The Neurogenomics View of Neurological Diseases

Total Page:16

File Type:pdf, Size:1020Kb

The Neurogenomics View of Neurological Diseases NEUROLOGICAL REVIEW SECTION EDITOR: DAVID E. PLEASURE, MD The Neurogenomics View of Neurological Diseases Shoji Tsuji, MD, PhD he availability of high-throughput genome sequencing technologies is expected to revo- lutionize our understanding of not only hereditary neurological diseases but also spo- radic neurological diseases. The molecular bases of sporadic diseases, particularly those of sporadic neurodegenerative diseases, largely remain unknown. As potential mo- Tlecular bases, various mechanisms can be considered, which include those underlying apparently sporadic neurological diseases with low-penetrant mutations in the gene for hereditary diseases, sporadic diseases with de novo mutations, and sporadic diseases with variations in disease- susceptible genes. With unprecedentedly robust power, high-throughput genome sequencing tech- nologies will enable us to explore all of these possibilities. These new technologies will soon be applied in clinical practice. It will be a new era of datacentric clinical practice. JAMA Neurol. 2013;70(6):689-694. Published online April 9, 2013. doi:10.1001/jamaneurol.2013.734 The elucidation of the molecular bases of ologicpathwaysunderliebothhereditaryand neurological diseases is fundamental to the sporadic neurodegenerative diseases. development of disease-modifying and pre- In contrast to the molecular bases of he- ventive therapies.1 Over the past 3 decades, reditary neurological diseases, the molecu- we have witnessed remarkable progress in lar bases of sporadic neurological diseases, the identification of the genes that cause he- particularly those of sporadic neurodegen- reditary neurological diseases (Figure 1).2-4 erative diseases, largely remain unknown. This has been accomplished mainly on the A potential clue to the molecular bases of basisoftheresearchparadigmknownas“po- sporadic neurological diseases may be the sitional cloning,”5,6 which uses linkage stud- clinical observation that siblings and rela- ies to pinpoint the position of genes on chro- tives of a patient with a neurological dis- mosomes followed by the identification of ease are at an increased risk of developing thecausativegene.Theidentificationofcaus- the same disease; this phenomenon has been ative genes has further made it possible to observed with regard to Parkinson disease develop disease models for hereditary neu- (PD)12 and amyotrophic lateral sclerosis.13 rological diseases7-10 and to develop thera- These clinical observations suggest the in- peutic strategies.11 volvement of genetic factors in these dis- The majority of neurological diseases, eases (Figure 1). Until recently, it has been however, are sporadic without any obvious difficult to elucidate the genetic factors un- familial occurrence. We are thus faced with derlying sporadic neurological diseases. the challenge of elucidating the molecular bases of sporadic diseases. Intriguingly, the CME available online at clinical presentations and neuropathologi- jamanetworkcme.com cal findings of hereditary forms of neurode- and questions on page 683 generative diseases are often indistinguish- able from those of sporadic diseases, raising Rapid advancements in genome science, the possibility that common pathophysi- particularly the availability of massively Author Affiliations: Department of Neurology, Graduate School of Medicine, parallel sequencing technologies that use University of Tokyo, and Medical Genome Center, University of Tokyo Hospital, next-generation sequencers (NGSs), are Japan. revolutionizing the neurogenomics view of JAMA NEUROL/ VOL 70 (NO. 6), JUNE 2013 WWW.JAMANEURO.COM 689 ©2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 exome sequence analysis, the enrichment of exonic se- Road Map to Personal Genome Medicine quences using oligonucleotide “baits,” which is followed by sequencing, has been preferentially used. With this strat- Human genome sequence (April 2003) egy, all exonic sequences in the human genome can be ef- ficiently enriched.18-20 With this approach, more than 90% Human genome variation of target regions can be enriched, and these enriched ge- Pharmacogenomics nomic regions are then subjected to massively parallel se- Sporadic diseases Hereditary diseases (complex trait) (Mendelian trait) quencing using NGSs. This approach is currently being used a lot for the identification of disease-relevant variants21-31 Variants: related to Variants: susceptibility Variants: causative and even for diagnostic purposes.32-35 drug reactions mutations