Neither the World Nor Science Came to an End When the Gunfire Stopped on R9r8 November II (Close to II A.M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Simple Derivation of the Lorentz Transformation and of the Related Velocity and Acceleration Formulae. Jean-Michel Levy
A simple derivation of the Lorentz transformation and of the related velocity and acceleration formulae. Jean-Michel Levy To cite this version: Jean-Michel Levy. A simple derivation of the Lorentz transformation and of the related velocity and acceleration formulae.. American Journal of Physics, American Association of Physics Teachers, 2007, 75 (7), pp.615-618. 10.1119/1.2719700. hal-00132616 HAL Id: hal-00132616 https://hal.archives-ouvertes.fr/hal-00132616 Submitted on 22 Feb 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A simple derivation of the Lorentz transformation and of the related velocity and acceleration formulae J.-M. L´evya Laboratoire de Physique Nucl´eaire et de Hautes Energies, CNRS - IN2P3 - Universit´es Paris VI et Paris VII, Paris. The Lorentz transformation is derived from the simplest thought experiment by using the simplest vector formula from elementary geometry. The result is further used to obtain general velocity and acceleration transformation equations. I. INTRODUCTION The present paper is organised as follows: in order to prevent possible objections which are often not Many introductory courses on special relativity taken care of in the derivation of the two basic effects (SR) use thought experiments in order to demon- using the light clock, we start by reviewing it briefly strate time dilation and length contraction from in section II. -
Arthur S. Eddington the Nature of the Physical World
Arthur S. Eddington The Nature of the Physical World Arthur S. Eddington The Nature of the Physical World Gifford Lectures of 1927: An Annotated Edition Annotated and Introduced By H. G. Callaway Arthur S. Eddington, The Nature of the Physical World: Gifford Lectures of 1927: An Annotated Edition, by H. G. Callaway This book first published 2014 Cambridge Scholars Publishing 12 Back Chapman Street, Newcastle upon Tyne, NE6 2XX, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2014 by H. G. Callaway All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-4438-6386-6, ISBN (13): 978-1-4438-6386-5 CONTENTS Note to the Text ............................................................................... vii Eddington’s Preface ......................................................................... ix A. S. Eddington, Physics and Philosophy .......................................xiii Eddington’s Introduction ................................................................... 1 Chapter I .......................................................................................... 11 The Downfall of Classical Physics Chapter II ......................................................................................... 31 Relativity Chapter III -
Introduction
INTRODUCTION Special Relativity Theory (SRT) provides a description for the kinematics and dynamics of particles in the four-dimensional world of spacetime. For mechanical systems, its predictions become evident when the particle velocities are high|comparable with the velocity of light. In this sense SRT is the physics of high velocity. As such it leads us into an unfamiliar world, quite beyond our everyday experience. What is it like? It is a fantasy world, where we encounter new meanings for such familiar concepts as time, space, energy, mass and momentum. A fantasy world, and yet also the real world: We may test it, play with it, think about it and experience it. These notes are about how to do those things. SRT was developed by Albert Einstein in 1905. Einstein felt impelled to reconcile an apparent inconsistency. According to the theory of electricity and magnetism, as formulated in the latter part of the nineteenth century by Maxwell and Lorentz, electromagnetic radiation (light) should travel with a velocity c, whose measured value should not depend on the velocity of either the source or the observer of the radiation. That is, c should be independent of the velocity of the reference frame with respect to which it is measured. This prediction seemed clearly inconsistent with the well-known rule for the addition of velocities, familiar from mechanics. The measured speed of a water wave, for example, will depend on the velocity of the reference frame with respect to which it is measured. Einstein, however, held an intuitive belief in the truth of the Maxwell-Lorentz theory, and worked out a resolution based on this belief. -
David Bohn, Roger Penrose, and the Search for Non-Local Causality
