Aircraft Loading Walkways, Aircraft Boarding Bridges, Glass Boarding Bridges

Total Page:16

File Type:pdf, Size:1020Kb

Aircraft Loading Walkways, Aircraft Boarding Bridges, Glass Boarding Bridges Aircraft Loading Walkways – Literature and Information Review Joshua D. Swann Joseph L. Scheffey Hughes Associates Fire Protection Research Foundation © May 2014 TECHNICAL NOTES The Fire Protection Research Foundation One Batterymarch Park Quincy, Massachusetts, U.S.A. 02169-7471 E-Mail: [email protected] Web: www.nfpa.org/foundation ii Acknowledgements The Fire Protection Research Foundation expresses gratitude to those that assisted with the development and review of the information contained in this report. The Research Foundation appreciates the guidance provided by the Project Technical Panel: James Blake, Vancouver Airport Authority Dave Brandenburg, Continental Airlines Jim Doctorman, Boeing Company Randy Pope, Burns and McDonnell Engineering Company Barry Chase, NFPA Special thanks are expressed to the National Fire Protection Association (NFPA) for providing the project funding through the NFPA Annual Code Fund. About the Fire Protection Research Foundation The Fire Protection Research Foundation plans, manages, and communicates research on a broad range of fire safety issues in collaboration with scientists and laboratories around the world. The Foundation is an affiliate of NFPA. About the National Fire Protection Association (NFPA) NFPA is a worldwide leader in fire, electrical, building, and life safety. The mission of the international nonprofit organization founded in 1896 is to reduce the worldwide burden of fire and other hazards on the quality of life by providing and advocating consensus codes and standards, research, training, and education. NFPA develops more than 300 codes and standards to minimize the possibility and effects of fire and other hazards. All NFPA codes and standards can be viewed at no cost at www.nfpa.org/freeaccess. Keywords: aircraft loading walkways, aircraft boarding bridges, glass boarding bridges iii iv Aircraft Loading Walkways – Literature and Information Review Prepared for Fire Protection Research Foundation 1 Batterymarch Park Quincy, MA 02169-7471 Prepared by Joshua D. Swann Joseph L. Scheffey Hughes Associates 3610 Commerce Drive, Suite 817 Baltimore, MD 21227-1652 www.haifire.com May 30, 2014 FIRE SCIENCE & ENGINEERING AIRCRAFT LOADING WALKWAYS PAGE ii TABLE OF CONTENTS Page 1.0 BACKGROUND ................................................................................................................................ 4 1.1 Introduction ..................................................................................................................... 4 1.2 Terminology ..................................................................................................................... 4 1.3 Issues Associated with Glass Loading Walkways ....................................................... 4 2.0 OBJECTIVE ...................................................................................................................................... 5 3.0 SCOPE/APPROACH ........................................................................................................................ 6 4.0 PERFORMANCE-BASED DESIGN .................................................................................................. 6 4.1 Goal .................................................................................................................................. 6 4.2 Objective and Performance Criteria .............................................................................. 6 4.3 Design to Meet Objective ................................................................................................ 7 4.4 Findings ........................................................................................................................... 8 5.0 CONSTRUCTION OF LOADING WALKWAYS ............................................................................... 8 5.1 Traditional Loading Walkways ....................................................................................... 8 5.2 Glass Loading Walkways ............................................................................................... 9 5.3 Test Criteria and Data ................................................................................................... 11 5.3.1 Current Requirements ......................................................................................... 11 5.3.2 FAA Tests of a Walkway ..................................................................................... 13 5.3.3 Limitations of Current NFPA 415 Criteria ............................................................ 14 5.3.4 Fire Testing of Glass Walkways .......................................................................... 15 5.4 Findings ......................................................................................................................... 16 6.0 RAMP FIRE AND INCIDENT HISTORY ......................................................................................... 17 6.1 Loss History ................................................................................................................... 17 6.1.1 Incidents at the Gate ........................................................................................... 17 6.1.2 Taxiway/Runway/Ramp Incidents ....................................................................... 18 6.2 Findings ......................................................................................................................... 20 7.0 MEANS OF EGRESS FROM AIRCRAFT ....................................................................................... 20 7.1 Normal Egress ............................................................................................................... 20 7.1.1 Normal Boarding and Deplaning ......................................................................... 20 7.1.2 Issues Associated with the Use of Walkways ...................................................... 21 7.2 Emergency Egress ........................................................................................................ 23 HUGHES ASSOCIATES AIRCRAFT LOADING WALKWAYS PAGE iii 7.2.1 Air Crew and Airline Standard Operating Procedures ......................................... 23 7.2.2 Flight Attendant Training ..................................................................................... 