Early Atherosclerosis—A View Beyond the Lumen

Total Page:16

File Type:pdf, Size:1020Kb

Early Atherosclerosis—A View Beyond the Lumen SPECIAL ARTICLE www.jasn.org Frontiers in Nephrology: Early Atherosclerosis—A View Beyond the Lumen Mario Gossl,* Lilach O. Lerman,† and Amir Lerman* Divisions of *Cardiovascular Diseases and †Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota ABSTRACT permeability) of the endothelium, even- Endothelial dysfunction is an established clinical marker of early coronary artery tually leads to formation of histologically disease and has been shown to be associated with increased cardiovascular mor- identifiable atherosclerotic lesions. At bidity and mortality. New concepts now extend the view of endothelial dysfunction this point, atherogenesis may become a beyond the traditional involvement of the coronary arterial endothelium alone. self-perpetuating process, a vicious cycle Recent research indicates that the coronary vessel wall, especially the vasa vaso- in which accumulating inflammatory rum, as well as bone marrow–derived endothelial progenitor cells may be subject and noninflammatory cells release che- to proatherosclerotic changes, even before the development of angiographically mokines, cytokines, and growth and evident endothelial dysfunction; therefore, “microvascular endothelial dysfunction,” transcription factors that attract more which is composed of dysfunction of the vasa vasorum’s endothelium as well as inflammatory cells and lead to progres- “microcellular endothelial dysfunction,” reflecting impaired mobilization and func- sion of the atherosclerotic lesion and tion of endothelial progenitor cells, may precede “macrovascular endothelial dys- eventually to local complications, function.” Vasa vasorum neovascularization, with endothelial leakage and dysfunc- namely plaque rupture with local arterial tion increasing influx of proinflammatory and proatherogenic cellular and thrombosis (Figure 1). noncellular substances into the vessel wall, is proposed as one feature of this new Recent research has broadened our concept. In addition, the role of bone marrow–derived endothelial progenitor cells view of the atherosclerotic process. is discussed as are the potential impact of impaired progenitor cell mobilization, Whereas the luminal endothelium was tra- release from the marrow, and function in acute and stable coronary artery disease. ditionally considered as playing the main Finally, potential future therapies are proposed, focusing on interventions that may role in vascular regulations, we know today prevent or diminish the development of the microvascular and microcellular endo- that a considerable amount of endothe- thelial dysfunction. lium is also present in the abluminal part of the vessel wall, at the level of the vasa vaso- J Am Soc Nephrol 18: 2836–2842, 2007. doi: 10.1681/ASN.2007030333 rum. Several studies2–5 identified a possible major impact of inflammatory invasion from the adventitia into the inner vessel THE TRADITIONAL VIEW OF merous studies have identified risk fac- wall layers, rather than only the entrance ATHEROSCLEROSIS tors for the development of endothelial via the luminal endothelium. dysfunction, but factors such as hyper- It is therefore obvious that the vascu- Atherosclerosis is considered a systemic, cholesterolemia, smoking, diabetes, met- lar endothelium and its interaction with chronic inflammatory disease predomi- abolic syndrome, and hypertension are the surrounding environment play a cru- nantly of the arterial vessel wall with local the most prominent. cial role in the pathogenesis of athero- complications that determine morbidity Endothelial dysfunction involves the and mortality. The classic response-to- trans-formation of vasoprotective prop- injury model described physical injury to erties of the endothelium into proath- Published online ahead of print. Publication date the endothelium as the first step of erosclerotic features: The endothelium available at www.jasn.org. atherogenesis, but it has been subse- becomes procoagulant, produces vaso- Correspondence to: Dr. Amir Lerman, Division of quently recognized that endothelial dys- constrictive molecules, and releases cyto- Cardiovascular Diseases, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN function (e.g., the impaired bioavailabil- kines that attract inflammatory cells, in- 55905. Phone: 507-255-6670; Fax: 507-255-1824; ity of the