The Observer of the Twin City Amateur Astronomers

Total Page:16

File Type:pdf, Size:1020Kb

The Observer of the Twin City Amateur Astronomers THE OBSERVER OF THE TWIN CITY AMATEUR ASTRONOMERS Volume 42, Number 5 May 2017 INSIDE THIS ISSUE: 1Editor’s Choice: Image of the Month – Jupiter 2President’s Log 3Calendar of Celestial Events – May 2017 3New & Renewing Members/Dues Blues/List/Forum 3Subscribing to Our E-Mail List & Forum 4Planets and Bright Stars in Evening Mid-Twilight 5This Month’s Phases of the Moon 5Local Sunrise and Sunset Times for May 5Movement Toward New Observatory: Update #1 6AstroBits – News from Around the TCAA 7Report from the NCRAL 2017 Meeting 8How “GoTo” Telescopes Work 9Becoming an Observer of the Sun – Part 3 12TCAA Photo Gallery 15Education and Public Outreach for April 2017 16May 27th Third POS of 2017 16Remaining POS for 2017 17Telescopes for Sale 18Camp Ondessonk Update #7 - Reminder 18TCAA on Facebook and Twitter 18HowTimeFlies 19Renewing Your TCAA Membership EDITOR’S CHOICE: IMAGE OF THE MONTH – JUPITER 19Treasurer’s Report for April 2017 20Breaking News: A Peek at the Plans… This month’s image is by Tim Stone. Tim writes, “I don’t recall the exact year I got my first real telescope. It might have been 1970 or 1971. It was a 6” Criterion Dynascope; in that day, it was quite a telescope for an 8th or 9th grade kid. I’ll never forget my first look through that telescope. My dad and I pointed it at Jupiter, put an eyepiece in it, and there it was, bigger than life to me. I could see its twin equatorial belts and its great red spot. To this day I have rarely, if ever, experienced the feeling I had that night. From that night on, Jupiter held a special spot in my heart. “My first feeble attempts at valid astrophotography began in 2008, with my Nikon D200 mounted on a tripod pointed down the eyepiece of my 8” Schmidt-Newtonian, taking afocal images of the Moon. It didn’t take me long to realize the futility of that exercise, so I purchased a cheap Meade Lunar/Planetary Imager, a rudimentary web camera, and began experimenting with using Registax to make The TCAA is an affiliate of the Astronomical League. For better images than was possible with a single-frame DSLR. It didn’t more information about the TCAA, be certain to visit our take me long to try my hand at Jupiter, and by 2010 I was making club website. Copyright © 2017 TCAA 1 All rights reserved. Vol. 42, No. 5 The OBSERVER of the Twin City Amateur Astronomers May 2017 decent images of that giant planet. I proudly showed them to my family and friends, all of whom were duly impressed. Then I rediscovered the TCAA and its deep-sky The OBSERVER astrophotography capabilities, and the rest, as they say, is history. is the monthly electronic newsletter of Twin “Fast forwarding to the first four months of 2017, you’d find me stymied by a City Amateur Astronomers, Inc., a registered 501(c)3 non-profit educational seemingly endless cloud cover. By April, I was desperate to take a picture of anything in organization of amateur astronomers the sky. Inspired by Jamey Jenkins’ beautiful solar imagery, and with a couple of nights interested in studying astronomy and with the forecast of a cloud-free, though not terribly transparent night, I decided to try sharing their hobby with the public. my hand again at webcam photography of Jupiter. It was near opposition, so I knew this TCAA OFFICERS & CHAIRPERSONS was the best time to try. So, with Tony Cellini’s help, we hooked up his Point Gray Chameleon to the 12” in the SGO, and away I went, happily recording avi files for President & Director/Property Manager Tim Stone 309-531-2401 stacking and processing. [email protected] “My hopes for the result were not too high. It had been nearly ten years since I’d Vice President & Director/Publicist tried such a thing, and while the equipment available to me was certainly much higher Darren Erickson 309-336-0103 quality than I’d had all those years ago, my experience had not advanced as far as the [email protected] equipment. The first night had terrible seeing, and the resulting image was not good. Treasurer & Director/Registered Agent But the weather gifted me with a second night, where seeing was very good, and I got Dave Osenga 309-287-0789 some good quality data. In addition to the monochromatic data from the Chameleon, I [email protected] used the club’s Celestron Skyris full color webcam to get some color data, though not of Secretary & Director/Historian/Editor equivalent quality. Carl J. Wenning 309-830-4085 “I’ve been working on processing the data for a few nights now. It’s