Magnetohydrodynamics FLUID MECHANICS and ITS APPLICATIONS Volume 80

Total Page:16

File Type:pdf, Size:1020Kb

Magnetohydrodynamics FLUID MECHANICS and ITS APPLICATIONS Volume 80 Magnetohydrodynamics FLUID MECHANICS AND ITS APPLICATIONS Volume 80 Series Editor: R. MOREAU MADYLAM Ecole Nationale Supérieure d'Hydraulique de Grenoble Boîte Postale 95 38402 Saint Martin d'Hères Cedex, France Aims and Scope of the Series The purpose of this series is to focus on subjects in which fluid mechanics plays a fundamental role. As well as the more traditional applications of aeronautics, hydraulics, heat and mass transfer etc., books will be published dealing with topics which are currently in a state of rapid development, such as turbulence, suspensions and multiphase fluids, super and hypersonic flows and numerical modelling techniques. It is a widely held view that it is the interdisciplinary subjects that will receive intense scientific attention, bringing them to the forefront of technological advancement. Fluids have the ability to transport matter and its properties as well as transmit force, therefore fluid mechanics is a subject that is particulary open to cross fertilisation with other sciences and disciplines of engineering. The subject of fluid mechanics will be highly relevant in domains such as chemical, metallurgical, biological and ecological engineering. This series is particularly open to such new multidisciplinary domains. The median level of presentation is the first year graduate student. Some texts are monographs defining the current state of a field; others are accessible to final year undergraduates; but essentially the emphasis is on readability and clarity. For a list of related mechanics titles, see final pages. Magnetohydrodynamics Historical Evolution and Trends by S. MOLOKOV Coventry University UK R. MOREAU EPM-MADYLAM St Martin d’Hères France and H.K. MOFFATT University of Cambridge UK A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4020-4832-6 (HB) ISBN 978-1-4020-4833-3 (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springer.com Printed on acid-free paper COST is an intergovernmental European framework for international cooperation between nationally funded research activities. COST creates scientific networks and enables scientists to collaborate in a wide spectrum of activities in research and technology. COST activities are administered by the COST Office. All Rights Reserved © 2007 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Contents Part I Dynamo, Astrophysics, and Plasmas How MHD Transformed the Theory of Geomagnetism Paul Roberts .................................................... 3 Early Magnetohydrodynamic Research in Stockholm Bo Lehnert ...................................................... 27 Dynamo Experiments Agris Gailitis, Olgerts Lielausis, Gunter Gerbeth, and Frank Stefani .... 37 Mean-Field Dynamo Theory: Early Ideas and Today’s Problems Karl-Heinz Rädler ............................................... 55 Astrophysical MHD: The Early Years Leon Mestel ..................................................... 73 Turbulence and Magnetic Fields in Astrophysical Plasmas Alexander A Schekochihin and Steven C Cowley ..................... 85 Transient Pinched Plasmas and Strong Hydromagnetic Waves John E Allen ....................................................117 Part II High Magnetic Fields Early Years of MHD at Cambridge University Engineering Department Martin Cowley ..................................................131 vi Contents Julius Hartmann and His Followers: A Review on the Properties of the Hartmann Layer René Moreau and Sergei Molokov ..................................155 Liquid Metal Magnetohydrodynamics for Fusion Blankets Leo Bühler ......................................................171 Geostrophic Versus MHD Models Thierry Alboussière ..............................................195 Part III Turbulence The Birth and Adolescence of MHD Turbulence Keith Moffatt ....................................................213 How Analogous is Generation of Vorticity and Passive Vectors (Magnetic Fields)? Arkady