David Bohm, Roger Penrose, and the Search for Non-local Causality Before they met, David Bohm and Roger Penrose each puzzled over the paradox of the arrow of time. After they met, the case for projective physical space became clearer. *** A machine makes pairs (I like to think of them as shoes); one of the pair goes into storage before anyone can look at it, and the other is sent down a long, long hallway. At the end of the hallway, a physicist examines the shoe.1 If the physicist finds a left hiking boot, he expects that a right hiking boot must have been placed in the storage bin previously, and upon later examination he finds that to be the case. So far, so good. The problem begins when it is discovered that the machine can make three types of shoes: hiking boots, tennis sneakers, and women’s pumps. Now the physicist at the end of the long hallway can randomly choose one of three templates, a metal sheet with a hole in it shaped like one of the three types of shoes. The physicist rolls dice to determine which of the templates to hold up; he rolls the dice after both shoes are out of the machine, one in storage and the other having started down the long hallway. Amazingly, two out of three times, the random choice is correct, and the shoe passes through the hole in the template. There can 1 This rendition of the Einstein-Podolsky-Rosen, 1935, delayed-choice thought experiment is paraphrased from Bernard d’Espagnat, 1981, with modifications via P. -
'Relativity: Special, General, Cosmological' by Rindler
Physical Sciences Educational Reviews Volume 8 Issue 1 p43 REVIEW: Relativity: special, general and cosmological by Wolfgang Rindler I have never heard anyone talk about relativity with a greater care for its meaning than the late Hermann Bondi. The same benign clarity that accompanied his talks permeated Relativity and Common Sense, his novel introductory approach to special relativity. Back in the Sixties, Alfred, Brian, Charles and David - I wonder what they would be called today - flashed stroboscopic light signals at each other and noted the frequencies at which they were received as they moved relative to each other. Bondi made of the simple composition of frequencies a beautiful natural law that you felt grateful to find in our universe’s particular canon. He thus simultaneously downplayed the common introduction of relativity as a rather unfortunate theory that makes the common sense addition of velocities unusable (albeit under some extreme rarely-experienced conditions), and renders intuition dangerous, and to be attempted only with a full suit of algebraic armour. A few years ago, I tried to teach a course following Bondi’s approach, incorporating some more advanced topics such as uniform acceleration. I enjoyed the challenge (probably more than the class did), but students without fluency in hyperbolic functions were able to tackle interesting questions about interstellar travel, which seemed an advantage. Wolfgang Rindler is no apologist for relativity either and his book is suffused with the concerns of a practicing physicist. Alongside Bondi’s book, this was the key recommendation on my suggested reading list and, from the contents of the new edition, would remain so on a future course. -
Chronological List of Correspondence, 1895–1920
CHRONOLOGICAL LIST OF CORRESPONDENCE, 1895–1920 In this chronological list of correspondence, the volume and document numbers follow each name. Documents abstracted in the calendars are listed in the Alphabetical List of Texts in this volume. 1895 13 or 20 Mar To Mileva Maric;;, 1, 45 29 Apr To Rosa Winteler, 1, 46 Summer To Caesar Koch, 1, 6 18 May To Rosa Winteler, 1, 47 28 Jul To Julia Niggli, 1, 48 Aug To Rosa Winteler, 5: Vol. 1, 48a 1896 early Aug To Mileva Maric;;, 1, 50 6? Aug To Julia Niggli, 1, 51 21 Apr To Marie Winteler, with a 10? Aug To Mileva Maric;;, 1, 52 postscript by Pauline Einstein, after 10 Aug–before 10 Sep 1,18 From Mileva Maric;;, 1, 53 7 Sep To the Department of Education, 10 Sep To Mileva Maric;;, 1, 54 Canton of Aargau, 1, 20 11 Sep To Julia Niggli, 1, 55 4–25 Nov From Marie Winteler, 1, 29 11 Sep To Pauline Winteler, 1, 56 30 Nov From Marie Winteler, 1, 30 28? Sep To Mileva Maric;;, 1, 57 10 Oct To Mileva Maric;;, 1, 58 1897 19 Oct To the Swiss Federal Council, 1, 60 May? To Pauline Winteler, 1, 34 1900 21 May To Pauline Winteler, 5: Vol. 1, 34a 7 Jun To Pauline Winteler, 1, 35 ? From Mileva Maric;;, 1, 61 after 20 Oct From Mileva Maric;;, 1, 36 28 Feb To the Swiss Department of Foreign Affairs, 1, 62 1898 26 Jun To the Zurich City Council, 1, 65 29? Jul To Mileva Maric;;, 1, 68 ? To Maja Einstein, 1, 38 1 Aug To Mileva Maric;;, 1, 69 2 Jan To Mileva Maric;; [envelope only], 1 6 Aug To Mileva Maric;;, 1, 70 13 Jan To Maja Einstein, 8: Vol. -
Francis Gladheim Pease Papers: Finding Aid