endothelial-derived vasodilator cluding lymphocytes and macrophages. E-mail: [email protected] substance nitric oxide [NO]) may also be Accumulation of these inflammatory Copyright © 2007 by the American Society of considered as a functional “injury.”1 Nu- cells, as well as increased leakiness (i.e., Nephrology 2836 ISSN : 1046-6673/1811-2836 J Am Soc Nephrol 18: 2836–2842, 2007 www.jasn.org SPECIAL ARTICLE sclerosis. Exposed to multiple circulating adequate interaction is crucial for a suc- important role in the repair of injured en- atherogenic risk factors, it undergoes a cessful repair. Endothelial dysfunction has dothelium, and EPC dysfunction may be a constant injury-and-repair process that been identified as a marker of early athero- very early marker of atherosclerotic may result in several potential outcomes, sclerotic disease before the development of disease. which may also be a progressive cascade a lumen-compromising plaque and, The pathomechanisms of conduit ves- of events (Figure 1): hence, as an indicator of the unsuccessful sel endothelial dysfunction have been rela- repair process. As a result, endothelial dys- tively well established.8 Therefore, in this 1. The repair is successful and heals the endothelium function has been shown to be associated review, we focus on possible expression and vascular wall, and endothelial function remains 6 normal. with adverse cardiovascular outcomes ; and consequences of endothelial dysfunc- 2. The repair is unsuccessful, and although the endo- however, endothelial dysfunction not only tion within the vessel wall and EPC, two thelium and vascular wall show no morphologic may be the result of unsuccessful repair but novel and exciting areas of current basic changes, endothelial dysfunction occurs (impaired also may actually be among the underlying and clinical research that may open new bioavailability of NO, abnormal vasoconstriction). causes. Indeed, Lerman and Zeiher7 re- ways for therapeutic approaches. 3. The repair is unsuccessful, results in vascular scar- ring characterized by fibrotic tissue and calcifica- cently suggested that the site of endothelial tion, and promotes the injury process. dysfunction should be extended beyond MICROVASCULAR ENDOTHELIAL 4. The repair is lacking or insufficient, and the injury the traditional location at the conduit ves- DYSFUNCTION OF THE VASA process continues into complicated atherosclerotic sels into the vessel wall and possibly even VASORUM lesions. into the bone marrow, the origin of endo- The proper function of all systems in- thelial progenitor cells (EPC). In addition, Early endothelial injury (e.g., in hyper- volved in the repair process as well as their EPC have been demonstrated to play an cholesterolemia, smoking, or diabetes) Figure 1. Four different outcomes of the repair process in early atherosclerosis, focusing on two participating systems reviewed here: Vasa vasorum and bone marrow–derived EPC. The initial event is an injury inflicted on the endothelial layer through genetic disposition and/or atherosclerotic risk factors, both at the luminal side and at the level of vasa vasorum within the vessel wall. Subsequently, endothelial cell activation, vasa vasorum neovascularization, and mobilization of EPC take place. (1) Normal, successful repair of the injury, resulting in a preserved endothelial function and vessel wall morphology. (2 through 4) Results of abnormal, unsuccessful repair: (2) The vessel wall still shows no morphologic changes, but endothelial function is impaired. (3) The vessel wall morphology changes into vascular scarring characterized by fibrotic tissue and calcification. (4) The repair is lacking or insufficient, injury continues, and a complicated atherosclerotic lesion develops. J Am Soc Nephrol 18: 2836–2842, 2007 Endothelial Dysfunction: A New View 2837 SPECIAL ARTICLE www.jasn.org may lead to a leaky endothelial layer.9 substances (e.g., oxidized LDL, cyto- hypercholesterolemia is associated not This early injury not only takes place at kines, macrophages) into the vessel only with macrovascular endothelial the luminal endothelium but also may wall12,13 and that they in turn also play a dysfunction (i.e., paradoxic vasocon- conceivably extend to the endothelium significant role in draining the arterial striction) but also with dysfunction of of the vasa vasorum within the vessel vessel wall.14 Moreover, it has been the vasa vasorum’s endothelium. This