Tsinober .................................................223 MHD Turbulence at Low Magnetic Reynolds Number: Present Understanding and Future Needs René Moreau, Andre Thess, and Arkady Tsinober ....................231 Modelling of MHD Turbulence Bernard Knaepen, Olivier Debliquy, and Daniele Carati ...............247 The Growth of Magnetohydrodynamics in Latvia and Israel Herman Branover ................................................263 Velocity Measurement Techniques for Liquid Metal Flows Sven Eckert, Andreas Cramer, and Gunter Gerbeth ...................275 Flow Control and Propulsion in Poor Conductors Tom Weier, Victor Shatrov, and Gunter Gerbeth .....................295 Part IV Electromagnetic Processing of Materials Overview of Electromagnetic Processing of Materials Shigeo Asai .....................................................315 Applications of High Magnetic Fields in Materials Processing Hideyuki Yasuda .................................................329 Effect of AC Magnetic Fields on Free Surfaces Yves Fautrelle, Alfred Sneyd, and Jacqueline Etay ....................345 Contents vii Numerical Modelling for Electromagnetic Processing of Materials Valdis Bojarevics and Koulis Pericleous .............................357 Magnetic Fields in Semiconductor Crystal Growth Hiroyuki Ozoe, Janusz S Szmyd, and Toshio Tagawa..................375 An Outline of Magnetoelectrochemistry Antoine Alemany and Jean-Paul Chopart ...........................391 Preface Magnetohydrodynamics (MHD) is concerned with the flow of electrically conducting fluids in the presence of magnetic fields, either externally applied or generated within the fluid by inductive action. Its origin dates back to pio- neering discoveries of Northrup, Hartmann, Alfvén, and others in the first half of the twentieth century. After 1950, the subject developed rapidly, and soon became well established as a field of scientific endeavour of great importance in various contexts: geomagnetism and planetary magnetism, astrophysics, nuclear fusion (plasma) physics, and liquid metal technology. This volume surveys both the historical evolution of the field and some of the current trends. It is based on a workshop on the History of MHD organ- ised at Coventry University, UK, 26–28 May 2004, by the working group on “High Magnetic Fields” within the European network “Magnetofluiddynamics” (COST Action P6). It contains contributions by the workshop participants, supplemented by several additional invited papers in order to provide more comprehensive coverage of the recent trends. It also includes reminiscences of scientists who worked during the period of pioneering discoveries in the field (1950s and 1960s), together with photos of at least some of the pioneers of the subject. Topics covered in this volume include dynamo theory and experiment, astrophysics, plasmas, high magnetic fields, turbulence, and electromagnetic processing of materials. Other topics such as magnetoconvection, magnetic reconnection, and tokamak plasmas are not included, simply because to do justice to these important topics would have required a book of unmanageable proportions. Judging by the vitality of the field as evidenced by this volume, we believe that MHD still poses challenges of great fundamental, as well as practical, importance, and that the prospects for its continuing vitality are bright. We gratefully acknowledge the willing cooperation of all participants of the workshop and contributors to this volume, the financial support of the European Cooperation in the field of Scientific and Technical Research (COST), the help of Svetlana Aleksandrova in organising the event, the advice xPreface of Leo Bühler on the sometimes painful process of conversion between various pieces of software, and last but by no means least, the patience and under- standing of the publishers (Springer). Coventry, Grenoble, Cambridge The Editors January 2006 Part I Dynamo, Astrophysics, and Plasmas How MHD Transformed the Theory of Geomagnetism Paul Roberts Department of Mathematics and Institute of Geophysics and Planetary Physics, University