Given the ever-increasing throughput of NGSs and the • Differences in drug • Diagnosis • Diagnosis dramatically decreasing costs, it will soon be a realistic response and • Disease-modifying • Disease-modifying adverse effects therapy therapy approach to conduct whole-genome sequencing for vari- ous research applications (Figure 2).36-40 Studies have shown that there are more than 3 million variations in Personal genome medicine 40 Optimization of treatment and prevention the human genome of each individual. In one study, of disease based on personal genome among the 3.3 million single-nucleotide polymor- phisms (SNPs), 8996 known nonsynonymous SNPs and 1573 novel nonsynonymous SNPs were identified. In- Figure 1. Diagram showing the road map to personal genome medicine. Since the completion of the human genome sequence in 2003, the research focus in terestingly, 32 alleles exactly matched mutations previ- human genetics has moved to how human genome variations affect human ously registered in the Human Gene Mutation Data- health. Human genome variations are considered to be associated not only base. In addition, 345 insertions/deletions were observed with hereditary diseases but also with sporadic diseases. In addition, human genome variations are also associated with differences in drug responses and to overlap in a coding sequence and may alter protein 40 adverse effects. Optimization of treatment and prevention based on personal function. These findings indicate that, among the nu- genome information will soon be a realistic paradigm in clinical practice. merous candidate variations, it will be a challenge to de- termine which variations are relevant to diseases. sporadic neurological diseases. The elucidation of the ge- Given the enormous number of short read sequences nomic variants underlying sporadic diseases is expected to (~100 bp), informatics analyses, including mapping to ref- provide some answers that will help us to develop disease- erence sequences and indentifying variations, require a huge modifying and preventive therapies. computational power.41-45 Furthermore, mutations can be Another important field is pharmacogenomics, in variable, including single base substitutions, insertions/ which genomic variations underlie differences in drug deletions, and structural variations. It is difficult to effi- responses and adverse drug effects (Figure 1). This field ciently identify all the variations using currently avail- is currently being introduced into clinical practice. able NGSs and software. For example, expansions of repeat Thus, it will be essential to better understand how hu- motifs identified in frontotemporal dementia and amyo- man genome variations affect our health with regard to trophic lateral sclerosis46 are difficult to identify using NGSs. diseases with Mendelian or complex traits, as well as with As already stated, most of the currently available NGSs regard to pharmacogenomics. Herein, the neuroge- produce billions of short reads of 100 to 150 bp. This is nomics view of neurological diseases and the future di- the limitation in analyzing various structural variations, rections of clinical practice are discussed. some of which may be relevant to neurological diseases. Very recently, single-molecule sequencing technology has HIGH-THROUGHPUT GENOME become available from Pacific Biosciences; this type of SEQUENCING TECHNOLOGIES technology enables the acquisition of nucleotide se- quences as large as 10 kilobases.47,48 Another single- Emerging new technologies for nucleotide sequencing molecule sequencing technology using nanopores, which have brought about a remarkable revolution in analyses allows for the acquisition of much longer sequences,49 of the human genome sequence. Compared with a con- will soon become available. ventional technology (namely, the Sanger method),14,15 the throughput of massively parallel sequencing that uses EFFECT OF HIGH-THROUGHPUT GENOME NGSs16 is increasing dramatically, with the current SEQUENCING ON UNDERSTANDING throughput at 600 GB per run, which means that a suf- THE MOLECULAR BASES OF HEREDITARY ficient amount of sequence data can be obtained for whole- NEUROLOGICAL DISEASES genome sequencing of at least 4 individuals.17 In typical experiments, billions of short reads (100-150 base pairs The strategies for identifying causative genes for heredi- [bp]) are obtained. These short reads are aligned to hu- tary diseases have been well established.5,6 The chromo- man genome reference sequences, and sequence varia- somal localization of the disease-causing genes is pin- tions are called through computational analyses. pointed by linkage analysis using polymorphic DNA Currently, 2 types of sequencing strategy (namely, whole- markers.50-52 Although a number of genes have been iden- exome and whole-genome sequence analyses) are used. Be- tified by applying these technologies, more than 50% of cause the cost of whole-genome sequencing is still consid- the genes causing
