The History Began from Alexnet: a Comprehensive Survey on Deep Learning Approaches
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Backpropagation and Deep Learning in the Brain
Backpropagation and Deep Learning in the Brain Simons Institute -- Computational Theories of the Brain 2018 Timothy Lillicrap DeepMind, UCL With: Sergey Bartunov, Adam Santoro, Jordan Guerguiev, Blake Richards, Luke Marris, Daniel Cownden, Colin Akerman, Douglas Tweed, Geoffrey Hinton The “credit assignment” problem The solution in artificial networks: backprop Credit assignment by backprop works well in practice and shows up in virtually all of the state-of-the-art supervised, unsupervised, and reinforcement learning algorithms. Why Isn’t Backprop “Biologically Plausible”? Why Isn’t Backprop “Biologically Plausible”? Neuroscience Evidence for Backprop in the Brain? A spectrum of credit assignment algorithms: A spectrum of credit assignment algorithms: A spectrum of credit assignment algorithms: How to convince a neuroscientist that the cortex is learning via [something like] backprop - To convince a machine learning researcher, an appeal to variance in gradient estimates might be enough. - But this is rarely enough to convince a neuroscientist. - So what lines of argument help? How to convince a neuroscientist that the cortex is learning via [something like] backprop - What do I mean by “something like backprop”?: - That learning is achieved across multiple layers by sending information from neurons closer to the output back to “earlier” layers to help compute their synaptic updates. How to convince a neuroscientist that the cortex is learning via [something like] backprop 1. Feedback connections in cortex are ubiquitous and modify the -
Multiscale Computation and Dynamic Attention in Biological and Artificial
brain sciences Review Multiscale Computation and Dynamic Attention in Biological and Artificial Intelligence Ryan Paul Badman 1,* , Thomas Trenholm Hills 2 and Rei Akaishi 1,* 1 Center for Brain Science, RIKEN, Saitama 351-0198, Japan 2 Department of Psychology, University of Warwick, Coventry CV4 7AL, UK; [email protected] * Correspondence: [email protected] (R.P.B.); [email protected] (R.A.) Received: 4 March 2020; Accepted: 17 June 2020; Published: 20 June 2020 Abstract: Biological and artificial intelligence (AI) are often defined by their capacity to achieve a hierarchy of short-term and long-term goals that require incorporating information over time and space at both local and global scales. More advanced forms of this capacity involve the adaptive modulation of integration across scales, which resolve computational inefficiency and explore-exploit dilemmas at the same time. Research in neuroscience and AI have both made progress towards understanding architectures that achieve this. Insight into biological computations come from phenomena such as decision inertia, habit formation, information search, risky choices and foraging. Across these domains, the brain is equipped with mechanisms (such as the dorsal anterior cingulate and dorsolateral prefrontal cortex) that can represent and modulate across scales, both with top-down control processes and by local to global consolidation as information progresses from sensory to prefrontal areas. Paralleling these biological architectures, progress in AI is marked by innovations in dynamic multiscale modulation, moving from recurrent and convolutional neural networks—with fixed scalings—to attention, transformers, dynamic convolutions, and consciousness priors—which modulate scale to input and increase scale breadth. -
Deep Neural Network Models for Sequence Labeling and Coreference Tasks
Federal state autonomous educational institution for higher education ¾Moscow institute of physics and technology (national research university)¿ On the rights of a manuscript Le The Anh DEEP NEURAL NETWORK MODELS FOR SEQUENCE LABELING AND COREFERENCE TASKS Specialty 05.13.01 - ¾System analysis, control theory, and information processing (information and technical systems)¿ A dissertation submitted in requirements for the degree of candidate of technical sciences Supervisor: PhD of physical and mathematical sciences Burtsev Mikhail Sergeevich Dolgoprudny - 2020 Федеральное государственное автономное образовательное учреждение высшего образования ¾Московский физико-технический институт (национальный исследовательский университет)¿ На правах рукописи Ле Тхе Ань ГЛУБОКИЕ НЕЙРОСЕТЕВЫЕ МОДЕЛИ ДЛЯ ЗАДАЧ РАЗМЕТКИ ПОСЛЕДОВАТЕЛЬНОСТИ И РАЗРЕШЕНИЯ КОРЕФЕРЕНЦИИ Специальность 05.13.01 – ¾Системный анализ, управление и обработка информации (информационные и технические системы)¿ Диссертация на соискание учёной степени кандидата технических наук Научный руководитель: кандидат физико-математических наук Бурцев Михаил Сергеевич Долгопрудный - 2020 Contents Abstract 4 Acknowledgments 6 Abbreviations 7 List of Figures 11 List of Tables 13 1 Introduction 14 1.1 Overview of Deep Learning . 14 1.1.1 Artificial Intelligence, Machine Learning, and Deep Learning . 14 1.1.2 Milestones in Deep Learning History . 16 1.1.3 Types of Machine Learning Models . 16 1.2 Brief Overview of Natural Language Processing . 18 1.3 Dissertation Overview . 20 1.3.1 Scientific Actuality of the Research . 20 1.3.2 The Goal and Task of the Dissertation . 20 1.3.3 Scientific Novelty . 21 1.3.4 Theoretical and Practical Value of the Work in the Dissertation . 21 1.3.5 Statements to be Defended . 22 1.3.6 Presentations and Validation of the Research Results . -
