ can.wd GredIenl T4N 3 ~ --4 3 -? -_.... 3 ---=~- - ...... 4 35 4 5 3 4 1 3 T3N 1

Depth to Water 3

Jul, 1, 1883 2 Zona

o 0-20 5 100-120 1 20-40 1 120-140 3 T2 N 2 40-10 7 140-110 ----.-o.w.eo. 3 10-80 8 110-180 4 . -.,eo. 4 80-100 8 180-200 3 4 '1 Sampla. 324 Ma" 141 It 4 3 Ava 57 4 2 T1N Min 32 3 3 o 2.5 MM. - 4 3 3 7

Depth to water, July 1, 1993, Subreach B, Modeled Reach 4.

C-14 Depth to water, July 1, 1973, Subreach C, Modeled Reach 4. R2E R3E R4E RSE RSE I I I • .1 • Depth to Wete, l1L Murra, Co. Mu,!a, Co: ....J.! _ '-T-=I.--r:~ C.,,..-co: Jollna'on Co. Jul, 1, 1883 a .i • Zona o 0-10 • 100-110 8 8ampl~a 178 T3S 8/ 1 10-40 I 110-140 ~ g Mall 117 tt I 40-10 ..- 7 140-110 Ava :Il! 10 c1~ 3 10-80 8 110-110 () Min ....I ." 4 80-100 8 1 BO-IOO • '" 4 3 4 '--+4:"1 "'1:+------:3P -, , I

T4S 1 1

Modeled Reech C I • I --l> Cona'ant G,adlant ~ Bounda" I • __ _ J~IIna'on «:0.;.. ~1-+,.. .- M.,all.U Co. cI·ufT·-l-• o_w_I.' J, Mil•• illa I I

Depth to water, July 1, 1993, Subreach C, Modeled Reach 4. R5W R 4 W R3W R2W

-) 5 -) 2 Saturated Thlckne•• -) 5 4 2 4 Julr " ,.73 ~ 5 4 T5N N 5 I

Gradr Co. McClain Co. .--.- GminCO'• - . .-.- Garvin Co. 4 5 6 3 5 4 () I 2 4 ..,.... T4N 4 .. I .; 3 U • U 2 """"-~ Z_ 2 4 . Samp'aa 345 -) ci •• m:J~Z- 5 3 0-5.1 Ma. •• ft 4 5 -) Modeled Reach A /" A•• a7 1 11 ••- 10 5 40-50 Min 11 -) Conalanl Gr.dlanl 2 10-20 6 50-.0 -> Boundarr Siorav. 0 2.5 3 lo-ao 7 60-70 ac-n - 4 30-40 8 70-80 534,.31 MII.a--

Saturated Thickness Map,

July I, 1973, Subreach A, Modeled Reach 4. ~ R5W R4W R3W R2W

-) ().()old -) Saturated Thlckne•• ~ ."IS~ "l! ...u JuIv 1, 188a f T5N 1:1 N I

Grad. Co. .--.- - . .-.- Gar.ln Co. n I .... T4N d I.; CD () .() - t-t7l"'...... _) .."I"~ Zone a .• £II ~zone ,.mple. 34. -) 0-." .... 28 ft W""-A:.I -) Modeled Reach A I" A.a 8 1 ' ••-10 • 40-110 -) Con.t.nt Gr,dl.nt ..... 2 10-20 II 110-110 • -) Bound... 8tor'II' o 2.11 I 20-ao . 7 110-70 .e-tl - . 4 30-40 • 70-80 122,818 - "II••

Saturated Thickness Map,

July 1, 1993, Subreach A, Modeled Reach 4. R 1 W R1E R2E

Mod8led Reach B

~e:-_~ T4N 5 -> 8cIl.I_,

5 34 3 4 '5 47 7 I ~ 5 4 T3N Saturated Thlckne•• 5 N 4 ....., " 1873 4 I 4 3 -Zo.... 3 5 .. Dry Zone 4 0-6.6 ft-

1 6.6-10 6 40-60 2 10-20 I 60-10 3 4 c.w.CG. T2N 3 20-30 7 10-70 53 4 30-40 I 70-10 . ---1IuInlyCG.-- 3 5 '""-6,..--,....,·1 8.,-,,"1.. 324 _. II St__ 41 ec-tt Min"". 20 843,181 T1N 3 ()---•2.5 4

Saturated Thickness Map,

July 1, 1973, Subreach B, Modeled Reach 4.

C-19 R 1 W R1E R2E

Mod81ed Reach B ~Cone_~ T4N ~ ac.-,

T3N Saturated Thlckne•• .lui, 1, 188.

-- Zone. lim :?6~6~~·

1 6.5-10 5 40-60 2 10-20 8 50-eO GllWleo. T2N 3 20-30 7 110-70 -_. --- 4 30-40 8 70-80 -..,eo.

S,,,,p". 324 2• • tor_ "Sll _ fl. A". 8 IIIn 2 118,813 T1N o-_.2.5

Genft eo. - -..,eo.--

Saturated Thickness Map,

July 1, 1993, Subreach B, Modeled Reach 4.