24 7.2.3 Research and Testing on Air Crew Performance in Emergency Evacuations .... 25 7.2.4 Airport Standard Operating Procedures .............................................................. 26 7.2.5 ARFF Response .................................................................................................. 26 7.3 Findings ......................................................................................................................... 27 7.3.1 Normal Egress ..................................................................................................... 27 7.3.2 Emergency Egress .............................................................................................. 27 8.0 HUMAN FACTORS RELATED TO EGRESS ................................................................................. 28 8.1 Human Factors Related to Typical Building Fires ..................................................... 28 8.2 Human Factors Related to Aircraft Situations ............................................................ 29 8.3 Findings ......................................................................................................................... 31 9.0 SUMMARY OF FINDINGS .............................................................................................................. 31 10.0 REFERENCES ................................................................................................................................ 32 11.0 BIBLIOGRAPHY ............................................................................................................................. 35 HUGHES ASSOCIATES AIRCRAFT LOADING WALKWAYS PAGE 4 1.0 BACKGROUND 1.1 Introduction There are several manufacturers that build aircraft glass loading walkways, which are currently permitted in countries that have not adopted National Fire Protection Association (NFPA) standards. The Technical Committee for NFPA 415, Standard on Airport Terminal Buildings, Fueling Ramp Drainage, and Loading Walkways [NFPA, 2013] desired more information about the global experience of using glass loading walkways, including fire resistance of the loading walkways, fire test methods, use of alternate/additional escape routes from the plane, passenger behavior during actual emergency incidents, and psychology/sociology of occupants that might egress through a glass loading walkway with a large fire outside/below. The Fire Protection Research Foundation (FPRF) responded to the NFPA 415 committee request by sponsoring a project to investigate the many factors associated with glass loading walkways. This involved a literature search/information gathering project performed by a student intern. This intern was mentored by a senior engineer familiar with aviation safety and fire protection. A technical panel, comprised of professionals in the field of aviation safety and fire protection, was formed to provide input as well as review the results. 1.2 Terminology Aircraft Cab: The area at the aircraft mating end of the loading walkway in which the controls are located. This area can be raised or lowered, extended or retracted, and may pivot, in order accommodate many different types of aircraft [ThyssenKrupp, 2012a].
Recommended publications
  • Reno – Stead Airport
    Reno-Tahoe Airport Authority FY 2017-18 ANNUAL BUDGET Table of Contents SECTION 1 – Introduction and Summary Airport System Overview. ......................................................................................... 1-2 National and Regional Economic Outlook. ............................................................. 2-13 Air Service Market Update. ................................................................................... 13-17 Air Cargo Update. .................................................................................................. 17-19 Operating Environment. ........................................................................................ 19-29 Budget Process. ..................................................................................................... 29-30 Revenue Bond Resolution .......................................................................................... 30 Planning for the Future .......................................................................................... 30-32 Budget Document Structure ....................................................................................... 32 Conclusion ............................................................................................................. 32-33 Acknowledgments ...................................................................................................... 33 Distinguished Budget Presentation Award ................................................................. 34 SECTION 2 – Executive Summary
    [Show full text]
  • Rules and Regulations Commissioners
    Airport Commission City and County of San Francisco Edwin M. Lee Mayor Rules and Regulations Commissioners: Larry Mazzola President San Francisco International Airport Linda S. Crayton Vice President Adopted: March 15, 2016 Eleanor Johns Issued by: The Airport Commission Richard J. City and County of San Francisco Guggenhime Peter A. Stern John L. Martin Director CityandCountyofSanFrancisco AirportCommissionRulesandRegulations AIRPORT COMMISSION CITY AND COUNTY OF SAN FRANCISCO EDWIN M. LEE MAYOR COMMISSIONERS LARRY MAZZOLA PRESIDENT LINDA S. CRAYTON VICE PRESIDENT ELEANOR JOHNS RICHARD J. GUGGENHIME PETER A. STERN CityandCountyofSanFrancisco AirportCommissionRulesandRegulations FOREWORD The statements contained herein express the policy of the San Francisco Airport Commission, duly adopted as the Rules and Regulations, and are intended to ensure the safe and efficient operations of San Francisco International Airport. These Rules and Regulations govern the general conduct of the public, tenants, employees, and commercial users of San Francisco International Airport as their activities relate to the possession, management, supervision, operation and control of San Francisco International Airport by the City through its Airport Commission. JOHN L. MARTIN AIRPORT DIRECTOR City and County of San Francisco Airport Commission Rules and Regulations TABLE OF CONTENTS Rule .....................................................................................................................Page RULE 1.0 DEFINITIONS....................................................................................................................