of California at Los Angeles, Los Angeles, CA 90095, USA ([email protected]) Summary. The main magnetic field on the Earth is generated by, and has been maintained throughout Earth’s history by, a fluid dynamo operating in the Earth’s electrically conducting core. The author gives his personal view of how understand- ing of this ‘geodynamo’ grew during his lifetime, and he includes recollections of some of the scientists involved. The remarkable evolution of the subject from simple applications of electromagnetic theory to today’s sophisticated magnetohydrody- namic theory is outlined. The importance of Coriolis forces in core MHD is not fully appreciated even today, but it transforms MHD into an essentially different subject that is briefly reviewed here. Proposals are made to give it its own special name. 1Earlydays As this is a meeting about the history of magnetohydrodynamics (MHD), it seemed to me, when I was preparing my talk, that it might be appropriate to include some reminiscences1; I expected a fair number of people in the audience to be too young
Recommended publications
  • Arthur S. Eddington the Nature of the Physical World
    Arthur S. Eddington The Nature of the Physical World Arthur S. Eddington The Nature of the Physical World Gifford Lectures of 1927: An Annotated Edition Annotated and Introduced By H. G. Callaway Arthur S. Eddington, The Nature of the Physical World: Gifford Lectures of 1927: An Annotated Edition, by H. G. Callaway This book first published 2014 Cambridge Scholars Publishing 12 Back Chapman Street, Newcastle upon Tyne, NE6 2XX, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2014 by H. G. Callaway All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-4438-6386-6, ISBN (13): 978-1-4438-6386-5 CONTENTS Note to the Text ............................................................................... vii Eddington’s Preface ......................................................................... ix A. S. Eddington, Physics and Philosophy .......................................xiii Eddington’s Introduction ................................................................... 1 Chapter I .......................................................................................... 11 The Downfall of Classical Physics Chapter II ......................................................................................... 31 Relativity Chapter III
    [Show full text]
  • Zirker J.B. the Magnetic Universe (JHUP, 2009)(ISBN 080189302X
    THE MAGNETIC UNIVERSE This page intentionally left blank J. B. ZIRKER THE MAGNETIC THE ELUSIVE TRACES OF AN INVISIBLE FORCE UNIVERSE THE JOHNS HOPKINS UNIVERSITY PRESS BALTIMORE © 2009 The Johns Hopkins University Press All rights reserved. Published 2009 Printed in the United States of America on acid- free paper 2 4 6 8 9 7 5 3 1 The Johns Hopkins University Press 2715 North Charles Street Baltimore, Mary land 21218- 4363 www .press .jhu .edu Library of Congress Cataloging- in- Publication Data Zirker, Jack B. The magnetic universe : the elusive traces of an invisible force / J.B. Zirker. p. cm. Includes bibliographical references and index. ISBN- 13: 978- 0- 8018- 9301- 8 (hardcover : alk. paper) ISBN- 10: 0- 8018- 9301- 1 (hardcover : alk. paper) ISBN- 13: 978- 0- 8018- 9302- 5 (pbk. : alk. paper) ISBN- 10: 0- 8018- 9302- X (pbk. : alk. paper) 1. Magnetic fi elds. 2. Cosmic magnetic fi elds. 3. Magnetism. 4. Magnetosphere. 5. Heliosphere (Ionosphere) 6. Gravity. I. Title. QC754.2.M3Z57 2009 538—dc22 2008054593 A cata log record for this book is available from the British Library. The last printed pages of the book are an extension of this copyright page. Special discounts are available for bulk purchases of this book. For more information, please contact Special Sales at 410- 516- 6936 or [email protected]. The Johns Hopkins University Press uses environmentally friendly book materials, including recycled text paper that is composed of at least 30 percent post- consumer waste, whenever possible. All of our book papers are acid- free, and our jackets and covers are printed on paper with recycled content.
