Bamboo Species Source List No. 31 Spring 2011

Total Page:16

File Type:pdf, Size:1020Kb

Bamboo Species Source List No. 31 Spring 2011 $5.00 AMERICAN BAMBOO SOCIETY Bamboo Species Source List No. 31 Spring 2011 This is the thirty-first year that the American Bamboo Several existing cultivar names are not fully in accord with Society (ABS) has compiled a Source List of bamboo plants requirements for naming cultivars. In the interests of and products. The List includes more than 490 kinds nomenclature stability, conflicts such as these are overlooked (species, subspecies, varieties, and cultivars) of bamboo to allow continued use of familiar names rather than the available in the US and Canada, and many bamboo-related creation of new ones. The Source List editors reserve the products. right to continue recognizing widely used names that may not be fully in accord with the International Code of The ABS produces the Source List as a public service. It is Nomenclature for Cultivated Plants (ICNCP) and to published on the ABS website: www.AmericanBamboo.org. recognize identical cultivar names in different species of the Paper copies are sent to all ABS members and can also be same genus as long as the species is stated. ordered from ABS for $5.00 postpaid. Some ABS chapters and listed vendors also sell the Source List. Please see page 3 Many new bamboo cultivars still require naming, for ordering information and pages 54 and following for description, and formal publication. Growers with new more information about the American Bamboo Society, its cultivars should consider publishing articles in the ABS chapters, and membership application. magazine, “Bamboo.” Among other requirements, keep in mind that new cultivars must satisfy three criteria: The vendor sources for plants, products, and services are distinctiveness, uniformity, and stability. Additional compiled annually from information supplied by the information is available from the International Society for vendors. We have tried to record all information accurately, Horticultural Science in the document, “How to name a new but some error is inevitable and information may change cultivar.” The document is available on the Web at: during the life of the Source List. If you find errors, please www.ishs.org/icra/index.htm report them to the Source List editors (see page 3). No guarantee is offered for the reliability of individual vendors, Numeric Limitations but if you feel that a listed vendor has not provided good The species table includes numerics for maximum height, service, you may report your concerns to the editors. maximum diameter, minimum temperature, and sunlight requirements. These numerics are not absolutes, but are Species Table intended to afford a quick, rough, relative comparison among bamboos. They are not a substitute for a deeper The Species Table lists bamboos in alphabetical order by understanding of the cultural requirements and performance botanical name. The botanical name for a species is a of each bamboo in the context of the cultural conditions in binomial comprised of the genus and the specific member of which it will be grown. that genus. For example, the botanical name Phyllostachys aurea, is comprised of the genus, Phyllostachys, and a specific member of that genus, aurea. Common names are Maximum height and diameter: The figures cited for listed beneath the botanical names. For example, maximum height and diameter are only achievable in optimal Phyllostachys aurea is sometimes called Golden Bamboo or growing conditions in a large grove, clump, or forest that has Fishpole Bamboo. been established for as long as a decade or more. Bamboo grown in a pot, a small garden plot, or in less than ideal A species may also have recognized variations. In conditions will likely be substantially smaller than the stated descending order of significance, they are subspecies, maximums. On the other hand, the stated maximums are not variety, and forma. Plants of cultivated origin with intended to indicate world records, but an approximate of the recognized variation may be listed as cultivars and are also largest culms of mature plants grown in favorable conditions. included. Since issue No. 23, the Source List has rationalized the names below species level. Cultivar names are used Minimum temperature: The minimum temperature is the instead of botanical forma names, as they have almost point at which leaf damage begins to appear after a short identical rank and are more appropriate for cultivated, rather exposure to the temperature. Culm and rhizome death than wild plants. Only subspecies, variety, or cultivar names generally occur at much lower temperatures. However, many have been used in this list. variable conditions affect minimum temperature tolerance, including