    [Show full text]
  • "Bodily Injury" in Private International Air Law
    The concepts of "Accident" and "Bodily injury" in private international air law By Jae Woon Lee Faculty of Law, Institute of Air and Space Law McGill University, Montreal, Canada, October 2005 A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements of the degree of Master of Laws (LL.M) @ J ae Woon Lee 2005 Library and Bibliothèque et 1+1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada Your file Votre référence ISBN: 978-0-494-25045-7 Our file Notre référence ISBN: 978-0-494-25045-7 NOTICE: AVIS: The author has granted a non­ L'auteur a accordé une licence non exclusive exclusive license allowing Library permettant à la Bibliothèque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans loan, distribute and sell theses le monde, à des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, électronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in et des droits moraux qui protège cette thèse. this thesis. Neither the thesis Ni la thèse ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent être imprimés ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • Hazard Military Aircraft
    Hazard Military aircraft Developed and maintained by the NFCC Contents Hazard - Military aircraft ........................................................................................................................... 3 Control measure - Cordon controls: Military aircraft .................................................................... 7 Control measure - Specialist advice: Military aircraft .................................................................... 8 Control measure - Restrict radio transmissions .............................................................................. 9 Control measure - Access the cockpit .............................................................................................. 10 Control measure - Make ejection seats safe .................................................................................. 11 Control measure - Extricate the aircrew ......................................................................................... 12 This content is only valid at the time of download - 25-09-2021 10:14 2 of 14 Hazard - Military aircraft Hazard Knowledge Fire and rescue services may come into contact with military aircraft of varying types and roles, from a number of different nations. These aircraft operate from military aerodromes around the country, or overseas and in transit through UK air space, but may also operate from civil aerodromes for a variety of reasons. Military organisations operate many types of aircraft that can vary enormously, from small two-seat trainers, attack helicopters,
    [Show full text]
  • A Two-Door Airplane Boarding Approach When Using Apron Buses
    sustainability Article A Two-Door Airplane Boarding Approach When Using Apron Buses Camelia Delcea * , Liviu-Adrian Cotfas , Nora Chirit,ă and Ionut, Nica Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 010522 Bucharest, Romania; [email protected] (L.-A.C.); [email protected] (N.C.); [email protected] (I.N.) * Correspondence: [email protected]; Tel.: +40-769-652-813 Received: 3 September 2018; Accepted: 8 October 2018; Published: 10 October 2018 Abstract: Boarding is one of the major processes of airplane turnaround time, with a direct influence on the airline companies’ costs. From a sustainable point of view, a faster completion of the boarding process has impact not only on the airline company’s long-term performance, but also on customers’ satisfaction and on the airport’s possibility of offering more services without additional investments in new infrastructure. Considering the airplane boarding strategies literature, it can be observed that the latest papers are dealing with developing faster boarding strategies, most of them considering boarding using just one-door of the aircraft. Even though boarding on one-door might be feasible for the airports having the needed infrastructure and sufficient jet-bridges, the situation is different in European airports, as the use of apron buses is fairly common. Moreover, some of the airline companies have adapted their boarding pass in order to reflect which door one should board once they get down from the bus. While using these buses, the boarding strategies developed in the literature are hard to find their applicability. Thus, a new method for boarding on two-door airplanes when apron buses are used is proposed and tested against the actual boarding method.