    [Show full text]
  • Cosmical Magnetism NATO ASI Series Advanced Science Institutes Series
    Cosmical Magnetism NATO ASI Series Advanced Science Institutes Series A Series presenting the results of activities sponsored by the NATO Science Committee, which aims at the dissemination of advanced scientific and technological knowledge, with a view to strengthening links between scientific communities. The Series is published by an international board of publishers in conjunction with the NATO Scientific Affairs Division A Life Sciences Plenum Publishing Corporation B Physics London and New York C Mathematical Kluwer Academic Publishers and Physical Sciences Dordrecht, Boston and London D Behavioural and Social Sciences E Applied Sciences F Computer and Systems Sciences Springer-Verlag G Ecological Sciences Berlin, Heidelberg, New York, London, H Cell Biology Paris and Tokyo I Global Environmental Change NATO-PCO-DATA BASE The electronic index to the NATO ASI Series provides full bibliographical references (with keywords and/or abstracts) to more than 30000 contributions from international scientists published in all sections of the NATO ASI Series. Access to the NATO-PCO-DATA BASE is possible in two ways: - via online FILE 128 (NATO-PCO-DATA BASE) hosted by ESRIN, Via Galileo Galilei, 1-00044 Frascati, Italy. - via CD-ROM "NATO-PCO-DATA BASE" with user-friendly retrieval software in English, French and German (© WTV GmbH and DATAWARE Technologies Inc. 1989). The CD-ROM can be ordered through any member of the Board of Publishers or through NATO-PCO, Overijse, Belgium. Series C: Mathematical and Physical Sciences - Vol. 422 Cosmical Magnetism edited by D. Lynden-Bell Institute of Astronomy & Clare College, Cambridge, U.K. Springer Science+Business Media, B.V. Proceedings of the NATO Advanced Research Workshop on Cosmlcal Magnetlsm Cambridge, U.K.
    [Show full text]
  • Spring 2018 (Pdf)
    Spring 2018 The biology of being sedentary Marginal Voices: A quest to improve mental health diagnosis among the deaf community Clinical pharmacists in Primary Care: A safe solution to the workforce crisis? Should doctors be criminalised? Building a coaching culture across the medical school and beyond Spring 2018 In 2018, the National Health Service (NHS) celebrates its 70th anniversary. With the creation of the NHS in 1948, universal health coverage was finally implemented in the UK, with the NHS replacing the previous patchy health coverage schemes that had left many people with limited access to health services. Although the NHS has achieved much since 1948, in recent years we have seen the NHS facing new challenges such as the very slow real-terms per capita increase in NHS spending since the global financial crisis in 2008. In this edition of our newsletter, you can read about the work we are doing to help the NHS continue to deliver comprehensive and high-quality healthcare to the residents of the UK. This includes our work on the use of video-consultations and on using professional groups such as pharmacists to take on some of the work currently carried out by doctors. Professor Azeem Majeed Head of Department of Primary Care and Public Health Imperial College London We welcome feedback on the newsletter and are taking submissions for future issues. ARCHIVE Email your news, events, achievements and stories to us. [email protected] PCPH eMagazine Team Subscribe Unsubscribe Javier Gallego Mehrosa Memood Copyright © 2018 Department of Primary Care & Public Health, Imperial College London In the News Photo: Doctor by MIKI Yoshihito - Creative Commons A study published in the journal BMJ Quality and Safety concluded that extending GP opening hours will not ease the rising burden on Accident and Emergency departments.
    [Show full text]
  • Donald Lynden-Bell (1935–2018)
    RETROSPECTIVE RETROSPECTIVE Donald Lynden-Bell (1935–2018) Martin J. Reesa,1 Donald Lynden-Bell was lucky in his heredity and his film-maker, Alison Rose, accompanied them and created environment. His great-grandfather knew the famous a movie called Star Men,inwhichtheprotagonists(all astronomer John Herschel. His father, an army Colo- elderly) reminisced about life, the universe, and every- nel, inherited a telescope and introduced Donald to thing. Donald, a keen mountaineer in his youth, enjoyed the wonders of the sky. At his school, Marlborough making this movie and spoke at several special showings. College, Donald was exceedingly well taught. He came But the most important event for Donald in his up to Clare College to read mathematics. In his second postdoctorate years was his marriage to Ruth in 1961. year, he was supervised by the great physicist Abdus She moved to California to finish her chemistry doctor- Salam, who advised him to divert for a year to study ate, but they both returned to Cambridge in 1962. physics, which Donald did before returning to mathe- Donald then became an assistant lecturer in matics for his fourth year. He thereby had a superb mathematics and a Fellow of Clare College. I attended launching-pad for research. his course on statistical mechanics. It was one of his Donald’s doctoral supervisor was Leon Mestel, a favorite subjects and he gave spirited performances. world expert on cosmic magnetism. But Donald found But Donald felt his teaching obligations didn’t leave Leon’sproblems“too intractable,” so instead he began to enough time for research, so he soon moved to the forge his lifetime interest in stel- Royal Observatory at Herstmonceux in Sussex.