The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design
The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design Jeffrey Dean Google Research [email protected] Abstract The past decade has seen a remarkable series of advances in machine learning, and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas, including computer vision, speech recognition, language translation, and natural language understanding tasks. This paper is a companion paper to a keynote talk at the 2020 International Solid-State Circuits Conference (ISSCC) discussing some of the advances in machine learning, and their implications on the kinds of computational devices we need to build, especially in the post-Moore’s Law-era. It also discusses some of the ways that machine learning may also be able to help with some aspects of the circuit design process. Finally, it provides a sketch of at least one interesting direction towards much larger-scale multi-task models that are sparsely activated and employ much more dynamic, example- and task-based routing than the machine learning models of today. Introduction The past decade has seen a remarkable series of advances in machine learning (ML), and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas [LeCun et al. 2015]. Major areas of significant advances include computer vision [Krizhevsky et al. 2012, Szegedy et al. 2015, He et al. 2016, Real et al. 2017, Tan and Le 2019], speech recognition [Hinton et al. -
Automated Elastic Pipelining for Distributed Training of Transformers
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Transformers Chaoyang He 1 Shen Li 2 Mahdi Soltanolkotabi 1 Salman Avestimehr 1 Abstract the-art convolutional networks ResNet-152 (He et al., 2016) and EfficientNet (Tan & Le, 2019). To tackle the growth in The size of Transformer models is growing at an model sizes, researchers have proposed various distributed unprecedented rate. It has taken less than one training techniques, including parameter servers (Li et al., year to reach trillion-level parameters since the 2014; Jiang et al., 2020; Kim et al., 2019), pipeline paral- release of GPT-3 (175B). Training such models lel (Huang et al., 2019; Park et al., 2020; Narayanan et al., requires both substantial engineering efforts and 2019), intra-layer parallel (Lepikhin et al., 2020; Shazeer enormous computing resources, which are luxu- et al., 2018; Shoeybi et al., 2019), and zero redundancy data ries most research teams cannot afford. In this parallel (Rajbhandari et al., 2019). paper, we propose PipeTransformer, which leverages automated elastic pipelining for effi- T0 (0% trained) T1 (35% trained) T2 (75% trained) T3 (100% trained) cient distributed training of Transformer models. In PipeTransformer, we design an adaptive on the fly freeze algorithm that can identify and freeze some layers gradually during training, and an elastic pipelining system that can dynamically Layer (end of training) Layer (end of training) Layer (end of training) Layer (end of training) Similarity score allocate resources to train the remaining active layers. More specifically, PipeTransformer automatically excludes frozen layers from the Figure 1. Interpretable Freeze Training: DNNs converge bottom pipeline, packs active layers into fewer GPUs, up (Results on CIFAR10 using ResNet). -
ARCHITECTS of INTELLIGENCE for Xiaoxiao, Elaine, Colin, and Tristan ARCHITECTS of INTELLIGENCE
MARTIN FORD ARCHITECTS OF INTELLIGENCE For Xiaoxiao, Elaine, Colin, and Tristan ARCHITECTS OF INTELLIGENCE THE TRUTH ABOUT AI FROM THE PEOPLE BUILDING IT MARTIN FORD ARCHITECTS OF INTELLIGENCE Copyright © 2018 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. Acquisition Editors: Ben Renow-Clarke Project Editor: Radhika Atitkar Content Development Editor: Alex Sorrentino Proofreader: Safis Editing Presentation Designer: Sandip Tadge Cover Designer: Clare Bowyer Production Editor: Amit Ramadas Marketing Manager: Rajveer Samra Editorial Director: Dominic Shakeshaft First published: November 2018 Production reference: 2201118 Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK ISBN 978-1-78913-151-2 www.packt.com Contents Introduction ........................................................................ 1 A Brief Introduction to the Vocabulary of Artificial Intelligence .......10 How AI Systems Learn ........................................................11 Yoshua Bengio .....................................................................17 Stuart J. -
Improved Policy Networks for Computer Go
