Deep Learning Research Landscape & Roadmap in a Nutshell: Past, Present

Total Page:16

File Type:pdf, Size:1020Kb

Deep Learning Research Landscape & Roadmap in a Nutshell: Past, Present Deep learning research landscape & roadmap in a nutshell: past, present and future - Towards deep cortical learning Aras R. Dargazany August 7, 2019 Abstract The past, present and future of deep learning is presented in this work. Given this landscape & roadmap, we predict that deep cortical learning will be the convergence of deep learning & cortical learning which builds an artificial cortical column ultimately. 1 Past: Deep learning inspirations Deep learning horizon, landscape and research roadmap in nutshell is presented in this figure1. The historical development and timeline of deep learning & neural network is separately illustrated arXiv:1908.02130v1 [cs.NE] 30 Jul 2019 Figure 1: Deep learning research landscape & roadmap: past, present, future. The future is highlighted as deep cortical learning. in figure2. The Origin of neural nets [WR17] is thoroughly reviewed in terms of the evolutionary history of deep learning models. Vernon Mountcastle discovery of cortical columns in somatosen- sory cortex [Mou97] was a breakthrough in brain science. The big bang was the discovery of Hubel & Wiesel of simple cells and complex cell in visual cortex [HW59] which won the Nobel prize for this discovery in 1981. This work was heavily founded on Vernon Mountcastle discovery of cortical columns in somatosensory cortex [Mou97]. After the discovery of Hubel & Wiesel, Fukushima proposed a pattern recognition architecture based on the simple cell and complex cell discovery, known as NeoCognitron [FM82]. In this work, a deep neural network was proposed using simple cell layer and complex cell layer repeatedly. In 80s and maybe a bit earlier backpropagation have been proposed by multiple people but the first time it was well-explained and applied for learning neural nets was done by Hinton and his colleagues in 1987 [RHW86]. 1 Figure 2: Neural nets origin, timeline & history made by Favio Vazquez 2 Present: Deep learning by LeCun, Bengio and Hinton Convolutional nets was invented by LeCun [LBD+89] which led to deep learning conspiracy which also started by the three founding fathers of the field: LeCun, Bengio and Hinton [LBH15]. The main hype in deep learning happened in 2012 when the state-of-the-art result in Imagenet classi- fication and TIMIT speech recognition task were dramatically reduced using an end-to-end deep convolutional network [KSH12] and deep belief net [HDY+12]. The power of deep learning is scalability and the ability to learn in an end-to-end fashion. In this sense, deep learning architectures are capable of learning big datasets such as Imagenet [KSH12, GDG+17] and TIMIT using multiple GPUs in an end-to-end fashion meaning directly from raw inputs, all the way the desired outputs. Alexnet [KSH12] used two GPUs for Imagenet classification which is a very big dataset of images, almost 1.5 million images of size 215x215. Kaiming He et al. [GDG+17] proposed a highly scalable approach for training on Image using 256 GPUs for almost an hour which shows an amazingly powerful approach based stochastic gradient descent for applying big cluster of GPUs on huge datasets. Very many application domains have been revolutionized using deep learning architectures such as image classifications [KSH12], machine translation [WSC+16, JSL+16], speech recognition [HDY+12], and robotics [MKS+15]. The Nobel Prize in Physiology or Medicine 2014 was given to John O’Keefe, May-Britt Moser and Edvard I. Moser “for their discoveries of cells that constitute a positioning system in the brain.” [Bur14]. This study of cognitive neuroscience shed light on how the world is repre- sented within the brain. Hinton’s Capsule network [SFH17] and Hawkins’ cortical learning al- gorithm [HAD11] are highly inspired by this Nobel-prize winning work [Bur14]. 3 Future: Brain-plausible deep learning & cortical learning algorithms The main direction and inclination in the deep learning for future is the ability to bridge the gap between the cortical architecture and deep learning architectures, specifically convolutional nets. In this quest, Hinton proposed capsule network [SFH17] as an effort to get rid of pooling layers and replace it with capsules which are highly inspired bu cortical mini-columns in cortical columns and layers and include the location information or pose information of parts. Another important quest in deep learning is understanding the biological root of learning in our brain, specifically in our cortex. Backpropagation is not biologically inspired and plausible. Hinton and the other founding fathers of deep learning have been trying to understand how backprop 2 might be feasible biologically in brain. Feedback alignment [LCTA16] and spike time-dependent plasticity or STDP-based backprop [BSR+18] are some of the works which have been done by Timothy Lillicrap, Blake Richards, and Hinton in order to model backprop biologically based on the pyramidal neuron in the cortex. In the far future, the main