    [Show full text]
  • Lecture Notes in Physics
    Lecture Notes in Physics Editorial Board R. Beig, Wien, Austria W. Beiglböck, Heidelberg, Germany W. Domcke, Garching, Germany B.-G. Englert, Singapore U. Frisch, Nice, France P. Hänggi, Augsburg, Germany G. Hasinger, Garching, Germany K. Hepp, Zürich, Switzerland W. Hillebrandt, Garching, Germany D. Imboden, Zürich, Switzerland R. L. Jaffe, Cambridge, MA, USA R. Lipowsky, Golm, Germany H. v. Löhneysen, Karlsruhe, Germany I. Ojima, Kyoto, Japan D. Sornette, Nice, France, and Los Angeles, CA, USA S. Theisen, Golm, Germany W. Weise, Garching, Germany J. Wess, München, Germany J. Zittartz, Köln, Germany The Lecture Notes in Physics The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments in physics research and teaching – quickly and informally, but with a high quality and the explicit aim to summarize and communicate current knowledge in an accessible way. Books published in this series are conceived as bridging material between advanced grad- uate textbooks and the forefront of research to serve the following purposes: • to be a compact and modern up-to-date source of reference on a well-defined topic; • to serve as an accessible introduction to the field to postgraduate students and nonspe- cialist researchers from related areas; • to be a source of advanced teaching material for specialized seminars, courses and schools. Both monographs and multi-author volumes will be considered for publication. Edited volumes should, however, consist of a very limited number of contributions only. Pro- ceedings will not be considered for LNP. Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive is available at springerlink.com.
    [Show full text]
  • Evidence for a Shallow Thin Magnetic Structure and Solar Dynamo: the Driver of Torsional Oscillations
    Draft manuscript no. SolarPaperJarboe October 10, 2018 Evidence for a shallow thin magnetic structure and solar dynamo: the driver of torsional oscillations T. R. Jarboe, T. E. Benedett, C. J. Everson, C. J. Hansen, A. C. Hossack, K. D. Morgan, B. A. Nelson, J.M. Penna, and D. A. Sutherland University of Washington, Seattle Washington, 98195 October 10, 2018 ABSTRACT The solar dynamo and the solar Global internal Magnetic Structure (GMS) appear to be a thin (∼2 Mm thick) structure near (∼1 Mm below) the solar surface. Evidence for these properties are found from the amplitude of the torsional oscillations and in their velocity contours relationship to solar magnetogram; the power to the chromosphere; power to the corona and the solar wind; the current in the helio-current-sheet measured at the radius of the orbit of Earth; the calculated size (∼1 Mm) of the expanding polar flux when it enters the photosphere; the dynamo forces the rigid rotation of the heliosphere with the Sun surface out to at least 1.4 au, giving the solar wind; and from the observation that solar magnetic activity is generated near the surface. A thin stable minimum energy state seems to be covering most of the solar surface just below the photosphere. The magnetic field lines should be parallel to the solar surface and rotate with distance from the surface for 2π radians in ∼2 Mm. Resistive diffusion helps to push the magnetic fields to the surface and the GMS seems to lose π radians every 11 years, causing the observed 180◦ flipping of the solar magnetic fields including the flipping of the polar flux.