    [Show full text]
  • Airport Terminal Beacons Recommended Practice
    Airport Terminal Beacons Recommended Practice Page | 1 1.0 Table of Contents 2.0 INTRODUCTION ........................................................................................ 4 3.0 BACKGROUND OF AIRPORT TERMINAL BEACONS ......................... 4 4.0 TECHNOLOGY DISCUSSION .................................................................. 6 4.1. What is an Airport Terminal Beacon? ............................................................................... 6 4.2. Building Beacon Business Models .................................................................................... 7 4.2.1. Introduction .......................................................................................................................... 7 4.2.2. Overview .............................................................................................................................. 7 4.2.3. Impact on Technology Deployment .................................................................................. 8 4.2.4. Building the Business Case ............................................................................................... 8 4.2.5. Options for Implementation ............................................................................................... 8 4.2.6. Recommendation ................................................................................................................ 8 4.2.7. Implementation Approach .................................................................................................. 9 4.3. Common Use
    [Show full text]
  • Evaluation of Aircraft Slide Evacuation Injuries
    Evaluation of Aircraft Slide Evacuation Injuries Vahid Motevalli, Ph.D., PE Layla Monajemi Maryline Rassi Aviation Institute The George Washington University The Fifth Triennial International Fire & Cabin Safety Research Conference Atlantic City, USA 29 Oct. – 1 Nov. 2007 Acknowledgement and Disclaimer This research has been supported in part by a contract from the Transportation Research Board (TRB) of the National Academies under the Airport Cooperative Research Program (Project 11-02 Task 3) and the George Washington University funds for Area of Excellence in Transportation Safety and Security. The information, data, discussions and conclusions presented here only represents the authors views and have not been reviewed by the TRB as is required. Introduction • Emergency evacuation of commercial aircrafts can occur under a number of circumstances such as: • Survivable crash scenarios • Precautionary emergency landings (e.g. smoke in the cabin) • Actual emergencies (e.g. confirmed fire, fuel leak, engine fire, damage to aircraft) • Un-commanded evacuations • Security related evacuations Environment of Evacuations Accident Date:11 AUG 2004 Type: Boeing 777 Operator: British Airways Location: Houston Int’l Airport (IAH) Accident Date:20 AUG 2007 Time:10:35 Type: Boeing 737-809 Operator: China Airlines Location: Okinawa-Naha Airport (OKA) (Japan) Accident Date:2 AUG 2005 Time Type: Airbus 340 Operator: Air France Location: Toronto, Canada Introduction • This study examines injuries associated with emergency evacuation of commercial aircrafts
    [Show full text]
  • Determining the Number of Passengers for Each of Three Reverse Pyramid Boarding Groups with COVID-19 Flying Restrictions
    S S symmetry Article Determining the Number of Passengers for Each of Three Reverse Pyramid Boarding Groups with COVID-19 Flying Restrictions Camelia Delcea 1 , R. John Milne 2 and Liviu-Adrian Cotfas 1,* 1 Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 010552 Bucharest, Romania; [email protected] 2 David D. Reh School of Business, Clarkson University, 333 B.H. Snell Hall, Potsdam, NY 13699, USA; [email protected] * Correspondence: [email protected]; Tel.: +40-771-269-599 Received: 5 November 2020; Accepted: 4 December 2020; Published: 9 December 2020 Abstract: The onset of the novel coronavirus SARS-CoV2 has changed many aspects of people’s economic and social activities. For many airlines, social distancing has reduced airplane capacity by one third as a result of keeping the middle seats empty. Additionally, social distancing between passengers traversing the aisle slows the boarding process. Recent literature has suggested that the reverse pyramid boarding method provides favorable values for boarding time and passenger health metrics when compared to other boarding methods with social distancing. Assuming reverse pyramid boarding with the middle seats unoccupied, we determined the number of passengers to include in each of three boarding groups. We assumed that passengers use a jet-bridge that connects the airport terminal to the airplane’s front door. We used agent-based modeling and a stochastic simulation to evaluate solutions. A full grid search found an initial good solution, and then local search optimization determined the best solution based upon the airline’s relative preference for minimizing average boarding time and minimizing risks to previously seated passengers from later-boarding, potentially contagious passengers breathing near them.