http://oac.cdlib.org/findaid/ark:/13030/c8988d3d No online items Francis Gladheim Pease Papers: Finding Aid Finding aid prepared by Brooke M. Black, September 11, 2012. The Huntington Library, Art Collections, and Botanical Gardens Manuscripts Department 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2129 Email: [email protected] URL: http://www.huntington.org © 2012 The Huntington Library. All rights reserved. Francis Gladheim Pease Papers: mssPease papers 1 Finding Aid Overview of the Collection Title: Francis Gladheim Pease Papers Dates (inclusive): 1850-1937 Bulk dates: 1905-1937 Collection Number: mssPease papers Creator: Pease, F. G. (Francis Gladheim), 1881- Extent: Approximately 4,250 items in 18 boxes Repository: The Huntington Library, Art Collections, and Botanical Gardens. Manuscripts Department 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2129 Email: [email protected] URL: http://www.huntington.org Abstract: This collection consists of the research papers of American astronomer Francis Pease (1881-1938), one of the original staff members of the Mount Wilson Solar Observatory. Language: English. Access Open to qualified researchers by prior application through the Reader Services Department. For more information, contact Reader Services. Publication Rights The Huntington Library does not require that researchers request permission to quote from or publish images of this material, nor does it charge fees for such activities. The responsibility for identifying the copyright holder, if there is one, and obtaining necessary permissions rests with the researcher. Preferred Citation [Identification of item]. Francis Gladheim Pease Papers, The Huntington Library, San Marino, California. Provenance Deposit, Observatories of the Carnegie Institution of Washington Collection , 1988. -
Miller's Waves
Miller’s Waves An Informal Scientific Biography William Fickinger Department of Physics Case Western Reserve University Copyright © 2011 by William Fickinger Library of Congress Control Number: 2011903312 ISBN: Hardcover 978-1-4568-7746-0 - 1 - Contents Preface ...........................................................................................................3 Acknowledgments ...........................................................................................4 Chapter 1-Youth ............................................................................................5 Chapter 2-Princeton ......................................................................................9 Chapter 3-His Own Comet ............................................................................12 Chapter 4-Revolutions in Physics..................................................................16 Chapter 5-Case Professor ............................................................................19 Chapter 6-Penetrating Rays ..........................................................................25 Chapter 7-The Physics of Music....................................................................31 Chapter 8-The Michelson-Morley Legacy......................................................34 Chapter 9-Paris, 1900 ...................................................................................41 Chapter 10-The Morley-Miller Experiment.....................................................46 Chapter 11-Professor and Chair ...................................................................51 -
Albert Einstein: Relativity, War, and Fame Daniel J
Albert Einstein: Relativity, War, and Fame Daniel J. Kevles In , Princeton University Press published Albert Einstein’s The Meaning of Relativity, a popularization of his theory that has remained in print to this day, and that more than a half century ago Datus C. Smith, Jr., then the director of the Press, counted as one of its “crown jewels.”1 The book was the first in what has be- come a sizable number of volumes by and about Einstein that the Press has published, a number that continues to grow as succes- sive editions of his writings appear. Albert Einstein burst upon the world of physics in , at age twenty-six, when he was working as an examiner in the Swiss patent office in Bern and published three extraordinary scientific papers. One, speaking to the developing though somewhat con- troversial atomic theory of matter, demonstrated the reality of atoms and molecules. The other two—one advancing a quantum theory of light, the other proposing the special theory of rela- tivity—contributed decisively to the revolution in physics that marked the twentieth century. Two years later, in , Einstein began work on what became the general theory of relativity. The special theory discarded the assumption of Newtonian physics that there exists an absolute frame of reference in space against which all motion in the uni- verse can be measured. Taking no frame as privileged, it related how phenomena occurring in one inertial frame—that is, one moving at constant velocity—would appear in a second moving in relation to the first. The two frames might be, for example, two trains traveling at different constant speeds on neighboring tracks. -
Hilberts Ruf Nach Bern