goal should be the merge of two very independent quest to build cortical structure in our brain: The first one is heavily target by the big and active deep learning community; The second one is targeted independently and neuroscientifically by Numenta and Geoff Hawkins [HAD11]. These people argue that the cortical structure and our neocortex is the main source of our intelligence and for building a true intelligent machine, we should be able to reconstruct the cortex and to do so, we should first focus more on the cortex and understand what cortex is made out of. 4 Finale: Deep cortical learning as the merge of deep learning and cortical learning By merging deep learning and cortical learning, a very more focused and detailed architectures, named deep cortical learning might be created. We might be able to understand and reconstruct the cortical structure with much more accuracy and have a better idea what the true intelligence is and how artificial general intelligence or AGI might be reproducible. Deep cortical learning might be the algorithm behind one cortical column in the neocortex. References [BSR+18] Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy Lillicrap. Assessing the scalability of biologically-motivated deep learning algorithms and architectures. In Advances in Neural Information Processing Systems, pages 9368–9378, 2018. [Bur14] Neil Burgess. The 2014 nobel prize in physiology or medicine: a spatial model for cognitive neuroscience. Neuron, 84(6):1120–1125, 2014. [FM82] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. In Competition and cooperation in neural nets, pages 267–285. Springer, 1982. [GDG+17] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017. [HAD11] Jeff Hawkins, Subutai Ahmad, and D Dubinsky. Hierarchi- cal temporal memory including htm cortical learning algorithms. Technical report, Numenta, Inc. http://www.numenta.com/htm- overview/education/HTM/CorticalLearningAlgorithms.pdf, 2011. [HDY+12] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012. [HW59] David H Hubel and Torsten N Wiesel. Receptive fields of single neurones in the cat’s striate cortex. The Journal of physiology, 148(3):574–591, 1959. [JSL+16] Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al. Google’s multilingual neural machine translation system: Enabling zero-shot trans- lation. arXiv preprint arXiv:1611.04558, 2016. [KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012. 3 [LBD+89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989. [LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, 2015. [LCTA16] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Ran- dom synaptic feedback weights support error backpropagation for deep learning. Nature communications, 7:13276, 2016. [MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015. [Mou97] Vernon B Mountcastle. The columnar organization of the neocortex. Brain: a journal of neurology, 120(4):701–722, 1997. [RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa- tions by back-propagating errors. Nature, 323:533–536, 1986. [SFH17] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between cap- sules. In Advances in Neural Information Processing Systems, pages 3859–3869, 2017. [WR17] Haohan Wang and Bhiksha Raj. On the origin of deep learning. arXiv preprint arXiv:1702.07800, 2017. [WSC+16] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144, 2016. 4.
Recommended publications
  • An Investigation of the Cortical Learning Algorithm
    Rowan University Rowan Digital Works Theses and Dissertations 5-24-2018 An investigation of the cortical learning algorithm Anthony C. Samaritano Rowan University Follow this and additional works at: https://rdw.rowan.edu/etd Part of the Electrical and Computer Engineering Commons, and the Neuroscience and Neurobiology Commons Recommended Citation Samaritano, Anthony C., "An investigation of the cortical learning algorithm" (2018). Theses and Dissertations. 2572. https://rdw.rowan.edu/etd/2572 This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please contact [email protected]. AN INVESTIGATION OF THE CORTICAL LEARNING ALGORITHM by Anthony C. Samaritano A Thesis Submitted to the Department of Electrical and Computer Engineering College of Engineering In partial fulfillment of the requirement For the degree of Master of Science in Electrical and Computer Engineering at Rowan University November 2, 2016 Thesis Advisor: Robi Polikar, Ph.D. © 2018 Anthony C. Samaritano Acknowledgments I would like to express my sincerest gratitude and appreciation to Dr. Robi Polikar for his help, instruction, and patience throughout the development of this thesis and my research into cortical learning algorithms. Dr. Polikar took a risk by allowing me to follow my passion for neurobiologically inspired algorithms and explore this emerging category of cortical learning algorithms in the machine learning field. The skills and knowledge I acquired throughout my research have definitively molded me into a more diligent and thorough engineer. I have, and will continue to, take these characteristics and skills I have gained into my current and future professional endeavors.