wind, humidity, soil moisture, snow cover, plant maturity, plant health, protection by structures, trees, and American Bamboo Society 2 2011 Source List #31 other plants, and duration and frequency of low variety of languages see: temperatures. A plant may tolerate the minimum temperature http://www.plantnames.unimelb.edu.au/Sorting/Bamboo_names.html for a night or two, but may not tolerate weeks at a temperature five degrees warmer. Drying winds and the Japanese names absence of snow cover might kill an immature plant outright, Botanical name whereas a sheltered more established plant might be entirely unscathed. The cold hardiness of a new introduction is only a Hachiku Phyllostachys nigra ‘Henon’ Hoteichiku Phyllostachys aurea best estimate, and revisions are made as more information Kikkochiku Phyllostachys edulis 'Heterocycla' becomes available. Minimum temperatures in the table are Kumazasa Sasa veitchii (not Shibataea kumasaca) only relative approximations. The Source List editors and the Kurochiku Phyllostachys nigra ABS are not responsible for any damage or loss arising from Madake Phyllostachys bambusoides the data provided. Medake Pleioblastus simonii Moso Phyllostachys edulis Sunlight: Sunlight requirements are listed on a scale from 1 Narihira Semiarundinaria fastuosa to 5. A rating of 1 indicates full shade and a 5 indicates full Okame-zasa Shibataea kumasaca sun. Ratings 2 through 4 are intermediate progressions along Yadake Pseudosasa japonica the scale. Most bamboos can grow successfully in a broad Chinese names range of conditions, though the greatest vigor will occur in a narrower range. The numeric ratings for sunlight are only Botanical name relative approximations. For example, a Phyllostachys that Cha Gang zhu Pseudosasa amabilis generally thrives in full sun in the Northeast may prefer Che Tong zhu Bambusa sinospinosa some shading in the intense arid summers of the Southwest. Fang zhu Chimonobambusa quadrangularis Conversely, a Sasa that generally requires mostly shady Fo du zhu Bambusa ventricosa conditions in the Southeast may thrive in full sun in the Gui zhu Phyllostachys bambusoides coastal Pacific Northwest. Keep in mind that other Han zhu Chimonobambusa marmorea conditions are also significant factors. For example, even if a Hong Bian zhu Phyllostachys rubromarginata Fargesia is provided with ideal semi-shaded conditions, it Hou zhu Phyllostachys nidularia Hui Xiang zhu Chimonocalamus pallens may not thrive if air temperature and soil are too hot. Jin zhu Phyllostachys sulphurea Ma zhu Dendrocalamus latiflorus Plant sources: The last column “Plant Sources Vendor Mao zhu Phyllostachys edulis Codes” lists the source code for each vendor. The vendors Qiong zhu Chimonobambusa tumidissinoda corresponding to the source codes and detailed vendor Ren Mian zhu Phyllostachys aurea information are listed on page 38 and following. Shui zhu Phyllostachys heteroclada Wu Ya zhu Phyllostachys atrovaginata Xiang Nuo zhu Cephalostachyum pergracile Products and services: Products and services and the Zi zhu Phyllostachys nigra source codes corresponding to the vendors are listed on page 37. American and foreign vendors are listed on the pages that follow. Some of the products and services sources in English names foreign countries also carry plants, but cannot legally ship Botanical name plants to the United States. Arrow Pseudosasa japonica Descriptions for some vendors may indicate ‘Visits by Beechey Bambusa beecheyana appointment.’ Many growers and product and service Blue Himalayacalamus hookerianus providers are part-time or small business operations without Black Phyllostachys nigra a store or sales staff. If you arrive without an appointment, Buddha's Belly Bambusa ventricosa you may find no one available. To make an appointment, Candy Stripe or Himalayacalamus falconeri Candy cane ‘Damarapa’ phone or e-mail the vendor in advance. Many vendors also offer plants or products for ordering by mail, phone, or the Internet. “Wholesale only” vendors serve only retailers or landscapers and do not offer retail service. Common names Garden books, gardeners, and landscapers frequently refer to bamboos by common names. To help you find corresponding botanical names, the following list includes some of the common names in use in the United States and their botanical equivalents. For additional common names in a American Bamboo Society 3 2011 Source List #31 Credits for assistance Canebrake Arundinaria gigantean Very special thanks to Chris Stapleton. Dr. Stapleton is a Chinese Goddess Bambusa multiplex ‘Riviereorum’ renowned bamboo taxonomist and foremost expert on Old Chinese Thorny Bambusa sinospinosa World montane bamboos. Dr. Stapleton brings a level of Common Bambusa vulgaris technical rigor to the Species List that would not otherwise Dwarf Fern Leaf Pleioblastus distichus Dwarf Whitestripe Pleioblastus fortunei