wall. Vasa vasorum (both arterial and ve- shown in a porcine model of hypercho- may lead to intermittent vasoconstric- nous) are microvessels located within the lesterolemic early atherosclerosis that tion causing hypoxia within the vessel wall of bigger arteries, such as the renal vasa vasorum neovascularization occurs wall and subsequent reactive, local pro- and coronary arteries, providing blood before the development of atheroscle- duction of vascular endothelial growth supply to and drainage from the vessel rotic plaques.15–17 This vasa vasorum factor (VEGF) with enhanced vasa vaso- wall.10 Importantly, the arterial vasa va- neovascularization leads to an average rum neovascularization and a further in- sorum originate either from the artery it- increase
Recommended publications
  • Aortic Intramural Hematoma Associated with Primary Aldosteronism
    대한내분비학회지: 제 24권 제 3 호 2009 □ 증 례 □ 10.3803/jkes.2009.24.3.217 1) Aortic Intramural Hematoma Associated with Primary Aldosteronism 전남대학교 의과대학 내과학교실 정진욱․조동혁․정동진․정민영 Aortic Intramural Hematoma Associated with Primary Aldosteronism Jin Ook Chung, Dong Hyeok Cho, Dong Jin Chung, Min Young Chung Department of Internal Medicine, Chonnam National University Medical School ABSTRACT Intramural hematoma of the aorta is a variant of aortic dissection characterized by the absence of direct communication between the false lumen and the true lumen of the aorta. Primary aldosteronism, which is an uncommon cause of hypertension, may direct alter arterial structure through the pleiotropic effects of aldosterone as well as pressure-mediated indirect alterations. There have been several reported cases of aortic dissection in patients with primary aldosteronism, which suggests a causal relationship between the two diagnostic entities. However, intramural hematoma has not been described in a patient with primary aldosteronism. We describe a case of aortic intramural hematoma in a patient with primary aldosteronism and speculate about the causal relationship between these two entities. (J Korean Endocr Soc 24:217~220, 2009) ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ Key Words: aorta, hematoma, hyperaldosteronism Introduction is suppressed[2]. Primary aldosteronism may cause direct alterations in arterial structure through the pleiotropic Intramural hematoma of the aorta is a variant of aortic effects of aldosterone, as well as indirect alterations through dissection characterized by the absence of direct communi- pressure effects[3]. There have been several reported cases cation between the false lumen and the true lumen of the of aortic dissection in patients with primary aldosteronism, aorta[1].
    [Show full text]
  • Regulatory Roles of Endothelial Cells in Cancer
    REGULATORY ROLES OF ENDOTHELIAL CELLS IN CANCER MASSACHUSETTS INSTIilr By OF TECHNOLOGY Joseph W. Franses JUN 0 8 2011 B.S. Chemical Engineering, B.S. Chemistry Purdue University, 2005 LIBRARIES SUBMITTED TO THE HARVARD-M.I.T. DIVISION OF HEALTH SCIENCES AND TECHNOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOMEDICAL ENGINEERING ARCHW AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY MAY 2011 @ Massachusetts Institute of Technology All riahts reserved Signature of Author Hara-Mi i ULivision oT Health Sciences and Technology May 16, 2011 Certified by: Elazer R. Edelman, M.D.-Ph.D. Thomas D. and Virginia W. Cabot Professor of Health Sciences and Technology, M.I.T. Thesis Supervisor Accepted by: Ram Sasisekharan, Ph.D. Edward Hood Taplin Professor of Health Sciences and Technology and Biological Engineering, M.I.T. Director, Harvard-M.I.T. Division of Health Sciences and Technology REGULATORY ROLES OF ENDOTHELIAL CELLS IN CANCER By Joseph W. Franses Submitted to the Harvard-M.I.T. Division of Health Sciences and Technology on May 16, 2011 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biomedical Engineering Advisor: Elazer R. Edelman, Thomas and Virginia Cabot Professor of Health Sciences and Technology, M.I.T. Thesis committee chair: David A. Housman, Ludwig Professor of Biology, M.I.T. Thesis committee: 1. Sangeeta N. Bhatia, Professor of Health Sciences and Technology and Professor of Electrical Engineering and Computer Science, M.I.T. 2. David T. Scadden, Gerald and Darlene Jordan Professor of Medicine, Harvard University Abstract This thesis describes the biochemical regulatory impact of endothelial cells, the cells that line all blood vessels, in cancer.