Recommended publications
  • Whole Exome and Whole Genome Sequencing – Oxford Clinical Policy
    UnitedHealthcare® Oxford Clinical Policy Whole Exome and Whole Genome Sequencing Policy Number: LABORATORY 024.11 T2 Effective Date: October 1, 2021 Instructions for Use Table of Contents Page Related Policies Coverage Rationale ....................................................................... 1 Chromosome Microarray Testing (Non-Oncology Documentation Requirements ...................................................... 2 Conditions) Definitions ...................................................................................... 2 Molecular Oncology Testing for Cancer Diagnosis, Prior Authorization Requirements ................................................ 3 Prognosis, and Treatment Decisions Applicable Codes .......................................................................... 3 • Preimplantation Genetic Testing Description of Services ................................................................. 4 Clinical Evidence ........................................................................... 4 U.S. Food and Drug Administration ........................................... 22 References ................................................................................... 22 Policy History/Revision Information ........................................... 26 Instructions for Use ..................................................................... 27 Coverage Rationale Whole Exome Sequencing (WES) Whole Exome Sequencing (WES) is proven and Medically Necessary for the following: • Diagnosing or evaluating a genetic disorder
    [Show full text]
  • Whole Exome Sequencing Faqs
    WHOLE EXOME SEQUENCING (WES) Whole Exome Sequencing (WES) is generally ordered when a patient’s medical history and physical exam strongly suggest that there is an underlying genetic etiology. In some cases, the patient may have had an extensive evaluation consisting of multiple genetic tests, without identifying an etiology. In other cases, a physician may opt to order one of the Whole Exome Sequencing tests early in the patient’s evaluation in an effort to expedite a possible diagnosis and reduce costs incurred by multiple tests. Whole Exome Sequencing is a highly complex test that is newly developed for the identification of changes in a patient’s DNA that are causative or related to their medical concerns. In contrast to current sequencing tests that analyze one gene or small groups of related genes at a time, Whole Exome Sequencing analyzes the exons or coding regions of thousands of genes simultaneously using next-generation sequencing techniques. The exome refers to the portion of the human genome that contains functionally important sequences of DNA that direct the body to make proteins essential for the body to function properly. These regions of DNA are referred to as exons. There are approximately 180,000 exons in the human genome which represents about 3% of the genome. These 180,000 exons are arranged in about 22,000 genes. It is known that many of the errors that occur in DNA sequences that then lead to genetic disorders are located in the exons. Therefore, sequencing of the exome is thought to be an efficient method of analyzing a patient’s DNA to discover the genetic cause of diseases or disabilities.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Cell Development and Peripheral Survival Heme Exporter FLVCR Is
    Heme Exporter FLVCR Is Required for T Cell Development and Peripheral Survival Mary Philip, Scott A. Funkhouser, Edison Y. Chiu, Susan R. Phelps, Jeffrey J. Delrow, James Cox, Pamela J. Fink and This information is current as Janis L. Abkowitz of September 28, 2021. J Immunol 2015; 194:1677-1685; Prepublished online 12 January 2015; doi: 10.4049/jimmunol.1402172 http://www.jimmunol.org/content/194/4/1677 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2015/01/09/jimmunol.140217 Material 2.DCSupplemental http://www.jimmunol.org/ References This article cites 44 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/194/4/1677.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 28, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Heme Exporter FLVCR Is Required for T Cell Development and Peripheral Survival Mary Philip,*,† Scott A.