Gesnerus 57 (2000) 182-205 Hilberts Ruf nach Bern Tilman Sauer* Summary Attempts to find a successor for the late Berne professor of mathematics Johann Heinrich Graf in winter and spring 1919 proved fruitless when, unexpectedly, the renowned Göttingen mathematician David Hilbert intimated that he himself would, under certain conditions, accept a call to Berne. Subsequent negotiations between Hilbert and the Bernese and Prussian authorities mainly concerned the question of salary, with offers of unusually high compensation both in Berne and in Göttingen. Although Hilbert eventually declined for financial reasons, it is argued that his consi- derations may well have been rather complex and reflect both his own situation in Göttingen and the general state of affairs of university mathe- matics in Germany and Switzerland after the First World War. Zusammenfassung Nach erfolglosen Versuchen im Winter und Frühjahr 1919, einen Nachfolger für den verstorbenen Berner Ordinarius für Mathematik Johann Heinrich Graf zu finden, liess unerwarteterweise der bekannte Göttinger Mathema- tiker David Hilbert durchblicken, dass er selbst unter bestimmten Bedin- gungen bereit wäre, einen Ruf nach Bern anzunehmen. Obwohl es in den nachfolgenden Verhandlungen Hilberts mit den Berner und Preussischen Unterrichtsbehörden vornehmlich um Gehaltsfragen ging und Hilbert nach ungewöhnlich grosszügigen Angeboten aus Bern und Berlin den Berner Ruf schliesslich ablehnte, mögen Hilberts Überlegungen dennoch komplex * Ich danke Robert Casties, Hans-Joachim Dahms, Gerd Grasshoff, Andrea Loettgers, Karin Nickelsen, Franziska Roggcr und Klaus Sommer für Anregungen, Hinweise und Kommentare. Tilman Sauer. Universität Bern, Institut für Exakte Wissenschaften, Sidlerstr. 5, CH-3012 Bern ([email protected]). 182 Downloaded from Brill.com10/11/2021 06:36:08AM via free access gewesen sein. -
Einstein's Controversy with Drude and the Origin of Statistical Mechanics
EINSTEIN’S CONTROVERSY WITH DRUDE AND THE ORIGIN OF STATISTICAL MECHANICS: A NEW GLIMPSE FROM THE “LOVE LETTERS“ Jürgen Renn 1. Introduction: Statistical Mechanics as a Conduit from Classical to Modern Physics In this paper I argue that statistical mechanics, at least in the version published by Einstein in 1902,1 was the result of a reinterpretation of already existing results by Boltzmann. I will show that, for this reinterpretation, a certain perspective on these results was decisive which was shaped by Einstein’s occupation with specific problems of the constitution of matter and radi- ation, as well as with atomism as a general foundation of physics. Using newly available evi- dence, I will identify the electron theory of metals as the key problem triggering the elaboration of statistical mechanics. In this way, a conjecture by the Ehrenfests on the role of electron the- ory for a renewal of statistical physics, as well as a hypothesis by the editors of volume 2 of Einstein’s Collected Papers concerning its role for Einstein’s work, receive an unexpected con- firmation. In addition, I will argue that a controversy between Einstein and Drude in 1901 was, in effect, not so much a dispute about the latter’s electron theory of metals, as has been assumed so far, but a controversy in which Einstein’s real opponent was, at least in part, Boltzmann and whose issue was the foundation of an atomistic theory of matter. It was this controversy which became the starting point of Einstein’s elaboration of his approach to statistical mechanics. -
A Century of Astronomy at the Thacher School
Robotic Telescopes, Student Research and Education (RTSRE) Proceedings Conference Proceedings, San Diego, California, USA, Jun 18-21, 2017 Fitzgerald, M., James, C.R., Buxner, S., White, S., Eds. Vol. 1, No. 1, (2018) ISBN 978-0-6483996-0-5 / doi : 10.32374/rtsre.2017.007 / CC BY-NC-ND license Peer Reviewed Article. rtsre.net/ojs A Century of Astronomy at The Thacher School Chris Vyhnal1*, Jon Swift1 Abstract The Thacher School has a rich legacy of education and research in astronomy that dates back over a century to correspondence in 1906 between our founder, Sherman Thacher, and the Director of the Mt. Wilson Observatory, George Hale. Nobel prize winning physicist Robert Millikan served on the School’s Board of Trustees and conducted cosmic ray measurements on our campus in 1928. From 1930 to 1941 students and faculty from the School took annual trips to Pasadena to see the 100-inch Hooker telescope at Mt. Wilson and tour the Huntington Library and Caltech. Edwin Hubble gave the commencement address on our campus in 1942 and aluminized the mirror of an 8-inch telescope at the request of one of our students 10 years later. The Summer Science Program (SSP), which brought together some of the nation’s brightest math and science students to participate in an intensive, 6-week immersion in astronomy, operated on our campus for 40 years starting in 1959. A 24-inch astrograph built by Caltech was installed in an observatory building erected on our campus by UCLA in 1965 and was later used for preliminary testing of the UCSD Digicon spectrographs that were eventually installed on the Hubble Space Telescope.