taken that long [email protected] for me to remember how to do it, and to try out some things I’d never tried before to Director & Observing Programs Coord. see how much detail I can tease out of the data. I’m quite surprised at how well the Jim Gibbs 847-808-2232 result turned out. It’s certainly the best image of Jupiter I’ve ever made, by a long shot. [email protected] While there are people out there doing much higher quality planetary imaging, I’m Astronomical League Correspondent quite happy with the progress this result shows. I’m happy enough that perhaps I’ll Robert Finnigan 309-846-9533 keep this up, working to hone my skills some more!” [email protected] Webmaster Lee Green 309-454-7349 PRESIDENT’S LOG [email protected] As I write this note, I hear rain outside my window. It’s a nice Lighting Education Coordinator sound, and I like it, but it isn’t an astronomy sound. It reminds me Lisa Wentzel unlisted number of a song I learned when I was a child: “Though April showers may [email protected] come your way, they bring the flowers that bloom in May.” I’m Membership Coordinator tempted to rewrite it to something like “…they hide the galaxies that show in May.” Tom Willmitch 309-846-2423 [email protected] That said, the weather is beginning to break up and present us with some clear sky nights. Some of us have taken advantage of those nights already, using the visual Technology Coordinator instrument in the Sugar Grove Observatory to make observations of Jupiter, the moon, Justin Meyer 630-649-0611 [email protected] and some classic springtime deep sky objects. We’ve also done some imaging in the Prairie Sky Observatory. It feels good to get back to some outdoor astronomy. The OBSERVER None of that we’ve not been busy. As you may already know, we are beginning to Carl J. Wenning, Editor in Chief take steps to erect a third observatory at the Sugar Grove Nature Center, to house a Paul Pouliot, Assistant Editor 24” system. Personally, I’m excited about the possibilities of this system. Its long focal Submission deadline end of each month. length will allow us to photograph much smaller objects at a theoretical resolution of MEMBERSHIP DUES 0.3 arc seconds per pixel! With the adaptive optics setup that will be installed, it may very well be possible to get sub arc second resolution with this system. For the club, the Individual Adult/Family $40 Full-time Student/Senior $25 added facility will allow more participation in imaging activities, and will be yet another (Senior status equals ages 60+) attraction for the public to come and experience the sky as facilities like ours can give. It’s an exciting time to be part of the TCAA. Would you like to participate in the To join, send your name, contact info and dues payment to Dave Osenga, TCAA planning and project execution for this new facility? Just drop me a line. Don’t forget to Treasurer, 1109 N. Linden St., Normal, IL mark the May Public Observing Session on your calendar! I’m looking forward to seeing 61761-1471. you there. Meanwhile, take some time to catch some ancient photons! Clear Skies! Tim Stone, President Copyright © 2017 TCAA 2 All rights reserved. Vol. 42, No. 5 The OBSERVER of the Twin City Amateur Astronomers May 2017 CALENDAR OF CELESTIAL EVENTS – MAY 2017 NEW & RENEWING MEMBERS MORNING PLANETS (5/15): Mercury, Venus, Saturn, Uranus, The following individuals have paid dues for new or and Neptune renewed memberships as of April 25th, 2017. (Others who paid after that date will appear in the June 2017 issue of EVENING PLANETS (5/15): Mars and Jupiter The OBSERVER.) 02 First Quarter Moon – The waxing, half-lit moon rises around midday and sets around midnight. Sharon MacDonald, Tom Willmitch, Kelsey Christensen 06-07 Eta Aquarid Meteor Shower – The Eta Aquarids is an above average shower originating near the star Eta in Aquarius. This shower produces up to 60 meteors per hour DUES BLUES at its peak. The best views are, however, from the southern hemisphere. In the northern hemisphere, the rate can If you have received a “your dues are due” statement reach about 30 meteors per hour. The shower is produced along with the email that brought you this issue of The by dust particles left behind by Comet Halley. The shower OBSERVER, please remit your dues to Mr. Dave Osenga, runs annually from April 19th to May 28th. It peaks this year TCAA Treasurer, 1109 N. Linden St., Normal, IL 61761- on the night of May 6th and the morning of May 7th. The 1471. Dues are currently $25 for seniors (60 years of age waxing gibbous moon will block out many of the fainter and over) and $40 regular.