    [Show full text]
  • Adventitial Vasa Vasorum Heterogeneity Among Different Vascular Beds
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Adventitial vasa vasorum heterogeneity among different vascular beds Offer Galili, MD,a Joerg Herrmann, MD,a Julie Woodrum, MS,a Katherine J. Sattler, MD,a Lilach O. Lerman, MD, PhD,b and Amir Lerman, MD,a Rochester, Minn Introduction: Different vascular beds show substantial variation in their susceptibilities for development of vascular disease like atherosclerosis, and thereby exhibit a variety of different clinical presentations. Yet, the underlying mechanism of this heterogeneity is not well defined. Recent evidence suggests a role for the vasa vasorum (VV) in vascular disease. We hypothesized that there is a differential distribution structure of adventitial VV in different vascular beds. Hence, the current study was designed to characterize and compare the structure of the adventitial VV in the coronary and the peripheral circulation. Methods: Samples of vessels from different vascular beds were obtained from 6 female crossbred domestic pigs. The samples were scanned using micro–computed tomography, and the images reconstructed and analyzed to characterize VV architecture, including vessel wall area, VV count, VV density, intravessel spatial distribution, mean diameter of first- and second-order VVs and the ratio of second- to first-order VVs. Results: There were significant differences in VV density among different vascular beds. Density was highest in coronary ؎arteries (2.91 ؎ 0.26 vessels/mm2, P < .05, vs renal, carotid, and femoral arteries), intermediate in renal arteries (1.45 ,(vessels/mm2, P < .05, vs femoral artery) and carotid arteries (0.64 ؎ 0.08 vessels/mm2, P < .05, vs femoral artery 0.22 and lowest in femoral arteries (0.23 ؎ 0.05 vessels/mm2).
    [Show full text]
  • The Circulatory System Dr.Mahdi Alhety 2019-2020
    Histology Lac. 2 The Circulatory System Dr.Mahdi Alhety 2019-2020 The Circulatory System The circulatory system comprises both the blood and lymphatic vascular systems. The blood vascular system is composed of the following structures: The heart, an organ whose function is to pump the blood. The arteries, a series of efferent vessels that become smaller as they branch, and whose function is to carry the blood, with nutrients and oxygen, to the tissues. The capillaries, the smallest blood vessels, constituting a complex network of thin tubules that anastomose profusely and through whose walls the interchange between blood and tissues takes place. The veins, which result from the convergence of the capillaries into a system of channels. These channels become larger as they approach the heart, toward which they convey the blood to be pumped again. The lymphatic vascular system begins in the lymphatic capillaries, closed-ended tubules that anastomose to form vessels of steadily increasing size; these vessels terminate in the blood vascular system emptying into the large veins near the heart. One of the functions of the lymphatic system is to return the fluid of the tissue spaces to the blood. The internal surface of all components of the blood and lymphatic systems is lined by a single layer of a squamous epithelium, called endothelium. The endothelium is a special type of epithelium interposed as a semipermeable barrier between two compartments of the internal medium, the blood plasma and the interstitial fluid. Endothelium is highly differentiated to actively mediate and monitor the extensive bidirectional exchange of small molecules and to restrict the transport of some macromolecules.
    [Show full text]
  • Morphology of the Vasa Vasorum in Coronary Arteries of the Porcine Heart
    Annals of Anatomy 223 (2019) 119–126 Contents lists available at ScienceDirect Annals of Anatomy jou rnal homepage: www.elsevier.com/locate/aanat RESEARCH ARTICLE Morphology of the vasa vasorum in coronary arteries of the porcine heart: A new insight a a a b c d Matej Patzelt , David Kachlik , Josef Stingl , Josef Sach , Radek Stibor , Oldrich Benada , d a,e,∗ Olga Kofronova , Vladimir Musil a Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czech Republic b Department of Pathology, Third Faculty of Medicine, Charles University, and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic c Institute of Animal Science, Prague, Czech Republic d Department of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic e Centre of Scientific Information, Third Faculty of Medicine, Charles University, Prague, Czech Republic a r t i c l e i n f o a b s t r a c t Article history: Introduction: The vasa vasorum interna were described during the last decade as a special kind of vessels Received 24 September 2018 originating directly from the lumen of the paternal artery and participating in the nourishment of its Received in revised form 18 January 2019 wall, especially of the aorta and coronary arteries. At the same time, their existence was repeatedly Accepted 16 February 2019 denied/negated by many other authors. Aim: The purpose of the actual study was the anatomical verification of the existence of the vasa vasorum Keywords: interna in porcine coronary arteries. Vasa vasorum Materials and methods: The vascular supply was studied on the wall of the anterior interventricular branch Vasa vasorum interna of the left coronary artery on 36 hearts taken from healthy pigs.
