Newsletter No.No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proceedings of the Open University Geological Society
0 OUGS Proceedings 5 2019_OUGSJ 26/02/2019 11:45 Page i Proceedings of the Open University Geological Society Volume 5 2019 Including articles from the AGM 2018 Geoff Brown Memorial Lecture, the ‘Music of the Earth’ Symposium 2018 lectures (Worcester University), OUGS Members’ field trip reports, the Annual Report for 2018, and the 2018 Moyra Eldridge Photographic Competition Winning and Highly Commended photographs Edited and designed by: Dr David M. Jones 41 Blackburn Way, Godalming, Surrey GU7 1JY e-mail: [email protected] The Open University Geological Society (OUGS) and its Proceedings Editor accept no responsibility for breach of copyright. Copyright for the work remains with the authors, but copyright for the published articles is that of the OUGS. ISSN 2058-5209 © Copyright reserved Proceedings of the OUGS 5 2019; published 2019; printed by Hobbs the Printers Ltd, Totton, Hampshire 0 OUGS Proceedings 5 2019_OUGSJ 26/02/2019 11:46 Page 35 The complex tectonic evolution of the Malvern region: crustal accretion followed by multiple extensional and compressional reactivation Tim Pharaoh British Geological Survey, Keyworth, Nottingham, NG12 5GG ([email protected]) Abstract The Malvern Hills include some of the oldest rocks in southern Britain, dated by U-Pb zircon analysis to c. 680Ma. They reflect calc- alkaline arc magmatic activity along a margin of the Rodinia palaeocontinent, hints of which are provided by inherited zircon grains as old as 1600Ma. Metamorphic recrystallisation under upper greenschist/amphibolite facies conditions occurred from c. 650–600Ma. Subsequently, rifting of the magmatic arc (c.f. the modern western Pacific) at c. 565Ma led to the formation of a small oceanic mar- ginal basin, evidenced by basaltic pillow lavas and tuffs of the Warren House Formation, and Kempsey Formation equivalents beneath the Worcester Graben. -
PROGRAMME: July – October 2018
PROGRAMME: July – October 2018 MEETING POINTS Sunday Abbey Foregate car park (opposite The Abbey). 9.30 am. unless otherwise stated in programme. Tuesday Car park behind Harvester Beaten Track PH, Old Potts Way. 9.30 am. unless otherwise stated in programme. Thursday Car park behind Harvester Beaten Track PH, Old Potts Way. 9.30 am. unless otherwise stated in programme. Saturday As per programme. Sun 1 Jul Darren Hall (07837 021138) 7 miles Moderate+ Rectory Wood, up Town Brook Valley to Pole Bank, along the top of the Long Mynd to Pole Cottage, before returning via Ashes Hollow to Church Stretton. Tea afterwards at Berry's or Jemima's Tearooms. Walk leader will meet walkers at Easthope car park at 10:00. Meet 09:30 Abbey Foregate. Voluntary transport contribution £2 Tue 3 Jul John Law (01743 363895) 9 miles Moderate+ Cleobury Mortimer, Mamble & Bayton. Rural paths and tracks Meet 09:00 Harvester Car Park. Voluntary transport contribution £4 Wed 4 Jul Peter Knight (01743 246609) 4 miles Easy Meole Brace along the Reabrook and Shrewsbury School overlooking the Quarry. Start 19:00 Co-op Stores Radbrook (SJ476112). Thu 5 Jul Ken Ashbee (07972 012475) 6 miles Easy Powis Castle, once a medieval fortress. Track and field paths, lovely views. This is a NT property so bring your card if you are a member Meet 09:30 Harvester Car Park. Voluntary transport contribution £3 Sat 7 Jul Phil Barnes (07983 459531) 7 miles Moderate Leebotwood to Pulverbatch Bus Ramble via Picklescote taking in two motte and baileys and a, hard to find, church. -
January 2009 Mag.Indd
Stretton FJanuary 209OCUSCommunity Voice of the Strettons £1.00 The Old Tractor & Farm Yard January 2009 mag.indd 1 12/12/08 15:29:18 Stretton Focus 2 (founded 1967) In Focus Average monthly sales 1,500 copies (About 65% of households in Church Stretton) News What’s On in the Strettons in January Chairman 4 Free Garden Courses If you wish to know the times of regular meetings of societies and groups, please consult the list of societies and their contacts in the yellow pages. Mike Edmunds 723961 Editors 4 C S Christmas Celebrations 2008 Barbara Vickery 724179 7 Amnesty International 1 THURSDAY Gay Walker 722257 8 Army Cadets Come to C S Morning-After Walk/Run Nigel and Liz Strachan 724442 Hilary Jones 781459 17 Church Stretton Bag Competition For more information contact CS Social Club Cover Editor 18 Prayers For Peace 01694 771674 Yvonne Beaumont 722533 21 United Nations Associations - AGM www.merciafellrunners.co.uk Computer Production Barrie Raynor 723928 22 Mayfair News Rowland Jackson 722390 23 CS Community History Group 4 SUNDAY Paul Miller 724596 23 Rail Users’ Association South Shropshire Ramblers Distribution Richard Carter 724106 29 Electric Bikes Come to The Strettons Two walks, one long, one shorter Advertising 34 Dorrington Players Review See Page 21 Graham Young 724647 35 Birdwatching For Beginners Treasurer Robert Woodier 720016 37 Poppy Day Appeal 5 MONDAY Secretary 37 Arts Festival News Flicks in the Sticks Gloria Carter 724106 37 Methodist Church Refurbishment ‘The Kite Runner’ Directors Mike Edmunds (Chmn), Gloria Carter -