Recommended publications
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Distinguishing Standard from Modified Gravity in the Local Group And
    Thesis of Indranil Banik,1{40 (2018) 24 May 2018 Compiled using MNRAS LATEX style file v3.0 Distinguishing Standard from Modified Gravity in the Local Group and beyond Indranil Banik1∗, Supervisor: Hongsheng Zhao1 1Scottish Universities Physics Alliance, University of Saint Andrews, North Haugh, Saint Andrews, Fife, KY16 9SS, United Kingdom 24 May 2018 ABSTRACT The works in this portfolio test the hypothesis that it is not possible to extrapolate the Newtonian inverse square law of gravity from Solar System to galaxy scales. In particular, I look into various tests of Modified Newtonian Dynamics (MOND), which posits a modification below a very low acceleration threshold. Although discrepan- cies with Newtonian dynamics are indeed observed, they can usually be explained by invoking an appropriate distribution of invisible mass known as dark matter (DM). This leads to the standard cosmological paradigm, ΛCDM. I consider how it may be distinguished from MOND using collision velocities of galaxy clusters, which should sometimes be much faster in MOND. I focus on measuring these velocities more ac- curately and conclude that this test ought to be feasible in the near future. For the time being, I look at the much nearer and more accurately observed Local Group (LG) of galaxies. Its main constituents − the Milky Way (MW) and Andromeda (M31) − should have undergone a past close flyby in MOND but not in ΛCDM. The fast MW-M31 relative motion around the time of their flyby would have allowed them to gravitationally slingshot any passing LG dwarf galaxies out at high speed. I consider whether there is any evidence for such high-velocity galaxies (HVGs).
    [Show full text]
  • The Messier Catalog
    The Messier Catalog Messier 1 Messier 2 Messier 3 Messier 4 Messier 5 Crab Nebula globular cluster globular cluster globular cluster globular cluster Messier 6 Messier 7 Messier 8 Messier 9 Messier 10 open cluster open cluster Lagoon Nebula globular cluster globular cluster Butterfly Cluster Ptolemy's Cluster Messier 11 Messier 12 Messier 13 Messier 14 Messier 15 Wild Duck Cluster globular cluster Hercules glob luster globular cluster globular cluster Messier 16 Messier 17 Messier 18 Messier 19 Messier 20 Eagle Nebula The Omega, Swan, open cluster globular cluster Trifid Nebula or Horseshoe Nebula Messier 21 Messier 22 Messier 23 Messier 24 Messier 25 open cluster globular cluster open cluster Milky Way Patch open cluster Messier 26 Messier 27 Messier 28 Messier 29 Messier 30 open cluster Dumbbell Nebula globular cluster open cluster globular cluster Messier 31 Messier 32 Messier 33 Messier 34 Messier 35 Andromeda dwarf Andromeda Galaxy Triangulum Galaxy open cluster open cluster elliptical galaxy Messier 36 Messier 37 Messier 38 Messier 39 Messier 40 open cluster open cluster open cluster open cluster double star Winecke 4 Messier 41 Messier 42/43 Messier 44 Messier 45 Messier 46 open cluster Orion Nebula Praesepe Pleiades open cluster Beehive Cluster Suburu Messier 47 Messier 48 Messier 49 Messier 50 Messier 51 open cluster open cluster elliptical galaxy open cluster Whirlpool Galaxy Messier 52 Messier 53 Messier 54 Messier 55 Messier 56 open cluster globular cluster globular cluster globular cluster globular cluster Messier 57 Messier
    [Show full text]
  • The High Desert Observer July 2018
    The High Desert Observer July 2018 The Astronomical Society of Las Cruces (ASLC) is dedicated to expanding public awareness and understanding of the wonders of the universe. ASLC holds frequent observing sessions and star parties and provides opportunities to work on Society and public educational projects. Members receive the High Desert Observer, our monthly newsletter, plus membership to the Astronomical League, including their quarterly publication, Reflector, in digital or paper format. Individual Dues are $30.00 per year Family Dues are $36.00 per year Student (full-time) Dues are $24.00 Table of Contents Annual dues are payable in January. Prorated dues are 2 What’s Up ASLC, by Howard Brewington available for new members. Dues are payable to ASLC with an application form or note to: Treasurer ASLC, PO Box 921, 3 Outreach Events, by Jerry McMahan Las Cruces, NM 88004. Contact our Treasurer, Patricia Conley 4 Calendar of Events, Announcements, by Charles Turner ([email protected]) for further information. 7 June Meeting Minutes, by John McCullough ASLC members receive electronic delivery of the 8 NASA Space Place Partner Article HDO and are entitled to a $5.00 (per year) Sky and 10 Object of the Month: Kent DeGroff Telescope magazine discount. 11 Photos of the Month: E Montes, A. Woronow,C. Sterling, RDee Sherrill ASLC Board of Directors, 2018 [email protected] July Meeting -- President: Howard Brewington; [email protected] Our next meeting will be on Friday, July 27, at the Good Vice President: Rich Richins; [email protected] Samaritan Society, Creative Arts Room at 7:00 p.m.