    [Show full text]
  • An X-Ray Microscopic Study of the Vasa Vasorum of the Normal Human Aortic Arch
    Thorax: first published as 10.1136/thx.20.1.76 on 1 January 1965. Downloaded from Thorax (1965), 20, 76. An x-ray microscopic study of the vasa vasorum of the normal human aortic arch JOHN A. CLARKE From the Department of Anatomy, University of Glasgow Descriptions of the vasa vasorum of the aortic plexus and the patterns of distribution to the inner wall vary. The main papers are concerned with layers of the vessel wall. the intramural vasculature of the descending aorta, This work is concerned with a description of the little reference being made to the aortic arch. The vasa vasorum in the normal human aortic arch, first observation on the vasa vasorum of the aortic using the Coslett-Nixon x-ray projection micro- wall is attributed to Willis (Haller, 1757). scope. This enables a study of the pattern and In a review of -the literature, Ramsey (1936), distribution of the vasa vasorum in freshly injected recording the descriptions of the principal nine- specimens to be made, in contrast to the routine teenth century investigators (Risse, 1853 ; Gimbert, histological and clearing techniques of previous 1865; Plotnikow, 1884), showed that interpreta- investigators. tions of injected and routine histological speci- mens of the aortic wall differed on the depth the MATERIAL AND METHODS intramural vessels penetrated. copyright. From an examination of animal aortae injected Fifty normal post-mortem aortic arches were with India Woodruff examined within eight hours of death from hearts ink, (1926) concluded that in the age group 15-80 years. the aortic vasa arose from collateral branches of The microcirculation in the aortic wall was the aorta, to be distributed to the adventitia and demonstrated by injecting micropaque at physio- inner media.
    [Show full text]
  • Morphology and Reactivity of Vasa Vasorum: Mechanisms And
    Morphology and Reactivity of Vasa Vasorum: Mechanisms and Functional Implications Ramona Sumintra Scotland A thesis submitted for Degree of Doctor of Philosophy in University College London 2000 ProQuest Number: U643260 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643260 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Walls of conduit blood vessels are nourished by oxygen diffusion from luminal blood and vasa vasorum. The vasa vasorum form a network of microvessels in the adventitia and outer media of conduit blood vessels. Obstruction of flow through vasa vasorum is implicated in the pathogenesis of certain cardiovascular diseases. However, there is no direct evidence of the mechanisms that regulate vasa vasorum tone. Immunohistochemistry was used to study structure of arterial vasa vasorum isolated from porcine thoracic aorta. Tension and perfusion myography were used to directly investigate their reactivity and comparisons were made with other arteries of similar calibre. Vasa consist of layers of smooth muscle oriented around a layer of endothelium and are innervated by nerves, predominantly sympathetic in origin.
    [Show full text]
  • Phenotypic Diversity and Metabolic Specialization of Renal Endothelial Cells
    REVIEWS Phenotypic diversity and metabolic specialization of renal endothelial cells Sébastien J. Dumas1,6, Elda Meta1,6, Mila Borri 1,6, Yonglun Luo 2,3, Xuri Li 4 ✉ , Ton J. Rabelink5 ✉ and Peter Carmeliet 1,4 ✉ Abstract | Complex multicellular life in mammals relies on functional cooperation of different organs for the survival of the whole organism. The kidneys play a critical part in this process through the maintenance of fluid volume and composition homeostasis, which enables other organs to fulfil their tasks. The renal endothelium exhibits phenotypic and molecular traits that distinguish it from endothelia of other organs. Moreover, the adult kidney vasculature comprises diverse populations of mostly quiescent, but not metabolically inactive, endothelial cells (ECs) that reside within the kidney glomeruli, cortex and medulla. Each of these populations supports specific functions, for example, in the filtration of blood plasma, the reabsorption and secretion of water and solutes, and the concentration of urine. Transcriptional profiling of these diverse EC populations suggests they have adapted to local microenvironmental conditions (hypoxia, shear stress, hyperosmolarity), enabling them to support kidney functions. Exposure of ECs to microenvironment- derived angiogenic factors affects their metabolism, and sustains kidney development and homeostasis, whereas EC- derived angiocrine factors preserve distinct microenvironment niches. In the context of kidney disease, renal ECs show alteration in their metabolism and phenotype in response to pathological changes in the local microenvironment, further promoting kidney dysfunction. Understanding the diversity and specialization of kidney ECs could provide new avenues for the treatment of kidney diseases and kidney regeneration. The mammalian vascular system consists of two con- three anatomical and functional compartments of the nected and highly branched networks that pervade kidney, the glomeruli, cortex and medulla — where they the whole body — each with specific roles.