Recommended publications
  • US20200383331A1.Pdf
    US 20200383331A1 IN (19United States ( 12 ) Patent Application Publication ( Pub. No.:USQO2Q/QZ8333l Al HEINRICHER ( 43 ) Pub . Date : Dec. 10 , 2020 ( 54 ) COMPOSITIONS AND METHODS FOR AOIN 43/40 ( WQOQI LARGE - SCALE IN VITRO PLANT AOIN 43/08 ( 2006.01 ) BIOCULTURE A01N 37/52 ( 2006.01 ) AOIN 4730 ( 2006.01 ) ( II ) Applicant: BQOSHIQOQT LLC , Hailey, IDUS A016 22/15 ( WQGOI ( 52 ) U.S. CI . ( 72 ) Inventor: Jackie HEINRICHER , Anacortes , WA CPC AOIN 43/90 ( 2013.01 ) ; AO1G 31/00 (US ) ( 2013.01 ) ; A01N 59/08 ( 2013.01 ) ; A01N 59/20 ( 2013.01 ) ; A01N 59/16 ( 2013.01 ) ; ( 21 ) Appl . No .: 16 /728,478 A01N 59/14 ( 2013.01 ) ; A01N 31/06 ( 2013.01 ) ; A01N 43/78 ( 2013.01 ) ; A01N ( 22 ) Filed : Dec. 27 , 2019 37/10 ( 2013.01 ) ; A01N 43/82 ( 2013.01 ) ; AOIN 59/12 ( 2013.01 ) ; AOIN 37/44 Related U.S. Application Data ( 2013.01 ) ; A01N 43/40 ( 2013.01 ) ; A01N ( 63 ) Continuation of application No. PCT /US2018 / 43/08 ( 2013.01 ) ; A01N 37/52 ( 2013.01 ) ; 040637 , filed on Jul. 2 , 2018 , Continuation of appli AOIN 47/30 ( 2013.01 ) ; A01G 22/15 cation No. PCT/ US2018 / 040646 , filed on Jul. 2 , ( 2018.02 ) ; A01N 59/00 ( 2013.01 ) 2018 . ( 60 ) Provisional application No. 62 / 527,946 , filed on Jun . ( 57 ) ABSTRACT 3Q , provisional application No. 62 /6II , & a , The present invention provides media , kits , systems , and filed on Dec. 29 , 2017 , provisional application No. methods for achieving large scale pistachio production 62 / 527,862 , filed on Jun . 30 , 2017 . within a short time via bioculture , large scale yam produc tion within a short time via bioculture, high multiplication Publication Classification rate of plants including cannabis via in vitro micropropaga ( 51 ) Int .
    [Show full text]
  • Systematics of Chusquea Section Chusquea, Section Swallenochloa, Section Verticillatae, and Section Serpentes (Poaceae: Bambusoideae) Lynn G
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1986 Systematics of Chusquea section Chusquea, section Swallenochloa, section Verticillatae, and section Serpentes (Poaceae: Bambusoideae) Lynn G. Clark Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Clark, Lynn G., "Systematics of Chusquea section Chusquea, section Swallenochloa, section Verticillatae, and section Serpentes (Poaceae: Bambusoideae) " (1986). Retrospective Theses and Dissertations. 7988. https://lib.dr.iastate.edu/rtd/7988 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques Is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing jiages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3.
    [Show full text]
  • Pauta Para Evaluación
    PEER-REVIEWED ARTICLE bioresources.com Chusquea quila, a Natural Resource from Chile: Its Chemical, Physical, and Nanomechanical Properties Patricia E. Oliveira,a,c,* Ana G. Cunha,b Guillermo Reyes,a William Gacitúa,a and Ximena Petit-Breuilh c,* Chusquea quila or “quila”, is one of the most abundant lesser-known species from Chile, and for many years it has created problems for farmers in the southern part of this country. In this study, it was examined as a promising resource for high-tech materials. The chemical and physical properties were determined by ASTM standards. The extractives, ash content, lignin, and alpha-cellulose were 4.55%, 2.17%, 13.78%, and 54.65%, respectively. The higher heating value and basic density obtained were 5,106 kcal/kg and 290 kg/m3, respectively. The moisture content was studied during four seasons and found to be the highest in winter (73%). Regarding the nanomechanical profiles, hardness varied from 0.16 GPa in the cortex to 0.21 GPa in the nodule. The average elastic modulus in the nodule and internode was 12.5 GPa, while in the cortex it was 7.45 GPa. Considering the high cellulose content and structural features of the lignocellulosic matrix, it could be possible to extract cellulose fibers for commercial use and crude lignin for testing new applications. Thus, the entire quila structure is a potential biomass resource. Keywords: Chusquea quila; Chilean bamboo; Invasion problem; Characterization; Nanoindentation Contact information: a: Postgrado del Departamento de Ingeniería en Maderas, Centro de Biomateriales y Nanotecnología, Universidad del Bío-Bío, Concepción, Chile; b: Department of Forest Products Technology - Aalto University; c: Escuela de Procesos Industriales, Núcleo de Investigación en Bioproductos y Materiales Avanzados, Universidad Católica de Temuco, Temuco, Chile; * Corresponding authors: [email protected]; [email protected] INTRODUCTION Bamboo is a perennial woody grass that grows abundantly in Asia, with an annual output of 6 to 7 million tons.