    [Show full text]
  • Multiscale Computation and Dynamic Attention in Biological and Artificial
    brain sciences Review Multiscale Computation and Dynamic Attention in Biological and Artificial Intelligence Ryan Paul Badman 1,* , Thomas Trenholm Hills 2 and Rei Akaishi 1,* 1 Center for Brain Science, RIKEN, Saitama 351-0198, Japan 2 Department of Psychology, University of Warwick, Coventry CV4 7AL, UK; [email protected] * Correspondence: [email protected] (R.P.B.); [email protected] (R.A.) Received: 4 March 2020; Accepted: 17 June 2020; Published: 20 June 2020 Abstract: Biological and artificial intelligence (AI) are often defined by their capacity to achieve a hierarchy of short-term and long-term goals that require incorporating information over time and space at both local and global scales. More advanced forms of this capacity involve the adaptive modulation of integration across scales, which resolve computational inefficiency and explore-exploit dilemmas at the same time. Research in neuroscience and AI have both made progress towards understanding architectures that achieve this. Insight into biological computations come from phenomena such as decision inertia, habit formation, information search, risky choices and foraging. Across these domains, the brain is equipped with mechanisms (such as the dorsal anterior cingulate and dorsolateral prefrontal cortex) that can represent and modulate across scales, both with top-down control processes and by local to global consolidation as information progresses from sensory to prefrontal areas. Paralleling these biological architectures, progress in AI is marked by innovations in dynamic multiscale modulation, moving from recurrent and convolutional neural networks—with fixed scalings—to attention, transformers, dynamic convolutions, and consciousness priors—which modulate scale to input and increase scale breadth.
    [Show full text]
  • Deep Neural Network Models for Sequence Labeling and Coreference Tasks
    Federal state autonomous educational institution for higher education ¾Moscow institute of physics and technology (national research university)¿ On the rights of a manuscript Le The Anh DEEP NEURAL NETWORK MODELS FOR SEQUENCE LABELING AND COREFERENCE TASKS Specialty 05.13.01 - ¾System analysis, control theory, and information processing (information and technical systems)¿ A dissertation submitted in requirements for the degree of candidate of technical sciences Supervisor: PhD of physical and mathematical sciences Burtsev Mikhail Sergeevich Dolgoprudny - 2020 Федеральное государственное автономное образовательное учреждение высшего образования ¾Московский физико-технический институт (национальный исследовательский университет)¿ На правах рукописи Ле Тхе Ань ГЛУБОКИЕ НЕЙРОСЕТЕВЫЕ МОДЕЛИ ДЛЯ ЗАДАЧ РАЗМЕТКИ ПОСЛЕДОВАТЕЛЬНОСТИ И РАЗРЕШЕНИЯ КОРЕФЕРЕНЦИИ Специальность 05.13.01 – ¾Системный анализ, управление и обработка информации (информационные и технические системы)¿ Диссертация на соискание учёной степени кандидата технических наук Научный руководитель: кандидат физико-математических наук Бурцев Михаил Сергеевич Долгопрудный - 2020 Contents Abstract 4 Acknowledgments 6 Abbreviations 7 List of Figures 11 List of Tables 13 1 Introduction 14 1.1 Overview of Deep Learning . 14 1.1.1 Artificial Intelligence, Machine Learning, and Deep Learning . 14 1.1.2 Milestones in Deep Learning History . 16 1.1.3 Types of Machine Learning Models . 16 1.2 Brief Overview of Natural Language Processing . 18 1.3 Dissertation Overview . 20 1.3.1 Scientific Actuality of the Research . 20 1.3.2 The Goal and Task of the Dissertation . 20 1.3.3 Scientific Novelty . 21 1.3.4 Theoretical and Practical Value of the Work in the Dissertation . 21 1.3.5 Statements to be Defended . 22 1.3.6 Presentations and Validation of the Research Results .