    [Show full text]
  • An Investigation Into the Genetic Architecture of Multiple System Atrophy and Familial Parkinson's Disease
    An investigation into the genetic architecture of multiple system atrophy and familial Parkinson’s disease By Monica Federoff A thesis submitted to University College London for the degree of Doctor of Philosophy Laboratory of Neurogenetics, Department of Molecular Neuroscience, Institute of Neurology, University College London (UCL) 2 I, Monica Federoff, confirm that the work presented in this thesis is my own. Information derived from other sources and collaborative work have been indicated appropriately. Signature: Date: 09/06/2016 3 Acknowledgements: When I first joined the Laboratory of Neurogenetics (LNG), NIA, NIH as a summer intern in 2008, I had minimal experience working in a laboratory and was both excited and anxious at the prospect of it. From my very first day, Dr. Andrew Singleton was incredibly welcoming and introduced me to my first mentor, Dr. Javier Simon- Sanchez. Within just ten weeks working in the lab, both Dr. Singleton and Dr. Simon- Sanchez taught me the fundamental skills in an encouraging and supportive environment. I quickly got to know others in the lab, some of whom are still here today, and I sincerely appreciate their help with my assimilation into the LNG. After returning for an additional summer and one year as an IRTA postbac, I was honored to pursue a PhD in such an intellectually stimulating and comfortable environment. I am so grateful that Dr. Singleton has been such a wonderful mentor, as he is not only a brilliant scientist, but also extremely personable and approachable. If I inquire about meeting with him, he always manages to make time in his busy schedule and provides excellent guidance and mentorship.
    [Show full text]
  • Reconstruction and Analysis of Gene Networks of Human
    G C A T T A C G G C A T genes Article Reconstruction and Analysis of Gene Networks of Human Neurotransmitter Systems Reveal Genes with Contentious Manifestation for Anxiety, Depression, and Intellectual Disabilities Roman Ivanov 1,2,*, Vladimir Zamyatin 1,2, Alexandra Klimenko 1,2 , Yury Matushkin 1,2, Alexander Savostyanov 1,2,3 and Sergey Lashin 1,2 1 Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; [email protected] (V.Z.); [email protected] (A.K.); [email protected] (Y.M.); [email protected] (A.S.); [email protected] (S.L.) 2 Novosibirsk State University, 630090 Novosibirsk, Russia 3 Institute of Physiology and Basic Medicine SB RAMS, 630117 Novosibirsk, Russia * Correspondence: [email protected] Received: 12 August 2019; Accepted: 9 September 2019; Published: 11 September 2019 Abstract: Background: The study of the biological basis of anxiety, depression, and intellectual disabilities in humans is one of the most actual problems of modern neurophysiology. Of particular interest is the study of complex interactions between molecular genetic factors, electrophysiological properties of the nervous system, and the behavioral characteristics of people. The neurobiological understanding of neuropsychiatric disorders requires not only the identification of genes that play a role in the molecular mechanisms of the occurrence and course of diseases, but also the understanding of complex interactions that occur between these genes. A systematic study of such interactions obviously contributes to the development of new methods of diagnosis, prevention, and treatment of disorders, as the orientation to allele variants of individual loci is not reliable enough, because the literature describes a number of genes, the same alleles of which can be associated with different, sometimes extremely different variants of phenotypic traits, depending on the genetic background, of their carriers, habitat, and other factors.
    [Show full text]
  • Multiple System Atrophy: Genetic Or Epigenetic?
    http://dx.doi.org/10.5607/en.2014.23.4.277 Exp Neurobiol. 2014 Dec;23(4):277-291. pISSN 1226-2560 • eISSN 2093-8144 Review Article A featured article of the special issue on Parkinsonian Syndrome Multiple System Atrophy: Genetic or Epigenetic? Edith Sturm and Nadia Stefanova* Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Innsbruck A-6020, Austria Multiple system atrophy (MSA) is a rare, late-onset and fatal neurodegenerative disease including multisystem neurodegeneration and the formation of α-synuclein containing oligodendroglial cytoplasmic inclusions (GCIs), which present the hallmark of the disease. MSA is considered to be a sporadic disease; however certain genetic aspects have been studied during the last years in order to shed light on the largely unknown etiology and pathogenesis of the disease. Epidemiological studies focused on the possible impact of environmental factors on MSA disease development. This article gives an overview on the findings from genetic and epigenetic studies on MSA and discusses the role of genetic or epigenetic factors in disease pathogenesis. Key words: Multiple system atrophy, α-synuclein, neurodegeneration, genetics, epigenetics INTRODUCTION is characterized by selective wide spread neuronal cell loss, gliosis and oligodendroglial cytoplasmic inclusions (GCIs) affecting In 1969 Graham and Oppenheimer suggested the term several structures of the central nervous system [3, 6, 7]. “multiple system atrophy” (MSA) to describe and combine Neuronal loss in MSA affects the striatum, substantia nigra a set of different disorders, including olivopontocerebellar pars compacta (SNpc), cerebellum, pons, inferior olives, central atrophy (OPCA), striatonigral degeneration (SND) and Shy- autonomic nuclei and the intermediolateral column of the spinal Drager syndrome [1].