    [Show full text]
  • Donald Lynden-Bell (1935–2018)
    RETROSPECTIVE RETROSPECTIVE Donald Lynden-Bell (1935–2018) Martin J. Reesa,1 Donald Lynden-Bell was lucky in his heredity and his film-maker, Alison Rose, accompanied them and created environment. His great-grandfather knew the famous a movie called Star Men,inwhichtheprotagonists(all astronomer John Herschel. His father, an army Colo- elderly) reminisced about life, the universe, and every- nel, inherited a telescope and introduced Donald to thing. Donald, a keen mountaineer in his youth, enjoyed the wonders of the sky. At his school, Marlborough making this movie and spoke at several special showings. College, Donald was exceedingly well taught. He came But the most important event for Donald in his up to Clare College to read mathematics. In his second postdoctorate years was his marriage to Ruth in 1961. year, he was supervised by the great physicist Abdus She moved to California to finish her chemistry doctor- Salam, who advised him to divert for a year to study ate, but they both returned to Cambridge in 1962. physics, which Donald did before returning to mathe- Donald then became an assistant lecturer in matics for his fourth year. He thereby had a superb mathematics and a Fellow of Clare College. I attended launching-pad for research. his course on statistical mechanics. It was one of his Donald’s doctoral supervisor was Leon Mestel, a favorite subjects and he gave spirited performances. world expert on cosmic magnetism. But Donald found But Donald felt his teaching obligations didn’t leave Leon’sproblems“too intractable,” so instead he began to enough time for research, so he soon moved to the forge his lifetime interest in stel- Royal Observatory at Herstmonceux in Sussex.
    [Show full text]
  • Thirty Years of Astronomy at Sussex
    Thirty Years of Astronomy at Sussex R. J. Tayler November 1996 This is a slightly revised account of a seminar given on Friday December 15 th 1995 Introduction October 1995 was the thirtieth anniversary of the start of astronomy at the University of Sussex. With the agreement of my colleagues, I organised a series of seminars to celebrate this anniversary. The first six seminars were given by former students who obtained doctorates in the Astronomy Centre; one from each period of five years since the start. What follows is a slightly revised version of the final seminar 1. Autumn 1995 was a good time to be celebrating astronomy at Sussex. Most of those who have been involved with the Centre during the past 30 years are still alive and it was not difficult to provide a comprehensive account of its development. In the past year four of our former students, including two of the speakers in the seminar series were appointed or promoted to professorships or posts of professorial status in the United Kingdom. The Astronomy Centre has clearly come of age. The Astronomy Centre must now take strength from its successful past to face the challenges of a demanding future. Inside the University there is the impending regrouping of subjects in the School of Chemistry, Physics and Environmental Science. Outside the University there is an increasing number of astronomy groups competing for a decreasing quantity of research funds. There is one thing which I did not mention in my lecture but which should not go unsaid. What has made being a member of the Astronomy Centre so enjoyable and rewarding has been the fact that my colleagues have been such reliable and thoroughly nice people.
    [Show full text]
  • Donald Lynden-Bell (1935–2018) RETROSPECTIVE
    RETROSPECTIVE Donald Lynden-Bell (1935–2018) RETROSPECTIVE Martin J. Reesa,1 Donald Lynden-Bell was lucky in his heredity and his his course on statistical me- environment. His great-grandfather knew the famous chanics. It was one of his fa- astronomer John Herschel. His father, an army Colo- vorite subjects and he gave nel, inherited a telescope and introduced Donald to spirited performances. But the wonders of the sky. At his school, Marlborough Donald felt his teaching obli- College, Donald was exceedingly well taught. He came gations didn’t leave enough up to Clare College to read mathematics. In his second time for research, so he soon year, he was supervised by the great physicist Abdus moved to the Royal Observa- Salam, who advised him to divert for a year to study tory at Herstmonceux in Sussex. physics, which Donald did before returning to mathe- It was there that Donald’s matics for his fourth year. He thereby had a superb most-quoted paper gestated launching-pad for research. (2): his prescient idea that mas- Donald’s doctoral supervisor was Leon Mestel, a sive black holes lurk in the cen- world expert on cosmic magnetism. But Donald found ters of galaxies, and shine Leon’s problems “too intractable,” so instead he be- brightly because gas gets gan to forge his lifetime interest in stellar dynamics: heated by viscous friction as it how swarms of stars configured into the distinctively swirls down into them. This was shaped clusters and galaxies that populate the cosmos. a key to understanding the At that time the British had no access to world-class mysterious quasars, discovered optical telescopes; California was the mecca for astron- a few years earlier by Maarten omers.