    [Show full text]
  • Cortical Layers: What Are They Good For? Neocortex
    Cortical Layers: What are they good for? Neocortex L1 L2 L3 network input L4 computations L5 L6 Brodmann Map of Cortical Areas lateral medial 44 areas, numbered in order of samples taken from monkey brain Brodmann, 1908. Primary visual cortex lamination across species Balaram & Kaas 2014 Front Neuroanat Cortical lamination: not always a six-layered structure (archicortex) e.g. Piriform, entorhinal Larriva-Sahd 2010 Front Neuroanat Other layered structures in the brain Cerebellum Retina Complexity of connectivity in a cortical column • Paired-recordings and anatomical reconstructions generate statistics of cortical connectivity Lefort et al. 2009 Information flow in neocortical microcircuits Simplified version “computational Layer 2/3 layer” Layer 4 main output Layer 5 main input Layer 6 Thalamus e - excitatory, i - inhibitory Grillner et al TINS 2005 The canonical cortical circuit MAYBE …. DaCosta & Martin, 2010 Excitatory cell types across layers (rat S1 cortex) Canonical models do not capture the diversity of excitatory cell classes Oberlaender et al., Cereb Cortex. Oct 2012; 22(10): 2375–2391. Coding strategies of different cortical layers Sakata & Harris, Neuron 2010 Canonical models do not capture the diversity of firing rates and selectivities Why is the cortex layered? Do different layers have distinct functions? Is this the right question? Alternative view: • When thinking about layers, we should really be thinking about cell classes • A cells class may be defined by its input connectome and output projectome (and some other properties) • The job of different classes is to (i) make associations between different types of information available in each cortical column and/or (ii) route/gate different streams of information • Layers are convenient way of organising inputs and outputs of distinct cell classes Excitatory cell types across layers (rat S1 cortex) INTRATELENCEPHALIC (IT) | PYRAMIDAL TRACT (PT) | CORTICOTHALAMIC (CT) From Cereb Cortex.
    [Show full text]
  • Convolutional Neural Network Model Layers Improvement for Segmentation and Classification on Kidney Stone Images Using Keras and Tensorflow
    Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 2458-9403 Vol. 8 Issue 6, June - 2021 Convolutional Neural Network Model Layers Improvement For Segmentation And Classification On Kidney Stone Images Using Keras And Tensorflow Orobosa Libert Joseph Waliu Olalekan Apena Department of Computer / Electrical and (1) Department of Computer / Electrical and Electronics Engineering, The Federal University of Electronics Engineering, The Federal University of Technology, Akure. Nigeria. Technology, Akure. Nigeria. [email protected] (2) Biomedical Computing and Engineering Technology, Applied Research Group, Coventry University, Coventry, United Kingdom [email protected], [email protected] Abstract—Convolutional neural network (CNN) and analysis, by automatic or semiautomatic means, of models are beneficial to image classification large quantities of data in order to discover meaningful algorithms training for highly abstract features patterns [1,2]. The domains of data mining include: and work with less parameter. Over-fitting, image mining, opinion mining, web mining, text mining, exploding gradient, and class imbalance are CNN and graph mining and so on. Some of its applications major challenges during training; with appropriate include anomaly detection, financial data analysis, management training, these issues can be medical data analysis, social network analysis, market diminished and enhance model performance. The analysis [3]. Recent progress in deep learning using models are 128 by 128 CNN-ML and 256 by 256 CNN machine learning (CNN-ML) has been helpful in CNN-ML training (or learning) and classification. decision support and contributed to positive outcome, The results were compared for each model significantly. The application of CNN-ML to diverse classifier. The study of 128 by 128 CNN-ML model areas of soft computing is adapted diagnosis has the following evaluation results consideration procedure to enhance time and accuracy [4].
    [Show full text]
  • Scaling the Htm Spatial Pooler
    International Journal of Artificial Intelligence and Applications (IJAIA), Vol.11, No.4, July 2020 SCALING THE HTM SPATIAL POOLER 1 2 1 1 Damir Dobric , Andreas Pech , Bogdan Ghita and Thomas Wennekers 1University of Plymouth, Faculty of Science and Engineering, UK 2Frankfurt University of Applied Sciences, Dept. of Computer Science and Engineering, Germany ABSTRACT The Hierarchical Temporal Memory Cortical Learning Algorithm (HTM CLA) is a theory and machine learning technology that aims to capture cortical algorithm of the neocortex. Inspired by the biological functioning of the neocortex, it provides a theoretical framework, which helps to better understand how the cortical algorithm inside of the brain might work. It organizes populations of neurons in column-like units, crossing several layers such that the units are connected into structures called regions (areas). Areas and columns are hierarchically organized and can further be connected into more complex networks, which implement higher cognitive capabilities like invariant representations. Columns inside of layers are specialized on learning of spatial patterns and sequences. This work targets specifically spatial pattern learning algorithm called Spatial Pooler. A complex topology and high number of neurons used in this algorithm, require more computing power than even a single machine with multiple cores or a GPUs could provide. This work aims to improve the HTM CLA Spatial Pooler by enabling it to run in the distributed environment on multiple physical machines by using the Actor Programming Model. The proposed model is based on a mathematical theory and computation model, which targets massive concurrency. Using this model drives different reasoning about concurrent execution and enables flexible distribution of parallel cortical computation logic across multiple physical nodes.