    [Show full text]
  • Astronomy and Astrophysics Books in Print, and to Choose Among Them Is a Difficult Task
    APPENDIX ONE Degeneracy Degeneracy is a very complex topic but a very important one, especially when discussing the end stages of a star’s life. It is, however, a topic that sends quivers of apprehension down the back of most people. It has to do with quantum mechanics, and that in itself is usually enough for most people to move on, and not learn about it. That said, it is actually quite easy to understand, providing that the information given is basic and not peppered throughout with mathematics. This is the approach I shall take. In most stars, the gas of which they are made up will behave like an ideal gas, that is, one that has a simple relationship among its temperature, pressure, and density. To be specific, the pressure exerted by a gas is directly proportional to its temperature and density. We are all familiar with this. If a gas is compressed, it heats up; likewise, if it expands, it cools down. This also happens inside a star. As the temperature rises, the core regions expand and cool, and so it can be thought of as a safety valve. However, in order for certain reactions to take place inside a star, the core is compressed to very high limits, which allows very high temperatures to be achieved. These high temperatures are necessary in order for, say, helium nuclear reactions to take place. At such high temperatures, the atoms are ionized so that it becomes a soup of atomic nuclei and electrons. Inside stars, especially those whose density is approaching very high values, say, a white dwarf star or the core of a red giant, the electrons that make up the central regions of the star will resist any further compression and themselves set up a powerful pressure.1 This is termed degeneracy, so that in a low-mass red 191 192 Astrophysics is Easy giant star, for instance, the electrons are degenerate, and the core is supported by an electron-degenerate pressure.
    [Show full text]
  • What's up This Month – May 2017
    WHAT'S UP THIS MONTH – MAY 2017 THESE PAGES ARE INTENDED TO HELP YOU FIND YOUR WAY AROUND THE SKY The chart on the last page is included for printing off and use outside The chart above shows the whole night sky as it appears on 15th May at 22:00 (10 o’clock) in the evening British Summer Time (BST). As the Earth orbits the Sun and we look out into space each night the stars will appear to have moved across the sky by a small amount. Every month Earth moves one twelfth of its circuit around the Sun, this amounts to 30 degrees each month. There are about 30 days in each month so each night the stars appear to move about 1 degree. The sky will therefore appear the same as shown on the chart above at 11 o’clock BST at the beginning of the month and at 9 o’clock BST at the end of the month. The stars also appear to move 15º (360º divided by 24) each hour from east to west, due to the Earth rotating once every 24 hours. The sky appears to rotate from east to west around the Pole Star (Polaris). The centre of the chart will be the position in the sky directly overhead, called the Zenith. First we need to find some familiar objects so we can get our bearings. The Pole Star Polaris can 1 be easily found by first finding the familiar shape of the Great Bear ‘Ursa Major’ that is also sometimes called the Plough or even the Big Dipper by the Americans.
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • Charles Messier (1730-1817) Was an Observational Astronomer Working
    Charles Messier (1730-1817) was an observational Catalogue (NGC) which was being compiled at the same astronomer working from Paris in the eighteenth century. time as Messier's observations but using much larger tele­ He discovered between 15 and 21 comets and observed scopes, probably explains its modern popularity. It is a many more. During his observations he encountered neb­ challenging but achievable task for most amateur astron­ ulous objects that were not comets. Some of these objects omers to observe all the Messier objects. At «star parties" were his own discoveries, while others had been known and within astronomy clubs, going for the maximum before. In 1774 he published a list of 45 of these nebulous number of Messier objects observed is a popular competi­ objects. His purpose in publishing the list was so that tion. Indeed at some times of the year it is just about poss­ other comet-hunters should not confuse the nebulae with ible to observe most of them in a single night. comets. Over the following decades he published supple­ Messier observed from Paris and therefore the most ments which increased the number of objects in his cata­ southerly object in his list is M7 in Scorpius with a decli­ logue to 103 though objects M101 and M102 were in fact nation of -35°. He also missed several objects from his list the same. Later other astronomers added a replacement such as h and X Per and the Hyades which most observers for M102 and objects 104 to 110. It is now thought proba­ would feel should have been included.