C-70 RZE R3E R4E RISE R8E I • I • Saturatad Thlckna.. 111 Murray Co. Mu,!ay Co; .....!_ July 1,1173 ~'::'--l...., Johnaton Co• C.,terco.· • Zona D,y Zona tl9 0-1.1 It .amplea 278 ., 0 1.1-10 40-10 Mn 71 Storalla ° U 1 I T3S U " • 2 10-20 I 10-80 Ava 18 ac-n ~a.·° a 20-ao 7 80-70 107,127 • • Min I ("l ~I" 4 aO-40' 8 70-80 I " '".... U.."°

8

2 T4S 2 3 3 Modeled Reach C 2 2 -!> Conltlnt G,adlent ~ Boundery 4 0 .J- .- • __ • _J~~ C: .:- l..---471-:-I r.:: Mallhlll Co. . ° • 81'~~ . 1:a"• Mllal uJ. ~ I I

Saturated Thickness Map,

July 1, 1973, Subreach C, Modeled Reach 4. ' R2E R3E R4E RaE R6E I I • .1 • Saturated Thlckne.. Murrer Co. Mu,.'er co: L1L ..J.' _ Ju1r 1,1883 -c.,t;;Co.· Jollnlton Co• • Zone E:] Drr ZOIl. 0-'.1 It .emplel 17. ol~ 1 1.1-10 I 40-10 M.. 1I3 Storeg. T38 u " a 10-ao I 10-10 Ave 11 IlC'"rt ~ 0 aO'.377 !.; a ao-ao 7 10-70 Min o •~I"II: 4 aO-40 I 70-10 U 0 I "IV ." IV 3

2 T48

Modeled Reach C -> Conilint Oradlent ~ Bounde'r Jollnlton Co• .-!- .- - MerlhAil Co7' • o a.• - -M I Mllel

Saturated Thickness Map,

July 1, 1993, Subreach C, Modeled Reach 4. RSW R4W Raw R2W o ,) u,u ·1873 Tren8ml881vlty ""1.£I!! u.! Ipdt" " ' u TSN 1:1

O,adw Co. McClain Co. .-.- Oa,vln Co. ouvinCO. 1 ~ n I N w T4N 1 1-10,000' 5 40,000-50,000 I" '------) Modeled Re.ch A 1 1 O,OOO-IO,OO~ 8 50,000-80,000 ~) Con.t.nt Oradl.nt ~ Bounderw 3 10,000-30,000 7 80,000-70,000 o 2.6 4 30,000-40,000 -MU--••

Transmissivity,

July 1, 1973, Subreach A, Modeled Reach 4. R5W R4W R3W R2W

-) cl cl -) u,u 1993 4 11 - . Trallamlaalvlt, "'I"•.. uJt Cli~ lIpdiu ~ T5N 1 f

Orad, Co. McClaIn Co. .-.- O...... vinCO. 1 - . '-.- Oarvln Co.

1 n I 1 1 N T4N ci " u 11 "' -~ • Zona CI.. -) 1 1-10,000 II 40,000-110,000 -) Modaled Reach A 2 10,000- 2 0,000 II 10,000-110,000 -) Conatant O,.dlant -) Boundar, 3 20,000-30,000 7 110,000-70,000 0 2.1

4 30,000-40,000 - MII.a- -

Transmissivity,

July 1, 1993, Subreach A, Modeled Reach 4. A 1 W A1E A2E

Modeled Reach B ~ e:--GrIllIent T4N -> . 110I _,

5

7 1 7 1 5 T3N 3 4 1973 Tran8ml88lvlty_ 3 IPdlfl Zone 1 1-10,000

2 10,000-20,000 T2N ...eo. 3 20,000-30,000 . ._-----.,eo. 4 30,000-40,000 3 ,....5--+-.·1 5 40,000-50,000 H-+,,., 1 5

1 50,000-10,000

7 10,000-70,000 4 5i T1N • 4 5 4 c- 2.5 • 4 -- 4 - 4 --n;;co.GeMleo. t -- Transmissivity, July 1, 1973, Subreach B, Modeled Reach 4.

C-25 R 1 W R1E R2E

Mod'led Reach 8

~ CoI..-1t Go " It T4N ~ -4 .. idIIIJ -~ 3 1 2 T3N

·1993 1 Transmissivity gpdftt

Zone 1 1-10,000

2 10,000-20,000 T2N . _.o.w.eo._e _ 3 20,000-30,000 _ ,eo.

4 30,000-40,000

5 .40,000-50,000

8 50,000-80,000 m

7 80,000-70,000 T1N

o 2.5 eM.... •

Transmissivity,

July 1, 1993, Subreach B, Modeled Reach 4.

C-26 R2E R3E R4E RSE R8E I I • 1873 I • t1L Mur!~o: _1'--__ Tranamlaalvlty •Johnlton Co. lIPdlft Zone 1 1-10,000 I 71,000-100,000 6 T3S ou.1 a 10,000-21,000 • 100,000-121,000 u~ "0 ..- a 21,000-10,000 7 121,000-110,000 ;:I!~ U. 0 .~ 4 10,000-71,000 a 110,000-171,000

() I to "

T4S

Modeled Reach C -> Conitint Gradlant 2 ~ Bounderr Johnllon Co. '---f"+o-l-> .-L- .- .- •- iII;;;';;1 Co~ ~ r.r • o 2.1 gl'~~ _M_ .~ . MII.I i ~ I U•:I

Transmissivity,

July 1, 1973, Subreach C, Modeled Reach 4. . R2E R3E R4E RSE R6E I • I 1993 I -. tll Murre, Co. Mur!~o: -.1' _ Tranamlsslvlty C.rl;;Co.· Johnalon Co. • IPd/ft Zone 1 1-10,000 I 71,000-100,000

ou./ .. 2 10,000-21,000 S 100,000-121,000 T3S U r: ~ 0 e.­ a 21,000-10,000 7 121,000-110,000 -•~Ir:.r:. U 0 1 2 4 10,000-71,000 B 110,000-171,000 o ." I N co a I 1 T4S I 2 Modeled Reach C -l> Conatant Gredlent -..;> Boundar, Johnalon Co. .J- .- .- - M;;;;;ai, Co-:- • o 2.1 - M_ I I MII.a

Transmissivity,

July 1, 1993, Subreach C, Modeled Reach 4.