    [Show full text]
  • Airport Compatibility
    Airport Compatibility Airport Compatibility PPT 1 Airport Compatibility Airport operation status Since 2001 Grand Opening , traffic and Passenger volume have increased over 7.5% per year respectively. 305,445 flights and 49 million passengers in 2015 Daily traffic exceeded 1,000 flights for the first time in this summer 85 airlines fly over 193 cities Airport Compatibility Aerodrome facilities 3 runways & 6 taxiways 3 passenger, 2 cargo and 1 maintenance aprons 74 aircraft stands with boarding bridge 21 de-icing pads CAT-III b operation, landing and T/O minima RVR 75m Airport Compatibility Aerodrome facility – Runway and Taxiway Runway Length : 3,750m (RWY 1, 2), 4,000m (RWY 3) Width : 60m Shoulder : 12m (each side) Taxiway Width : 30m Shoulder : 15m (each side) Airport Compatibility Aerodrome facility - Apron Jet-Bridge Aircraft Stand Passenger terminal : 44, concourse :30 11 Stands accommodate ICAO Code F aircraft 126 122 112 110 106 17 15 43 12 46 10 Airport Compatibility New Large Aircraft….A380, B747-8 and… Is the airport able to accommodate a new large aircraft? A380 / Incheon Airport Compatibility Meeting : ’04 – ‘09 6 Aeronautical studies Route proving flight by Airbus : ’06 Route proving flight by Korean Air : ’07 Airport Compatibility Challenge : Runway holding point The runway holding position should be relocated to protect obstacle limitations surfaces from the Code F aircraft tail 107.5m 90m Airport Compatibility Challenge : Ground movement on passenger apron The distance between taxilane and obstacle shall not be
    [Show full text]
  • Technical Order 00-105E-9, 1 February 2006, Revision 11
    WELCOME TO TECHNICAL ORDER 00-105E-9, 1 FEBRUARY 2006, REVISION 11. THIS IS SEGMENT 11 COVERING CHAPTER 8 FROM THE QF-4 TO F-16. TO NAVIGATE CLICK ON THE CONTINUE BOOKMARKS AND CLICK ON THE (+) SYMBOLS, THEN NOTICE CLICK ON SUBJECT LINKS TO GO TO SPECIFIC VIEWS CONTACT IN THIS SEGMENT. TO GO DIRECTLY TO THE TECHNICAL ORDER, CLICK ON THE CONTINUE BUTTON. TO SEE THE SEGMENT INFORMATION CHANGE NOTICE, CLICK ON THE NOTICE BUTTON. TO CONTACT THE TECHNICAL CONTENT MANAGER , CLICK ON THE CONTACT BUTTON. TECHNICAL ORDER 00-105E-9 TECHNICAL CONTENT MANAGER WRITTEN CORRESPONDENCE: HQ AFCESA/CEXF ATTN: Fire and Emergency Services Egress Manager 139 Barnes Drive Suite 1 Tyndall AFB, Florida 32403-5319 E-MAIL: [email protected] INTERNET: HQ AFCESA Fire and Emergency Services PUBLIC WEB PAGE: http://www.afcesa.af.mil/CEX/cexf/index.asp Safety Supplements: http://www.afcesa.af.mil/CEX/cexf/_firemgt.asp PHONE: (850) 283-6150 DSN 523-6150 FAX: (850) 283-6383 DSN 523-6383 For technical order improvements, correcting procedures, and other inquiries, please use the above media most convenient. SEGMENT 11 INFORMATION CHANGE NOTICE This page is provided to notifiy the user of any informational changes made to Technical Order 00-105E-9 in this Segment and the current Revision. Informational changes will be referenced in the Adobe Reader’s Bookmark tool as a designator symbol illustrated as a <[C]> for quick reference to the right of the affected aircraft. The user shall insure the most current information contained in this TO is used for his operation.