    [Show full text]
  • Drepanostachyum Falcatum (Nees) Keng F
    10th World Bamboo Congress, Korea 2015 Genetic Diversity and Phylogenetic relationship among accessions of Drepanostachyum falcatum (Nees) Keng f. from the Garhwal Himalayas Chandrakant Tiwari* and Meena Bakshi Plant Physiology Discipline, Botany Division, Forest Research Institute, Dehradun-248006 (Uttarakhand), India Email: [email protected] * corresponding author Abstract:. This study assessed the genetic diversity of 10 accessions of Drepanostachyum falcatum collected from different localities in the Garhwal Himalayas, Uttarakhand, India , in the Hill bamboo germplasm collectionin Khirsu , using isozyme markers with four enzyme system (peroxidase, esterase, malate dehydrogenase and malic enzyme). Isozymatic analyses were performed with polyacrylamide gels (one system), bands were scored as binary data. Cluster analyses were conducted, using Jaccard´s similarity coefficient and UPGMA method. Very high degree of similarity was reported i.e. 63- 94% among different accessions. Dendrogram revealed two major clusters with three (A8- A10) and seven (A1- A7) accessions respectively. The results obtained suggested low genetic diversity in the species and urgent need of the in situ conservation of the natural genetic resources of the D. falcatum species. Key words: Genetic diversity; isozymes; polyacrylamide; Jaccard’s coefficient Introduction: Genetic conservation programmes are directed towards the long-term preservation of genetic resources either in situ or ex situ so that the potential for continuing evolution or improvement could be sustained. In situ conservation includes the organization and/ or servicing of natural supplies where species are permitted to stay in maximum environments with the lowest of management. On the other hand, ex situ conservation includes the use of botanic landscapes, field farms, seeds shops and gene banks and germplasm.
    [Show full text]
  • American Bamboo Society
    $5.00 AMERICAN BAMBOO SOCIETY Bamboo Species Source List No. 34 Spring 2014 This is the thirty-fourth year that the American Bamboo Several existing cultivar names are not fully in accord with Society (ABS) has compiled a Source List of bamboo plants requirements for naming cultivars. In the interests of and products. The List includes more than 510 kinds nomenclature stability, conflicts such as these are overlooked (species, subspecies, varieties, and cultivars) of bamboo to allow continued use of familiar names rather than the available in the US and Canada, and many bamboo-related creation of new ones. The Source List editors reserve the products. right to continue recognizing widely used names that may not be fully in accord with the International Code of The ABS produces the Source List as a public service. It is Nomenclature for Cultivated Plants (ICNCP) and to published on the ABS website: www.Bamboo.org . Copies are recognize identical cultivar names in different species of the sent to all ABS members and can also be ordered from ABS same genus as long as the species is stated. for $5.00 postpaid. Some ABS chapters and listed vendors also sell the Source List. Please see page 3 for ordering Many new bamboo cultivars still require naming, description, information and pages 50 and following for more information and formal publication. Growers with new cultivars should about the American Bamboo Society, its chapters, and consider publishing articles in the ABS magazine, membership application. “Bamboo.” Among other requirements, keep in mind that new cultivars must satisfy three criteria: distinctiveness, The vendor sources for plants, products, and services are uniformity, and stability.