    [Show full text]
  • Printing the List
    KAS Observation Planning Date: 8 March 2019 20:00 EST Weather Feels Cloud Dew Time Conditions Temp. Precip Humidity Wind Pressure Like Cover Point Partly 19:00 29 °F 24 °F 4% 43% 15 °F 54% 5 mph SSW 30.21 in Cloudy Partly 20:00 28 °F 23 °F 5% 38% 16 °F 59% 4 mph SSW 30.21 in Cloudy Partly 21:00 27 °F 21 °F 6% 31% 16 °F 64% 5 mph SW 30.22 in Cloudy 22:00 Clear 26 °F 21 °F 7% 18% 17 °F 68% 4 mph SW 30.22 in Mostly 23:00 25 °F 19 °F 7% 20% 17 °F 72% 5 mph SW 30.23 in Clear Space News This day is history: On March 8, 1979, NASA's Voyager 1 spacecraft discovered active volcanoes on Jupiter's moon Io. CREW DEMO-1: • At 2:49 a.m. EST on March 2, SpaceX launched Crew Dragon’s first demonstration mission from Launch Complex 39A (LC-39A) at NASA’s Kennedy Space Center. Following stage separation, SpaceX landed Falcon 9’s first stage on the “Of Course I Still Love You” drone ship, which was stationed in the Atlantic Ocean. • Crew Dragon docked with the ISS on March 3 at 6:02 a.m. EST, becoming the first American spacecraft to autonomously dock with the orbiting laboratory. • Crew Dragon splashed down in the Atlantic Ocean on March 8 at 8:45 a.m. EST, completing the spacecraft's first mission to the International Space Station. Hubble Space Telescope: Hubble’s Advanced Camera for Surveys Resumes Operations - Hubble has recovered the HST’s Advanced Camera for Surveys instrument, which suspended operations on Thursday, Feb.
    [Show full text]
  • The Astronomer Magazine Index
    The Astronomer Magazine Index The numbers in brackets indicate approx lengths in pages (quarto to 1982 Aug, A4 afterwards) 1964 May p1-2 (1.5) Editorial (Function of CA) p2 (0.3) Retrospective meeting after 2 issues : planned date p3 (1.0) Solar Observations . James Muirden , John Larard p4 (0.9) Domes on the Mare Tranquillitatis . Colin Pither p5 (1.1) Graze Occultation of ZC620 on 1964 Feb 20 . Ken Stocker p6-8 (2.1) Artificial Satellite magnitude estimates : Jan-Apr . Russell Eberst p8-9 (1.0) Notes on Double Stars, Nebulae & Clusters . John Larard & James Muirden p9 (0.1) Venus at half phase . P B Withers p9 (0.1) Observations of Echo I, Echo II and Mercury . John Larard p10 (1.0) Note on the first issue 1964 Jun p1-2 (2.0) Editorial (Poor initial response, Magazine name comments) p3-4 (1.2) Jupiter Observations . Alan Heath p4-5 (1.0) Venus Observations . Alan Heath , Colin Pither p5 (0.7) Remarks on some observations of Venus . Colin Pither p5-6 (0.6) Atlas Coeli corrections (5 stars) . George Alcock p6 (0.6) Telescopic Meteors . George Alcock p7 (0.6) Solar Observations . John Larard p7 (0.3) R Pegasi Observations . John Larard p8 (1.0) Notes on Clusters & Double Stars . John Larard p9 (0.1) LQ Herculis bright . George Alcock p10 (0.1) Observations of 2 fireballs . John Larard 1964 Jly p2 (0.6) List of Members, Associates & Affiliations p3-4 (1.1) Editorial (Need for more members) p4 (0.2) Summary of June 19 meeting p4 (0.5) Exploding Fireball of 1963 Sep 12/13 .