    [Show full text]
  • The History Began from Alexnet: a Comprehensive Survey on Deep Learning Approaches
    > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches Md Zahangir Alom1, Tarek M. Taha1, Chris Yakopcic1, Stefan Westberg1, Paheding Sidike2, Mst Shamima Nasrin1, Brian C Van Essen3, Abdul A S. Awwal3, and Vijayan K. Asari1 Abstract—In recent years, deep learning has garnered I. INTRODUCTION tremendous success in a variety of application domains. This new ince the 1950s, a small subset of Artificial Intelligence (AI), field of machine learning has been growing rapidly, and has been applied to most traditional application domains, as well as some S often called Machine Learning (ML), has revolutionized new areas that present more opportunities. Different methods several fields in the last few decades. Neural Networks have been proposed based on different categories of learning, (NN) are a subfield of ML, and it was this subfield that spawned including supervised, semi-supervised, and un-supervised Deep Learning (DL). Since its inception DL has been creating learning. Experimental results show state-of-the-art performance ever larger disruptions, showing outstanding success in almost using deep learning when compared to traditional machine every application domain. Fig. 1 shows, the taxonomy of AI. learning approaches in the fields of image processing, computer DL (using either deep architecture of learning or hierarchical vision, speech recognition, machine translation, art, medical learning approaches) is a class of ML developed largely from imaging, medical information processing, robotics and control, 2006 onward. Learning is a procedure consisting of estimating bio-informatics, natural language processing (NLP), cybersecurity, and many others.
    [Show full text]
  • The Understanding of Convolutional Neuron Network Family
    2017 2nd International Conference on Computer Engineering, Information Science and Internet Technology (CII 2017) ISBN: 978-1-60595-504-9 The Understanding of Convolutional Neuron Network Family XINGQUN QI ABSTRACT Along with the development of the computing speed and Artificial Intelligence, more and more jobs have been done by computers. Convolutional Neural Network (CNN) is one of the most popular algorithms in the field of Deep Learning. It is mainly used in computer identification, especially in voice, text recognition and other aspects of the application. CNNs have been developed for decades. In theory, Convolutional Neural Network has gradually become more mature. However, in practical applications, it is limited by various conditions. This paper will introduce the course of Convolutional Neural Network’s development today, as well as the current more mature and popular architecture and related applications of it, to help readers have more macro and comprehensive understanding of Convolutional Neural Networks. KEYWORDS Convolutional Neuron Network, Architecture, CNN family, Application INTRODUCTION With the continuous improvements of technology, there are more and more multi- disciplinary applications achieved with computer technology. And Machine Learning, especially Deep Learning is one of the most indispensable and important parts of that technology. Deep learning has the great advantage of acquiring features and modeling from data [1]. The Convolutional Neural Network (CNN) algorithm is one of the best and foremost algorithms in the Deep Learning algorithms. It is mainly used for image recognition and computer vision. In today’s living conditions, the impact and significance of CNN is becoming more and more important. In computer vision, CNN has an important position.
    [Show full text]
  • Universal Transition from Unstructured to Structured Neural Maps
    Universal transition from unstructured to structured PNAS PLUS neural maps Marvin Weiganda,b,1, Fabio Sartoria,b,c, and Hermann Cuntza,b,d,1 aErnst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt/Main D-60528, Germany; bFrankfurt Institute for Advanced Studies, Frankfurt/Main D-60438, Germany; cMax Planck Institute for Brain Research, Frankfurt/Main D-60438, Germany; and dFaculty of Biological Sciences, Goethe University, Frankfurt/Main D-60438, Germany Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved April 5, 2017 (received for review September 28, 2016) Neurons sharing similar features are often selectively connected contradictory to experimental observations (24, 25). Structured with a higher probability and should be located in close vicinity to maps in the visual cortex have been described in primates, carni- save wiring. Selective connectivity has, therefore, been proposed vores, and ungulates but are reported to be absent in rodents, to be the cause for spatial organization in cortical maps. In- which instead exhibit unstructured, seemingly random arrange- terestingly, orientation preference (OP) maps in the visual cortex ments commonly referred to as salt-and-pepper configurations are found in carnivores, ungulates, and primates but are not found (26–28). Phase transitions between an unstructured and a struc- in rodents, indicating fundamental differences in selective connec- tured map have been described in a variety of models as a function tivity that seem unexpected for closely related species. Here, we of various model parameters (12, 13). Still, the biological correlate investigate this finding by using multidimensional scaling to of the phase transition and therefore, the reason for the existence of predict the locations of neurons based on minimizing wiring costs structured and unstructured neural maps in closely related species for any given connectivity.