Rb-Sr Whole-Rock Isochron Ages of Late Precambrian to Cambrian Igneous Rocks from Southern Britain
J. geol. SOC. London, Vol. 137, 1980, pp. 649656, 6 figs., 1 table. Printed in Northern Ireland. Rb-Sr whole-rock isochron ages of late Precambrian to Cambrian igneous rocks from southern Britain P. J. Patchett, N. H. Gale, R. Goodwin & M. J. Hum SUMMARY:Rb-Sr age data are reported for late Precambrian to Cambrianigneous and metamorphic rocks from the border region of England and Wales. A felsic intrusion from Stanner Hill defines a good whole-rock isochron of 702 f 8 Ma. Uriconian pyroclastic rocks from the Wrekin area give a whole-rock age of 558* 16 Ma, while the late- or post-Uriconian Ercall granophyre from the same area gives a good whole-rock isochron of 533 f 13 Ma. A biotite cooling age from the nearby pre-volcanic Rushton Schist is consistent with these dates and suggests that the region cooled after the close of Uriconian magmatism at 536*8 Ma. All these results relate to widespread igneous/metamorphic activityin latest Precambrian to Lower Cambrian time. The Ercall granophyre and Rushton schist are directly overlain by Lower Cambrian sedi- ments and 533* 13 Ma is thus a maximum age for the deposition of these rocks. Rocks underlying themarine Cambrian deposits of rocks comprising the‘Stanner-Hanter complex’, de- southernBritain are exposed ina series of isolated scribed in detail by Holgate & Hallowes (1941). They inliers. Early Rb-Sr mineral and K-Ar dating of these distinguisheda series of intrusiveevents beginning rocks (Moorbath & Shackleton 1966; Lambert & Rex withfine dolerite, followed successively by gabbro, 1966; Fitch et al. 1969)suggested that almostall felsic intrusions and veins, and finally some rare later regions underwent a major thermal event650-600 Ma dolerite dykes. -
A Review of the Tectonic History of the Shropshire Area
ISSN 1750-855X (Print) ISSN 1750-8568 (Online) A review of the tectonic history of the Shropshire area 1 James Butler BUTLER, J.B. (1990). A review of the tectonic history of the Shropshire area. Proceedings of the Shropshire Geological Society , 9, 20–34. A review of the tectonic data available for Shropshire, relating this to information which has become available from the exploration of the north-west continental shelf. The tectonic history of Shropshire records short bursts of compression producing folding and wrench faulting as a result of continental collision, followed by longer periods of tension, deposition and reversal of movement along the wrench fault system. The County lies upon the Midland Block, comprising Longmyndian and Charnian rock to which was accreted Island Arc volcanics and related sediments along the line of the Pontesford Lineament in the late Precambrian. The so-called "Caledonian grain" was determined at this time and was reactivated many times subsequently. Sediments were folded during the Taconic pulse in mid-Ordovician, and then continental collision along the Iapetus suture in mid-Devonian intensified the Caledonian grain. At the end of the Devonian, collision occurred to the south of the Midland Block. Pulses during the Carboniferous produced the Hercynian basins and welded the continents into one super-continent: Pangea. Break-up of Pangea was followed by a taphrogenic regime with rifting (Cimmerian) in the Permo-Triassic and early Cretaceous. Compressive forces operated at the end of the Cretaceous with reactivation of old wrench faults. Finally, Styrian compression inverted the Weald-type basins and most likely elevated the Welsh Massif at the same time, some 10 million years ago. -
Geotectonic Framework of the Blueschist Unit on Anglesey–Lleyn, UK, and Its Role in the Development of a Neoproterozoic Accretionary Orogen T
Precambrian Research 153 (2007) 11–28 Geotectonic framework of the Blueschist Unit on Anglesey–Lleyn, UK, and its role in the development of a Neoproterozoic accretionary orogen T. Kawai a,∗, B.F. Windley b, M. Terabayashi c, H. Yamamoto d, S. Maruyama a, S. Omori a, T. Shibuya a,Y.Sawakia, Y. Isozaki e a Department of Earth and Planetary Sciences, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro, Tokyo 152-8551, Japan b Department of Geology, The University of Leicester, Leicester LE1 7RH, UK c Department of Safety Systems Construction Engineering, Kagawa University, Kagawa 761-0396, Japan d Department of Earth and Environmental Sciences, Kagoshima University, Kagoshima 890-0065, Japan e Department of Earth Science & Astronomy Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan Received 27 April 2006; received in revised form 10 November 2006; accepted 12 November 2006 Abstract A 560–550 Ma, 5 km × 25 km Blueschist Unit extends NE–SW on the island of Anglesey, Wales, UK, and continues to the southwest for more than 70 km along the northern coast of the Lleyn Peninsula. It has the shape of a shallow-dipping slab or sheet up to a few kilometres thick that was exhumed from the subduction zone and emplaced into the accretionary complex to the northwest. Today the top boundary of the slab is commonly a thrust that was originally a low-angle normal fault at its top in the subduction zone; above it is an accretionary complex and a unit of high-grade gneisses. -
Annual Meeting 2014
The Palaeontological Association 58th Annual Meeting 16th–19th December 2014 University of Leeds PROGRAMME abstracts and AGM papers Public transport to the University of Leeds BY TRAIN: FROM TRAIN STATION ON FOOT: Leeds Train Station links regularly to all major UK cities. You The University campus is a 20 minute walk from the train can get from the station to the campus on foot, by taxi or by station. The map below will help you find your way. bus. A taxi ride will take about 10 minutes and it will cost Leave the station through the exit facing the main concourse. approximately £5. Turn left past the bus stops and walk down towards City Square. Keeping City Square on your left, walk straight up FROM TRAIN STATION BY BUS: Park Row. At the top of the road turn right onto The Headrow, We advise you to take bus number 1 which departs from passing The Light shopping centre on your left. After The Light Infirmary Street. The bus runs approximately every 10 minutes turn left onto Woodhouse Lane to continue uphill. Keep going, and the journey takes 10 minutes. passing Morrisons, Leeds Metropolitan and the Dry Dock You should get off the bus just outside the Parkinson Building. boat pub heading for the large white clock tower. This is the (There is also the £1 Leeds City Bus which takes you from the Parkinson building. train station to the lower end of campus but the journey time is much longer). BY COACH: If you arrive by coach you can catch bus numbers 6,28 or 97 to the University (Parkinson Building). -
Things to See and Do
over the river, where every With its mix of Medieval, and landscape of the area the church. Further afield, spring The Green Man must Georgian and Victorian where you can Meet the but which also make a great t defeat the Frost Queen for architecture, Much Wenlock Mammoth – a full size day out is the Severn Valley there to be summer in the is a must on your ‘to do’ list. replica of the skeleton Railway at Bridgnorth, Clun Valley. This annual Walk along the High Street found at Condover. The The Judge’s Lodgings’ at Church Stretton, nestled in the Shropshire Hills celebration in May is the to browse the galleries, book exhibition also includes Presteigne, Powys Castle, high point of the town’s and antique shops. Visit a film panorama with home of the Earl of Powys, of independent retailers, whether on foot, by bike or famous Green Man Festival, the museum in the Market spectacular views of the near Welshpool, the offering a top-quality even aiming for the sky; the which also includes The Square to discover the Shropshire Hills. After that, fascinating museums of the Michaelmas fair, Bishops Castle shopping experience along Long Mynd enjoys some of Clun Mummers doing battle town’s heritage and links to explore the centre’s 30-acre Ironbridge Gorge and of with a tempting selection of the best thermals in Europe, For 800 years Welsh drovers heritage displays and Visitor in the Square, as well as the modern Olympic Games. Onny Meadows site, which course, the County town of Carding Mill Valley and the Long Mynd Green Man Festival, Clun butchers, bakers, historic so is unrivalled for gliding, brought livestock along the Information Centre. -
The Complex Tectonic Evolution of the Malvern Region: Crustal Accretion Followed by Multiple Extensional and Compressional Reactivation