    [Show full text]
  • An Efficient and Scalable Analysis Framework for Variant Extraction and Refinement from Population-Scale DNA Sequence Data
    Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Method An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data Goo Jun,1,2 Mary Kate Wing,2 Gonçalo R. Abecasis,2 and Hyun Min Kang2 1Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA; 2Center for Statistical Genetics and Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, USA The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive vol- ume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high- quality variants from large-scale sequencing data. GotCloud automates sequence alignment, sample-level quality control, variant calling, filtering of likely artifacts using machine-learning techniques, and genotype refinement using haplotype in- formation. The pipeline can process thousands of samples in parallel and requires less computational resources than current alternatives. Experiments with whole-genome and exome-targeted sequence data generated by the 1000 Genomes Project show that the pipeline provides effective filtering against false positive variants and high power to detect true variants. Our pipeline has already contributed to variant detection and genotyping in several large-scale sequencing projects, including the 1000 Genomes Project and the NHLBI Exome Sequencing Project. We hope it will now prove useful to many medical sequencing studies. [Supplemental material is available for this article.] The cost of human genome sequencing has declined rapidly, pow- There is a pressing need for software pipelines that support ered by advances in massively parallel sequencing technologies.
    [Show full text]
  • Clinical Exome Sequencing Tip Sheet – Medicare Item Numbers 73358/73359
    Clinical exome sequencing Tip sheet – Medicare item numbers 73358/73359 Glossary Chromosome microarray (CMA or molecular Monogenic conditions (as opposed karyotype): CMA has a Medicare item number to polygenic or multifactorial conditions) are for patients presenting with intellectual caused by variants in a single gene. Variants disability, developmental delay, autism, or at may be inherited (dominant or recessive least two congenital anomalies. CMA is the fashion), or may occur spontaneously (de recommended first line test in these cases as novo) showing no family history. it can exclude a chromosome cause of disease which is unlikely to be detected by Whole exome sequence – sequencing only exome. the protein coding genes (exons). The exome is ~2% of the genome and contains ~85% of Gene panel is a set of genes that are known to disease-causing gene variants. be associated with a phenotype or disorder. They help narrow down the search Whole genome sequence – sequencing the for variants of interest to genes with evidence entire genome (all genes, including coding linking them to particular phenotypes and noncoding regions) Human phenotype ontology (HPO) terms Singleton – Analysis of the child only. describe a phenotypic abnormality using a Trio – analysis of the child and both biological standard nomenclature. Ideally, all clinicians parents. and scientists are using the same terms. Variant - A change in the DNA code that Mendeliome refers to the ~5,000 genes (out of differs from a reference genome. about 20,000 protein coding genes) that are known to be associated with monogenic disease. As variants in new genes are identified with evidence linking them with human disease, they are added to the Mendeliome.
    [Show full text]
  • Exome Sequencing in Early Disease Diagnosis
    Diabetes Updates Short Communication ISSN: 2631-5483 Exome Sequencing in early disease diagnosis: Are we on the right track? Musambil M* Department of Genetics, Strategic Center for Diabetes Research, King Saud University, Riyadh, Saudi Arabia Identification of genetic variants associated with monogenic to whole exome sequencing (WES) and targeted gene sequencing. syndromes, complex disorders and related traits opened up an avenue But WGS still remains very much expensive compared with WES and that had not been explored before, which is to translate the genetic targeted sequencing [6] (Tables 1 and 2). screening information into disease predicting tools which could WES could be briefly explained as the process of sequencing provide more efficient management of the disease by improving risk exons or the protein-encoding parts of the genes which represent and its prediction capabilities. The methods to uncover the genetics of these complex disorders have evolved over time. The International the functional part of the genome. WES gives a clear picture of high HapMap Project, carried out as a part of the Human Genome Project, penetrance allelic variation and its relationship to disease phenotype was successful in providing information about more than one million [7]. As WES targets exons and with the knowledge that Mendelian or SNPs (Single Nucleotide Polymorphisms) across the human genome. partly Mendelian variations are mediated by non-synonymous, splice A revolution in SNP genotyping technology had occurred, making it site and frameshift variations, exomes remain the most ideal regions possible to genotype hundreds of thousands of SNPs, opening new to be screened in order to link genetic variation to health and disease.