    [Show full text]
  • Methods and Trends in Natural Language Processing Applications in Big Data
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-7, Issue-6S5, April 2019 Methods and Trends in Natural Language Processing Applications in Big Data Joseph M. De Guia, Madhavi Devaraj translation that can be processed and accessible to computer Abstract: Understanding the natural language of humans by applications. Some of the tasks available to NLP can be the processing them in the computer makes sense for applications in following: machine translation, generation and understanding solving practical problems. These applications are present in our of natural language, morphological separation, part of speech systems that automates some and even most of the human tasks performed by the computer algorithms.The “big data” deals with tagging, recognition of speech, entities, optical characters, NLP techniques and applications that sifts through each word, analysis of discourse, sentiment analysis, etc. Through these phrase, sentence, paragraphs, symbols, images, speech, tasks, NLPs achieved the goal of analyzing, understanding, utterances with its meanings, relationships, and translations that and generating the natural language of human using a can be processed and accessible to computer applications by computer application and with the help of learning humans. Through these automated tasks, NLPs achieved the goal techniques. of analyzing, understanding, and generating the natural This paper is a survey of the published literature in NLP and language of human using a computer application and with the its uses to big data. This also presents a review of the NLP help of classic and advanced machine learning techniques. This paper is a survey of the published literature in NLP and its uses to applications and learning techniques used in some of the big data.
    [Show full text]
  • Cortical Columns: Building Blocks for Intelligent Systems
    Cortical Columns: Building Blocks for Intelligent Systems Atif G. Hashmi and Mikko H. Lipasti Department of Electrical and Computer Engineering University of Wisconsin - Madison Email: [email protected], [email protected] Abstract— The neocortex appears to be a very efficient, uni- to be completely understood. A neuron, the basic structural formly structured, and hierarchical computational system [25], unit of the neocortex, is orders of magnitude slower than [23], [24]. Researchers have made significant efforts to model a transistor, the basic structural unit of modern computing intelligent systems that mimic these neocortical properties to perform a broad variety of pattern recognition and learning systems. The average firing interval for a neuron is around tasks. Unfortunately, many of these systems have drifted away 150ms to 200ms [21] while transistors can operate in less from their cortical origins and incorporate or rely on attributes than a nanosecond. Still, the neocortex performs much better and algorithms that are not biologically plausible. In contrast, on pattern recognition and other learning based tasks than this paper describes a model for an intelligent system that contemporary high speed computers. One of the main reasons is motivated by the properties of cortical columns, which can be viewed as the basic functional unit of the neocortex for this seemingly unusual behavior is that certain properties [35], [16]. Our model extends predictability minimization [30] of the neocortex–like independent feature detection, atten- to mimic the behavior of cortical columns and incorporates tion, feedback, prediction, and training data independence– neocortical properties such as hierarchy, structural uniformity, make it a quite flexible and powerful parallel processing and plasticity, and enables adaptive, hierarchical independent system.
    [Show full text]
  • 2 the Cerebral Cortex of Mammals
    Abstract This thesis presents an abstract model of the mammalian neocortex. The model was constructed by taking a top-down view on the cortex, where it is assumed that cortex to a first approximation works as a system with attractor dynamics. The model deals with the processing of static inputs from the perspectives of biological mapping, algorithmic, and physical implementation, but it does not consider the temporal aspects of these inputs. The purpose of the model is twofold: Firstly, it is an abstract model of the cortex and as such it can be used to evaluate hypotheses about cortical function and structure. Secondly, it forms the basis of a general information processing system that may be implemented in computers. The characteristics of this model are studied both analytically and by simulation experiments, and we also discuss its parallel implementation on cluster computers as well as in digital hardware. The basic design of the model is based on a thorough literature study of the mammalian cortex’s anatomy and physiology. We review both the layered and columnar structure of cortex and also the long- and short-range connectivity between neurons. Characteristics of cortex that defines its computational complexity such as the time-scales of cellular processes that transport ions in and out of neurons and give rise to electric signals are also investigated. In particular we study the size of cortex in terms of neuron and synapse numbers in five mammals; mouse, rat, cat, macaque, and human. The cortical model is implemented with a connectionist type of network where the functional units correspond to cortical minicolumns and these are in turn grouped into hypercolumn modules.
    [Show full text]