    [Show full text]
  • Circulatory System IUSM – 2016
    Lab 12 – Circulatory System IUSM – 2016 I. Introduction Circulatory System II. Learning Objectives III. Keywords IV. Slides A. Heart 1. Layers a. Epicardium b. Myocardium c. Endocardium 2. Valves B. Vasculature 1. Grouped Structures 2. Blood Vessels a. Arterial i. Elastic arteries ii. Muscular arteries iii. Arterioles b. Capillaries c. Venous i. Venules ii. Veins 3. Lymphatic Vessels V. Summary SEM of a torn venule showing leukocytes and stacks of RBCs called “rouleaux”. Lab 12 – Circulatory System IUSM – 2016 I. Introduction Introduction II. Learning Objectives III. Keywords 1. The circulatory system is composed of two major systems: the cardiovascular system and the IV. Slides lymphatic system. A. Heart 1. Layers a. The cardiovascular system consists of arteries (carry blood away from heart), arterioles, capillaries, venules, and veins (return blood to the heart). a. Epicardium b. Myocardium b. The lymphatic system consists of lymph capillaries and lymph vessels that drain excess c. Endocardium interstitial fluid (lymph) from the tissues; after passing through at least one lymph node, 2. Valves the fluid is returned to the venous circulation via large lymph vessels (ducts) in the thorax. B. Vasculature 1. Grouped Structures 2. Blood vessels larger than capillaries all share the same basic architecture consisting of three 2. Blood Vessels layers of their walls; categories of vessels (e.g., elastic artery, muscular artery, vein) differ from a. Arterial each other based upon the size and composition of these layers: i. Elastic arteries ii. Muscular arteries a. The innermost tunica intima consists of endothelium and loose CT. iii. Arterioles b. The middle tunica media consists primarily of smooth muscle fibers, or elastic fibers in b.
    [Show full text]
  • Review Research
    Published OnlineFirst December 5, 2011; DOI: 10.1158/0008-5472.CAN-11-1718 Cancer Review Research The Evolution of Endothelial Regulatory Paradigms in Cancer Biology and Vascular Repair Joseph W. Franses1 and Elazer R. Edelman1,2 Abstract Although the roles of endothelial cells in cancer have primarily been considered to be related to tumor perfusion, the emerging appreciation of "angiocrine" regulation adds stromal regulatory capabilities to the expanding list of endothelial functions in tumors. We posit that an understanding of the state-dependent paracrine regulatory paradigms established in vascular disease and repair will be critical for a deep understanding of tumor biology, as endothelial cells regulate diverse processes in all vascularized tissues. Here, we outline the historical developments that led to the appreciation of the paracrine regulatory functions of endothelial cells, summarize classical views of blood vessels and stroma in cancer, and attempt to merge these ideas to include the stromal regulatory endothelial cell as a critical regulator of cancer. The notion of the endothelial cell as a biochemical regulator of cancer state in constant dynamic balance with its tumor could impact diagnosis, prognosis, and treatment of cancer. Such concepts might well explain the mixed results from antiangiogenic cancer therapeutics and how certain drugs that improve vascular health correlate with improved cancer prognosis. Cancer Res; 71(24); 1–6. Ó2011 AACR. Introduction will constrict or dilate, and adjacent smooth muscle cells proliferate or regress. "In the time available I have been able to show you a little As we continue to consider these issues in vascular biology, of the current knowledge of the morphology of the analogy to tumor biology's vascular dependence is obvious [endothelial] cells which fifteen years ago were thought and intriguing.