    [Show full text]
  • Download Bamboo Records (Public Information)
    Status Date Accession Number Names::PlantName Names::CommonName Names::Synonym Names::Family No. Remaining Garden Area ###########2012.0256P Sirochloa parvifolia Poaceae 1 African Garden ###########1989.0217P Thamnocalamus tessellatus mountain BamBoo; "BergBamBoes" in South Africa Poaceae 1 African Garden ###########2000.0025P Aulonemia fulgor Poaceae BamBoo Garden ###########1983.0072P BamBusa Beecheyana Beechy BamBoo Sinocalamus Beechyana Poaceae 1 BamBoo Garden ###########2003.1070P BamBusa Burmanica Poaceae 1 BamBoo Garden ###########2013.0144P BamBusa chungii White BamBoo, Tropical Blue BamBoo Poaceae 1 BamBoo Garden ###########2007.0019P BamBusa chungii var. BarBelatta BarBie BamBoo Poaceae 1 BamBoo Garden ###########1981.0471P BamBusa dolichoclada 'Stripe' Poaceae 2 BamBoo Garden ###########2001.0163D BamBusa dolichoclada 'Stripe' Poaceae 1 BamBoo Garden ###########2012.0069P BamBusa dolichoclada 'Stripe' Poaceae 1 BamBoo Garden ###########1981.0079P BamBusa dolichomerithalla 'Green Stripe' Green Stripe Blowgun BamBoo Poaceae 1 BamBoo Garden ###########1981.0084P BamBusa dolichomerithalla 'Green Stripe' Green Stripe Blowgun BamBoo Poaceae 1 BamBoo Garden ###########2000.0297P BamBusa dolichomerithalla 'Silverstripe' Blowpipe BamBoo 'Silverstripe' Poaceae 1 BamBoo Garden ###########2013.0090P BamBusa emeiensis 'Flavidovirens' Poaceae 1 BamBoo Garden ###########2011.0124P BamBusa emeiensis 'Viridiflavus' Poaceae 1 BamBoo Garden ###########1997.0152P BamBusa eutuldoides Poaceae 1 BamBoo Garden ###########2003.0158P BamBusa eutuldoides
    [Show full text]
  • Disappearance of Nezasa Dwarf Bamboo (Pleioblastus Variegatus Makino) After Flowering in Grazing Grassland of Aso
    JARQ 31, 35-40 (1997) Disappearance of Nezasa Dwarf Bamboo (Pleioblastus variegatus Makino) after Flowering in Grazing Grassland of Aso Nobuaki KOYAMA and Yasuo OGAWA* Department of Grasslands, Kyushu National Agricultural Experiment Station (Nishigoshi, Kumamoto, 861-11 Japan) Abstract Nezasa bamboo (Pleioblastus variegatus Makino) is an important native plant for grazing of beef cows in the grasslands of Aso area. In 1992 nezasa bamboo flowered over 2,150 ha of grassland in the northern somma of Aso volcano. The current studies were carried out to investigate the effects of flowering on yearly changes in the above- and underground parts of nezasa bamboo. In the flowering year (1992) the amount of aboveground parts (44.0 g DM m-2 in June 1992) decreased to 19% of the value recorded (227.1 g DM m-2 in June 1991) in the previous year (1991). In the year after flowering (1993), the aboveground parts were scarce (only 1.3 g DM m-2 in June 1993). Dry matter weight of underground plant parts in the year of flowering decreased from spring to autumn, and the plants died after the summer. In the next year of flowering the dry matter weight continued to decrease. In 1994, the recovery of nezasa bamboo in grasslands of the northern somma of Mt. Aso was investigated. The rate of recovery was low and it was considered that 10 or more years would be required for the recovery of nezasa bamboo. Discipline: Grassland Additional key words: aboveground parts, Arundinella hirta, Miscanthus sinensis, under ground parts bamboo in the western part of Honshu, Shikoku 1 Introduction and Kyushu in 1970.