    [Show full text]
  • Messier 1 Messier 2
    Messier 1 { HYPERLINK "http://www.seds.org/messier/nebula.html" } M1 (NGC 1952) in { HYPERLINK "http://www.seds.org/messier/map/Tau.html" } Crab Nebula { HYPERLINK "http://www.seds.org/messier/Jpg/m1.jpg" } Right Ascension 05 : 34.5 (h:m) Declination +22 : 01 (deg:m) Distance 6.3 (kly) Visual Brightness 8.4 (mag) Apparent Dimension 6x4 (arc min) Messier 2 { HYPERLINK "http://www.seds.org/messier/cluster.html" } M2 (NGC 7089) , class II, in { HYPERLINK "http://www.seds.org/messier/map/Aqr.html" } { HYPERLINK "http://www.seds.org/messier/Jpg/m2.jpg" } Right Ascension 21 : 33.5 (h:m) Declination -00 : 49 (deg:m) Distance 37.5 (kly) Visual Brightness 6.5 (mag) Apparent Dimension 16.0 (arc min) Messier 3 { HYPERLINK "http://www.seds.org/messier/cluster.html" } M3 (NGC 5272) , class VI, in { HYPERLINK "http://www.seds.org/messier/map/CVn.html" } { HYPERLINK "http://www.seds.org/messier/Jpg/m3.jpg" } Right Ascension 13 : 42.2 (h:m) Declination +28 : 23 (deg:m) Distance 33.9 (kly) Visual Brightness 6.2 (mag) Apparent Dimension 18.0 (arc min) Messier 4 { HYPERLINK "http://www.seds.org/messier/cluster.html" } M4 (NGC 6121) , class IX, in { HYPERLINK "http://www.seds.org/messier/map/Sco.html" } { HYPERLINK "http://www.seds.org/messier/Jpg/m4.jpg" } Right Ascension 16 : 23.6 (h:m) Declination -26 : 32 (deg:m) Distance 7.2 (kly) Visual Brightness 5.6 (mag) Apparent Dimension 36.0 (arc min) Messier 5 { HYPERLINK "http://www.seds.org/messier/cluster.html" } M5 (NGC 5904) , class V, in { HYPERLINK "http://www.seds.org/messier/map/SerCap.html" } { HYPERLINK
    [Show full text]
  • Messier Objects: Images on the Web a Catalog by Andrew Fraknoi [Dec
    Messier Objects: Images on the Web A Catalog by Andrew Fraknoi [Dec. 2017] NOTE: The images listed are in the public domain, and can thus be used for educational purposes. Under Type: SNR = Supernova Remnant; GSC = Globular Star Cluster; OSC = Open Star Cluster NEB = Nebula; GAL = Galaxy M# Typ Name Picture Address e 1 SNR Crab https://www.nasa.gov/feature/goddard/2017/messier-1-the-crab-nebula Nebula https://www.eso.org/public/images/potw1523a/ 2 GSC https://www.nasa.gov/feature/goddard/2017/messier-2 https://www.noao.edu/image_gallery/html/im0523.html 3 GSC https://www.nasa.gov/feature/goddard/2017/messier-3 https://www.noao.edu/image_gallery/html/im1273.html 4 GSC https://www.nasa.gov/feature/goddard/2017/messier-4 https://www.eso.org/public/images/eso1235a/ 5 GSC https://www.nasa.gov/feature/goddard/2017/messier-5 https://www.noao.edu/image_gallery/html/im0731.html 6 OSC Butterfly https://commons.wikimedia.org/wiki/File:M6a.jpg Cluster https://www.noao.edu/image_gallery/html/im0379.html 7 OSC Ptolemy’s http://www.eso.org/public/images/eso1406a/ Cluster https://www.noao.edu/image_gallery/html/im0584.html 8 NEB Lagoon https://www.nasa.gov/feature/goddard/2017/messier-8-the-lagoon-nebula Nebula https://www.noao.edu/image_gallery/html/im1105.html 9 GSC https://www.nasa.gov/feature/goddard/2017/messier-9 https://www.noao.edu/image_gallery/html/im0573.html 10 GSC https://www.nasa.gov/feature/goddard/2017/messier-10 1 https://www.noao.edu/image_gallery/html/im0648.html 11 OSC Wild Duck https://www.nasa.gov/feature/goddard/2017/messier-11-the-wild-duck-cluster
    [Show full text]