    [Show full text]
  • Emergency Evacuation of Commercial Passenger Aeroplanes Second Edition 2020
    JUNE 2020 EMERGENCY EVACUATION OF COMMERCIAL PASSENGER AEROPLANES SECOND EDITION 2020 @aerosociety A specialist paper from the Royal Aeronautical Society www.aerosociety.com About the Royal Aeronautical Society (RAeS) The Royal Aeronautical Society (‘the Society’) is the world’s only professional body and learned society dedicated to the entire aerospace community. Established in 1866 to further the art, science and engineering of aeronautics, the Society has been at the forefront of developments in aerospace ever since. The Society seeks to; (i) promote the highest possible standards in aerospace disciplines; (ii) provide specialist information and act as a central forum for the exchange of ideas; and (iii) play a leading role in influencing opinion on aerospace matters. The Society has a range of specialist interest groups covering all aspects of the aerospace world, from airworthiness and maintenance, unmanned aircraft systems and aerodynamics to avionics and systems, general aviation and air traffic management, to name a few. These groups consider developments in their fields and are instrumental in providing industry-leading expert opinion and evidence from their respective fields. About the Honourable Company of Air Pilots (Incorporating Air Navigators) Who we are The Company was established as a Guild in 1929 in order to ensure that pilots and navigators of the (then) fledgling aviation industry were accepted and regarded as professionals. From the beginning, the Guild was modelled on the lines of the Livery Companies of the City of London, which were originally established to protect the interests and standards of those involved in their respective trades or professions. In 1956, the Guild was formally recognised as a Livery Company.
    [Show full text]
  • Segment 2 Covering Chapter 4
    WELCOME TO TECHNICAL ORDER 00-105E-9, 1 FEBRUARY 2006, REVISION 11. THIS IS SEGMENT 2 COVERING CHAPTER 4. TO NAVIGATE CLICK ON THE CONTINUE BOOKMARKS AND CLICK ON THE (+) SYMBOLS, THEN NOTICE CLICK ON SUBJECT LINKS TO GO TO SPECIFIC VIEWS CONTACT IN THIS SEGMENT. TO GO DIRECTLY TO THE TECHNICAL ORDER, CLICK ON THE CONTINUE BUTTON. TO SEE THE SEGMENT INFORMATION CHANGE NOTICE, CLICK ON THE NOTICE BUTTON. TO CONTACT THE TECHNICAL CONTENT MANAGER , CLICK ON THE CONTACT BUTTON. TECHNICAL ORDER 00-105E-9 TECHNICAL CONTENT MANAGER WRITTEN CORRESPONDENCE: HQ AFCESA/CEXF ATTN: Fire and Emergency Services Egress Manager 139 Barnes Drive Suite 1 Tyndall AFB, Florida 32403-5319 E-MAIL: [email protected] INTERNET: HQ AFCESA Fire and Emergency Services PUBLIC WEB PAGE: http://www.afcesa.af.mil/CEX/cexf/index.asp Safety Supplements: http://www.afcesa.af.mil/CEX/cexf/_firemgt.asp PHONE: (850) 283-6150 DSN 523-6150 FAX: (850) 283-6383 DSN 523-6383 For technical order improvements, correcting procedures, and other inquiries, please use the above media most convenient. SEGMENT 2 INFORMATION CHANGE NOTICE This page is provided to notifiy the user of any informational changes made to Technical Order 00-105E-9 in this Segment and the current Revision. Informational changes will be referenced in the Adobe Reader’s Bookmark tool as a designator symbol illustrated as a <[C]> for quick reference to the right of the affected aircraft. The user shall insure the most current information contained in this TO is used for his operation. Retaining out of date rescue information can negatively affect the user’s operability and outcome of emergencies.
    [Show full text]