    [Show full text]
  • Medical School Histology Basics Blood and Lymph Vessels VIBS 243 Lab Introduction Multicellular Organisms Need 3 Mechanisms ------1
    Medical School Histology Basics Blood and Lymph Vessels VIBS 243 lab Introduction Multicellular Organisms Need 3 Mechanisms ------------------------------------------------------------- 1. Distribute oxygen, nutrients, and hormones 2. Collect waste 3. Transport waste to excretory organs Multicellular Organism Needs met by cardiovascular system --------------------------------------------------------------- Distribute, Collection, and Transport are the functions of the Cardiovascular system CARDIOVASCULAR Today we want to examine: SYSTEM How does variation in histological characteristics of different vessels facilitates their contributions to these functions? How does variation in histological characteristics of lymph vessels facilitates their contributions to these functions? CARDIOVASCULAR SYSTEM Body Lungs HEART PRODUCES BLOOD Ref code PRESSURE (SYSTOLE) # 10,16,19 Pressure seen along the arterial pathway from a single heart beat Pulse seen as sudden change in pressure and Two sets of closed vessels velocity is seen only in connected only at the heart the arterial pathway = no pulse in capillaries and venous pathway but steady flow Velocity seen along the arterial pathway from a single heart beat Ref code CARDIOVASCULAR SYSTEM # 10,16,19 HEART contraction produces blood pressure during systole but contraction smooth muscle in the walls of other blood vessels reduces blood flow by reducing the caliber of the vessel lumen Variation in walls of blood vessels accommodates mechanical factors and metabolic needs Vessels vary in size, wall thickness, and shape and size of lumen to facilitate their functions Ref code CARDIOVASCULAR SYSTEM # 10,16, ELASTIC ARTERIES - CONDUCT BLOOD AND MAINTAIN PRESSURE DURING DIASTOLE CARDIOVASCULAR Ref code SYSTEM # 6,19 MUSCULAR ARTERIES - DISTRIBUTE BLOOD, MAINTAIN PRESSURE ARTERIOLES - PERIPHERAL RESISTANCE AND DISTRIBUTE BLOOD CAPILLARIES - EXCHANGE NUTRIENTS AND WASTE VENULES - COLLECT BLOOD FROM CAPILLARIES (EDEMA) Ref code # 9 Ref code LAYERS IN VASCULAR # 6 WALL LAYER COMPOSITION TUNICA INTIMA ENDOTHELIUM (SUBENDOTHELIA CT.
    [Show full text]
  • Response of Vessels to Ischaemia
    Eye (1991) 5, 438-439 Response of Vessels to Ischaemia G. A. GRESHAM Cambridge Ischaemia literally means the reduction or In addition a variety of metabolic products arrest of the blood supply to a tissue. The accumulate which are numerous and have result is a state of hypoxia in the territory sup­ diverse effects on the vascular wall. Hypoxia plied by the compromised blood vessel. The may result from causes other than vascular effects of hypoxia on blood vessels in the pul­ obstruction and in general the effects upon monary circulation have received consider­ the organ are similar to those produced by able attention in the past but the effects on ischaemia. Pulmonary disease, circulatory blood vessels in other parts of the body have shunts, anaemia and histotoxic agents can all not been so intensively studied.! Arteries, lead to hypoxia. veins and capillaries do not respond in the In some animals and particularly in man same way to hypoxia and arteries in some arteries are naturally hypoxic. This is largely organs, such as the lung, respond differently determined by the thickness of the vessel wall to arteries in other organs such as the heart. In and the number of lamellar units composed of the eye, arteries and veins respond differ­ elastin and smooth muscle that are present. In ently. In the hypoxic retina produced by sim­ thick walled vessels the hypoxic effects ulated high altitude conditions small arteries depends upon the adequacy of blood supply dilate, larger ones constrict and veins are to the vessel by the vasa vasorum. In the dog unaffected.
    [Show full text]