    [Show full text]
  • Cowling, Thomas George
    C 476 Cowling, Thomas George As such it was the second retrograde satellite — (1908). “The Orbit of Jupiter’s Eighth Satellite.” found after Phoebe, a satellite of Saturn. Monthly Notices of the Royal Astronomical Society of London 68: 576–581. In an effort to follow the motion of comet — (1910). “Investigation of the Motion of Halley’s 1P/Halley and predict its upcoming perihelion pas- Comet from 1759 to 1910.” Publikation der sage in 1910, Cowell and Crommelin applied Astronomischen Gesellschaft, no. 23. Cowell’s method to the motion of comet Halley Cowell, Philip H., Andrew C. D. Crommelin, and C. Davidson (1909). “On the Orbit of Jupiter’s Eighth and predicted its perihelion passage time as Satellite.” Monthly Notices of the Royal Astronomical 1910 April 17.1. This date turned out to be 3 days Society 69: 421. early, and in hindsight, this is what should have Jackson, J. (1949). “Dr. P. H. Cowell, F.R.S.” Nature 164: been expected since later work showed that the icy 133. Whittaker, Edmund T. (1949). “Philip Herbert Cowell.” comet’s rocket-like outgasing effects lengthen its Obituary Notices of Fellows of the Royal Society orbital period by an average of 4 days per period. 6: 375–384. In an earlier work published in 1907, Cowell and Crommelin made the first attempt to integrate the motion of comet Halley backward into the ancient era. Using a variation of elements method, rather Cowling, Thomas George than the direct numerical integration technique used later, they accurately carried the comet’s Virginia Trimble1 and Emmanuel Dormy2 motion back in time to 1301 by taking into account 1University of California, Irvine School of perturbations in the comet’s period from the Physical Sciences, Irvine, CA, USA effects of Venus, Earth, Jupiter, Saturn, Uranus, 2CNRS, Ecole Normale Supe´rieure, Paris, France and Neptune.
    [Show full text]
  • Trials and Tribulations of Playing the Devil's Advocate
    RAA 2015 Vol. 15 No. 1, 1–14 doi: 10.1088/1674–4527/15/1/001 Research in http://www.raa-journal.org http://www.iop.org/journals/raa Astronomy and Astrophysics Scientific Reminiscences Trials and tribulations of playing the devil’s advocate Jayant V. Narlikar Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India; [email protected] Received 2014 July 24; accepted 2014 July 30 Abstract Beginning with his student days at school and college, the author describes his training at Cambridge with special emphasis on his mentor Fred Hoyle. His early experience of participating in a controversy at Cambridge played a major role in giv- ing him the confidence to defend his scientific ideas. All through his later life he chose areas that were not part of mainstream research. These included the steady state the- ory and later the quasi steady state cosmology, action at a distance, noncosmological redshifts, quantum conformal cosmology, etc. After being a founding member of the Institute of Theoretical Astronomy (IOTA) at Cambridge, the author joined the Tata Institute of Fundamental Research (TIFR) in Mumbai and later moved to Pune to set up the Inter-University Centre for Astronomy and Astrophysics (IUCAA). He briefly reviews his own work and ends by pointing out the difficulties a non-conformist scien- tist faces in his professional life. In the conclusion, he mentions his interests in science popularization and science fiction for which he has won awards and appreciation, in- cluding UNESCO’s Kalinga Prize. Key words: autobiography — cosmology — sociology of astronomy 1 THE EARLY YEARS I was born in Kolhapur in 1938.
    [Show full text]