    [Show full text]
  • Comparative Transcriptome Profiling of the Human and Mouse Dorsal Root Ganglia: an RNA-Seq-Based Resource for Pain and Sensory Neuroscience Research
    bioRxiv preprint doi: https://doi.org/10.1101/165431; this version posted October 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Comparative transcriptome profiling of the human and mouse dorsal root ganglia: An RNA-seq-based resource for pain and sensory neuroscience research Short Title: Human and mouse DRG comparative transcriptomics Pradipta Ray 1, 2 #, Andrew Torck 1 , Lilyana Quigley 1, Andi Wangzhou 1, Matthew Neiman 1, Chandranshu Rao 1, Tiffany Lam 1, Ji-Young Kim 1, Tae Hoon Kim 2, Michael Q. Zhang 2, Gregory Dussor 1 and Theodore J. Price 1, # 1 The University of Texas at Dallas, School of Behavioral and Brain Sciences 2 The University of Texas at Dallas, Department of Biological Sciences # Corresponding authors Theodore J Price Pradipta Ray School of Behavioral and Brain Sciences School of Behavioral and Brain Sciences The University of Texas at Dallas The University of Texas at Dallas BSB 14.102G BSB 10.608 800 W Campbell Rd 800 W Campbell Rd Richardson TX 75080 Richardson TX 75080 972-883-4311 972-883-7262 [email protected] [email protected] Number of pages: 27 Number of figures: 9 Number of tables: 8 Supplementary Figures: 4 Supplementary Files: 6 Word count: Abstract = 219; Introduction = 457; Discussion = 1094 Conflict of interest: The authors declare no conflicts of interest Patient anonymity and informed consent: Informed consent for human tissue sources were obtained by Anabios, Inc. (San Diego, CA). Human studies: This work was approved by The University of Texas at Dallas Institutional Review Board (MR 15-237).
    [Show full text]
  • Comparative Transcriptome Profiling of the Human and Mouse Dorsal Root
    Research Paper Comparative transcriptome profiling of the human and mouse dorsal root ganglia: an RNA-seq–based resource for pain and sensory neuroscience research a,b a a a a a 07/20/2018 on BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3mH5nK33R3Qh4f27oe7zFUUf7ZAUK5aCsyqAeT54jiDxP7ZjumT3TrA== by https://journals.lww.com/pain from Downloaded Pradipta Ray , Andrew Torck , Lilyana Quigley , Andi Wangzhou , Matthew Neiman , Chandranshu Rao , Downloaded Tiffany Lama, Ji-Young Kima, Tae Hoon Kimb, Michael Q. Zhangb, Gregory Dussora, Theodore J. Pricea,* from https://journals.lww.com/pain Abstract Molecular neurobiological insight into human nervous tissues is needed to generate next-generation therapeutics for neurological disorders such as chronic pain. We obtained human dorsal root ganglia (hDRG) samples from organ donors and performed RNA- sequencing (RNA-seq) to study the hDRG transcriptional landscape, systematically comparing it with publicly available data from by BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3mH5nK33R3Qh4f27oe7zFUUf7ZAUK5aCsyqAeT54jiDxP7ZjumT3TrA== a variety of human and orthologous mouse tissues, including mouse DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted gene coexpression patterns and putative transcriptional regulators, and formulated an information-theoretic framework to quantify DRG enrichment. Relevant gene families and pathways were also analyzed, including transcription factors, G-protein-coupled receptors, and ion channels. Our analyses reveal an hDRG-enriched protein-coding gene set (;140), some of which have not been described in the context of DRG or pain signaling. Most of these show conserved enrichment in mDRG and were mined for known drug–gene product interactions. Conserved enrichment of the vast majority of transcription factors suggests that the mDRG is a faithful model system for studying hDRG, because of evolutionarily conserved regulatory programs.
    [Show full text]