    [Show full text]
  • Ornamental Grasses for the Midsouth Landscape
    Ornamental Grasses for the Midsouth Landscape Ornamental grasses with their variety of form, may seem similar, grasses vary greatly, ranging from cool color, texture, and size add diversity and dimension to season to warm season grasses, from woody to herbaceous, a landscape. Not many other groups of plants can boast and from annuals to long-lived perennials. attractiveness during practically all seasons. The only time This variation has resulted in five recognized they could be considered not to contribute to the beauty of subfamilies within Poaceae. They are Arundinoideae, the landscape is the few weeks in the early spring between a unique mix of woody and herbaceous grass species; cutting back the old growth of the warm-season grasses Bambusoideae, the bamboos; Chloridoideae, warm- until the sprouting of new growth. From their emergence season herbaceous grasses; Panicoideae, also warm-season in the spring through winter, warm-season ornamental herbaceous grasses; and Pooideae, a cool-season subfamily. grasses add drama, grace, and motion to the landscape Their habitats also vary. Grasses are found across the unlike any other plants. globe, including in Antarctica. They have a strong presence One of the unique and desirable contributions in prairies, like those in the Great Plains, and savannas, like ornamental grasses make to the landscape is their sound. those in southern Africa. It is important to recognize these Anyone who has ever been in a pine forest on a windy day natural characteristics when using grasses for ornament, is aware of the ethereal music of wind against pine foliage. since they determine adaptability and management within The effect varies with the strength of the wind and the a landscape or region, as well as invasive potential.
    [Show full text]
  • THE BAMBOOS of NEPAL and BHUTAN PART II: Arundinaria, Thamnocalamus , Borinda, and Yushania (Gramineae: Poaceae, Bambusoideae)
    EDINB. J. BOT. 51(2): 275–295 (1994) THE BAMBOOS OF NEPAL AND BHUTAN PART II: Arundinaria, Thamnocalamus , Borinda, and Yushania (Gramineae: Poaceae, Bambusoideae) C. M. A. S TAPLETON * This paper continues the systematic treatment of the bamboos of Nepal and Bhutan, covering four hardy temperate genera with semelauctant inflorescences and 3 stamens from the subtribe Arundinariinae Bentham. Arundinaria Michaux has leptomorph rhizomes, while Thamnocalamus Munro, Yushania Keng f., and the new genus Borinda have pachymorph rhizomes. The separation of these and related Sino-Himalayan genera is discussed. Sinarundinaria Nakai is treated as a synonym of Fargesia Franchet, a genus that is not known from the Himalayas. A new treatment of Himalayan Thamnocalamus species is given, including the description of two new subspecies of Thamnocalamus spathiflorus (Trin.) Munro, subsp . nepalensis and subsp . occidentalis, and one new variety, bhutanensis. T. aristatus is treated as a synonym of T. spathiflorus subsp. spathiflorus, and Fargesia crassinoda Yi is transferred and given new status as Thamnocalamus spathiflorus (Trin.) Munro var. crassinodus (Yi) Stapleton. Two new species of Borinda are described: B. chigar from West Nepal and B. emeryi from East Nepal. Six species of Fargesia from Tibet are transferred to Borinda, which thus comprises eight species. STATUS AND S EPARATION OF THE G ENERA Bamboos from the mountains of the Indian subcontinent and China with 3 stamens and terete culms were all placed in Arundinaria Michaux until late in the 19th century, when two genera for bamboos with spathate inflorescences were described. Munro (1868) described Thamnoca- lamus as a Himalayan genus with groups of one to four racemes at the tips of branchlets, each raceme being enclosed in a spathe.
    [Show full text]
  • Bamboos in Manual of Afforestation in Nepal
    MANUAL OF AFFORESTATION IN NEPAL J. K. Jackson Silviculturist, Forestry Research Project with sections on Bamboos by C.M.A. Stapleton and Daphne by J.—P. Jeanrenaud Nepal-United Kingdom Forestry Research Project Forest Survey and Research Office Department of Forest Kathmandu, Nepal 1987 Bamboos Gramineae by C.M.A. Stapleton Occurrence and importance Until recently little was known about the identity, distribution, and uses in Nepal of the different species of bamboo. The standard reference, Gamble (1896), is not at all adequate for identification purposes in Nepal, and the herbarium specimens available are not well determined. This is understandab1e as Nepal has not been adequately covered by bamboo taxonomists in the past, and also as accurate identification of bamboo specimens requires both flowers and vegetative material. As most bamboos do not flower frequently and many species drop all their leaves and culm sheaths when they do flower, these are not usually available together, so that specimens are fragmentary. A few publications have named species from Nepal, but these have often been more guesswork than accurate identification. However, Seeland (1980) studied the names and uses of the seven bamboo species known near a village in east Nepal and successfully identified the five most important. Acharya (1975) wrote a sensible feasibility study of bamboo as the basis of cottage industry expansion in central Nepal without attempting specific identification. He used the three categories into which bamboo species are most commonly grouped in Nepali: bans, nigalo, and malingo. These three groups probably constituted a more rational taxonomy at that time than the official genera.