The complex tectonic evolution of the Malvern region: crustal accretion followed by multiple extensional and compressional reactivation Tim Pharaoh British Geological Survey, Keyworth, Nottingham, NG12 5GG ([email protected]) Abstract, The Malvern Hills include some of the oldest rocks in southern Britain, dated by U-Pb zircon analysis to c. 680Ma. They reflect calc-alkaline arc magmatic activity along a margin of the Rodinia palaeocontinent, hints of which are provided by inherited zircon grains as old as 1600Ma. Metamorphic recrystallisation under upper greenschist/amphibolite facies conditions occurred from c. 650–600Ma. Subsequently, rifting of the magmatic arc (c.f. the modern western Pacific) at c. 565Ma led to the formation of a small oceanic marginal basin, evidenced by basaltic pillow lavas and tuffs of the Warren House Formation, and Kempsey Formation equivalents beneath the Worcester Graben. By early Cambrian time this juvenile crust had stabilised sufficiently for thick quartz arenite-dominated sequences to accumulate, followed by mudstones in mid- to late-Cambrian time. In earliest Ordovician time, subsidence accelerated in a rift basin east of the Malverns, but was terminated by accretion of the Monian Composite Terrane to the Gondwana margin. Rifting led to a microcontinental flake (‘East Avalonia’) breaking away, eventually to impact with Laurentian terranes on the other margin of the Iapetus Ocean in early Silurian time. Minor inversion of the floor of the Worcester Graben might have occurred during the Acadian (early Devonian) deformation phase, but more significantly, during the Variscan (end Carboniferous) Orogeny, when a ‘Rocky Mountain Front’-type uplift was generated opposite a pinch-point within the orogen. -
A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish. -
An Introduction to 700 Million Years of Earth History in Shropshire and Herefordshire
ISSN 1750-855X (Print) ISSN 1750-8568 (Online) An introduction to 700 million years of earth history in Shropshire and Herefordshire 1 Peter Toghill TOGHILL, P. (2008). An introduction to 700 million years of earth history in Shropshire and Herefordshire. Proceedings of the Shropshire Geological Society, 13, 8–24. The beautiful landscape of the Welsh Marches is underlain by a rock sequence representing 10 of the 12 recognised periods of geological time. This remarkable variety, covering 700 million years of Earth history, has resulted from the interplay of three main factors: (1) erosion and faulting which have produced a very complex outcrop pattern; (2) southern Britain's position near to plate boundaries through most of late Precambrian and Phanerozoic time; and, most importantly, (3) the incredible 12,000 km, 500 million year, journey of southern Britain across the Earth's surface from the southern hemisphere to the northern, caused by plate tectonic processes. 1Church Stretton, Shropshire, UK. E-mail: [email protected] BACKGROUND This paper set the geological scene for the one-day symposium at Ludlow forming the centrepiece of the 2007 Marches Festival of Geology. However, this is not the place to provide a detailed description of the geology of Shropshire per se, for which the reader is referred to Peter Toghill’s Geology of Shropshire (2006), thereby to benefit from the author’s detailed knowledge of the local geology. The beautiful landscape of the Welsh Marches is underlain by a rock sequence representing ten of the twelve recognised periods of geological time (10 out of 13 if the Tertiary is subdivided into two periods). -
'Intrites' from the Ediacaran Longmyndian Supergroup, UK
Downloaded from http://sp.lyellcollection.org/ by guest on October 1, 2021 ‘Intrites’ from the Ediacaran Longmyndian Supergroup, UK: a new form of microbially-induced sedimentary structure (MISS) LATHA R. MENON1*, DUNCAN MCILROY2 & MARTIN D. BRASIER1,2† 1Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK 2Department of Earth Sciences, Memorial University of Newfoundland, St John’s, NL, A1B 3X5, Canada *Correspondence: [email protected] Abstract: Simple discoidal impressions are the only evidence of complex life in some Ediacaran and older rocks, but their interpretation is notoriously difficult. We reassessed a puzzling discoidal form from the c. 560 Ma upper Burway Formation of the Ediacaran Longmyndian Supergroup, Shropshire, UK. The structures, previously described as Intrites punctatus Fedonkin, are found on both the bed tops and soles. They vary in morphology from mounds with central depressions to incomplete rings and pairs of short ridges. Examination of the purported Intrites documented from the Longmyndian in cross-section revealed a torus-shaped structure bounded by microbial mat layers and commonly containing white laminae. We interpret the ‘Longmyndian Intrites’as a product of microbial trapping, sediment binding and authigenic clay mineral and carbonate pre- cipitation on the flanks of small sediment volcanoes. Subsidence of the ring-like structure into muddy sediments resulted in a torus-shaped microstromatolite. Preferential stromatolitic growth parallel to the prevailing current produced the observed partial rings or parallel ridges and explains their preferential orientation as current alignment. This interpretation of ‘Longmyndian Intrites’ expands the known variety of microbially-induced sedimentary structures (MISS) and emphasizes the importance of considering microbially-induced structures and abiological processes when interpreting discoidal impressions in ancient rocks.