    [Show full text]
  • THE BAMBOOS of NEPAL and BHUTAN PART III: Drepanostachyum, Himalayacalamus, Ampelocalamus, Neomicrocalamus and Chimonobambusa (Gramineae: Poaceae, Bambusoideae)
    EDINB. J. BOT. 51(3): 301–330 (1994) THE BAMBOOS OF NEPAL AND BHUTAN PART III: Drepanostachyum, Himalayacalamus, Ampelocalamus, Neomicrocalamus and Chimonobambusa (Gramineae: Poaceae, Bambusoideae) C. M. A. S TAPLETON * This paper completes the systematic treatment of the bamboos of Nepal and Bhutan, covering five genera from subtropical to lower temperate zones. Three further genera from the subtribe Arundinariinae Bentham are included: Drepanostachyum Keng f., Himalayacalamus Keng f., and Ampelocalamus Chen, Wen & Sheng . They have semelauctant ebracteate inflorescences, pachymorph rhizomes, and 3 stamens. Neomicrocalamus Keng f. has semel- auctant bracteate inflorescences and 6 stamens, and is in the new subtribe described here, Racemobambosinae. Chimonobambusa Makino has bracteate inflorescences and 3 stamens and is the only Himalayan genus in the subtribe Shibataeinae (Nakai) Soderstrom & Ellis. A new Drepanostachyum species from Bhutan is described as D. annulatum. Himalayacalamus , which was originally described as a monotypic genus, is enlarged by the description of five new species, H. asper , H. brevinodus , H. cupreus , H. fimbriatus , and H. porcatus , all from Nepal. A Himalayan representative of the genus Ampelocalamus , A. patellaris , is transferred from Dendrocalamus. Neomicrocalamus andro- pogonifolius from eastern Bhutan is transferred from Bambusa . STATUS AND S EPARATION OF THE G ENERA These genera have all been considered to be part of Arundinaria Michaux at one time. The type species of the genera Drepanostachyum Keng f. , Ampelocalamus Chen, Wen & Sheng, Neomicrocalamus Keng f., and Chimonobambusa Makino were originally described as species of Arundinaria Michaux, while the type species of Himalayacalamus was initially described as a species of Thamnocalamus Munro, before being transferred into Arundinaria .
    [Show full text]
  • Bambusa Lako Question Number Question Answer Score 1.01 Is the Species Highly Domesticated? N 0
    Australia/New Zealand Weed Risk Assessment adapted for United States. Data used for analysis published in: Gordon, D.R. and C.A. Gantz. 2008. Potential impacts on the horticultural industry of screening new plants for invasiveness. Conservation Letters 1: 227-235. Available at: http://www3.interscience.wiley.com/cgi-bin/fulltext/121448369/PDFSTART Bambusa lako Question number Question Answer Score 1.01 Is the species highly domesticated? n 0 1.02 Has the species become naturalised where grown? 1.03 Does the species have weedy races? 2.01 Species suited to U.S. climates (USDA hardiness zones; 0-low, 1- 1 intermediate, 2-high) 2.02 Quality of climate match data (0-low; 1-intermediate; 2-high) 2 2.03 Broad climate suitability (environmental versatility) n 0 2.04 Native or naturalized in regions with an average of 11-60 inches of annual n 0 precipitation 2.05 Does the species have a history of repeated introductions outside its y natural range? 3.01 Naturalized beyond native range n -2 3.02 Garden/amenity/disturbance weed n 0 3.03 Weed of agriculture n 0 3.04 Environmental weed n 0 3.05 Congeneric weed n 0 4.01 Produces spines, thorns or burrs ? 4.02 Allelopathic 4.03 Parasitic n 0 4.04 Unpalatable to grazing animals 4.05 Toxic to animals n 0 4.06 Host for recognised pests and pathogens 4.07 Causes allergies or is otherwise toxic to humans n 0 4.08 Creates a fire hazard in natural ecosystems 4.09 Is a shade tolerant plant at some stage of its life cycle n 0 4.1 Grows on one or more of the following soil types: alfisols, entisols, or y 1 mollisols
    [Show full text]