Improved Policy Networks for Computer Go Tristan Cazenave Universite´ Paris-Dauphine, PSL Research University, CNRS, LAMSADE, PARIS, FRANCE Abstract. Golois uses residual policy networks to play Go. Two improvements to these residual policy networks are proposed and tested. The first one is to use three output planes. The second one is to add Spatial Batch Normalization. 1 Introduction Deep Learning for the game of Go with convolutional neural networks has been ad- dressed by [2]. It has been further improved using larger networks [7, 10]. AlphaGo [9] combines Monte Carlo Tree Search with a policy and a value network. Residual Networks improve the training of very deep networks [4]. These networks can gain accuracy from considerably increased depth. On the ImageNet dataset a 152 layers networks achieves 3.57% error. It won the 1st place on the ILSVRC 2015 classifi- cation task. The principle of residual nets is to add the input of the layer to the output of each layer. With this simple modification training is faster and enables deeper networks. Residual networks were recently successfully adapted to computer Go [1]. As a follow up to this paper, we propose improvements to residual networks for computer Go. The second section details different proposed improvements to policy networks for computer Go, the third section gives experimental results, and the last section con- cludes. 2 Proposed Improvements We propose two improvements for policy networks. The first improvement is to use multiple output planes as in DarkForest. The second improvement is to use Spatial Batch Normalization. 2.1 Multiple Output Planes In DarkForest [10] training with multiple output planes containing the next three moves to play has been shown to improve the level of play of a usual policy network with 13 layers. -
Convolutional Neural Network Transfer Learning for Robust Face
Convolutional Neural Network Transfer Learning for Robust Face Recognition in NAO Humanoid Robot Daniel Bussey1, Alex Glandon2, Lasitha Vidyaratne2, Mahbubul Alam2, Khan Iftekharuddin2 1Embry-Riddle Aeronautical University, 2Old Dominion University Background Research Approach Results • Artificial Neural Networks • Retrain AlexNet on the CASIA-WebFace dataset to configure the neural • VGG-Face Shows better results in every performance benchmark measured • Computing systems whose model architecture is inspired by biological networf for face recognition tasks. compared to AlexNet, although AlexNet is able to extract features from an neural networks [1]. image 800% faster than VGG-Face • Capable of improving task performance without task-specific • Acquire an input image using NAO’s camera or a high resolution camera to programming. run through the convolutional neural network. • Resolution of the input image does not have a statistically significant impact • Show excellent performance at classification based tasks such as face on the performance of VGG-Face and AlexNet. recognition [2], text recognition [3], and natural language processing • Extract the features of the input image using the neural networks AlexNet [4]. and VGG-Face • AlexNet’s performance decreases with respect to distance from the camera where VGG-Face shows no performance loss. • Deep Learning • Compare the features of the input image to the features of each image in the • A subfield of machine learning that focuses on algorithms inspired by people database. • Both frameworks show excellent performance when eliminating false the function and structure of the brain called artificial neural networks. positives. The method used to allow computers to learn through a process called • Determine whether a match is detected or if the input image is a photo of a training. -
Fast Neural Network Emulation of Dynamical Systems for Computer Animation
Fast Neural Network Emulation of Dynamical Systems for Computer Animation Radek Grzeszczuk 1 Demetri Terzopoulos 2 Geoffrey Hinton 2 1 Intel Corporation 2 University of Toronto Microcomputer Research Lab Department of Computer Science 2200 Mission College Blvd. 10 King's College Road Santa Clara, CA 95052, USA Toronto, ON M5S 3H5, Canada Abstract Computer animation through the numerical simulation of physics-based graphics models offers unsurpassed realism, but it can be computation ally demanding. This paper demonstrates the possibility of replacing the numerical simulation of nontrivial dynamic models with a dramatically more efficient "NeuroAnimator" that exploits neural networks. Neu roAnimators are automatically trained off-line to emulate physical dy namics through the observation of physics-based models in action. De pending on the model, its neural network emulator can yield physically realistic animation one or two orders of magnitude faster than conven tional numerical simulation. We demonstrate NeuroAnimators for a va riety of physics-based models. 1 Introduction Animation based on physical principles has been an influential trend in computer graphics for over a decade (see, e.g., [1, 2, 3]). This is not only due to the unsurpassed realism that physics-based techniques offer. In conjunction with suitable control and constraint mechanisms, physical models also facilitate the production of copious quantities of real istic animation in a highly automated fashion. Physics-based animation techniques are beginning to find their way into high-end commercial systems. However, a well-known drawback has retarded their broader penetration--compared to geometric models, physical models typically entail formidable numerical simulation costs. This paper proposes a new approach to creating physically realistic animation that differs Emulation for Animation 883 radically from the conventional approach of numerically simulating the equations of mo tion of physics-based models. -
Convolutional Neural Network Model Layers Improvement for Segmentation and Classification on Kidney Stone Images Using Keras and Tensorflow
Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 2458-9403 Vol. 8 Issue 6, June - 2021 Convolutional Neural Network Model Layers Improvement For Segmentation And Classification On Kidney Stone Images Using Keras And Tensorflow Orobosa Libert Joseph Waliu Olalekan Apena Department of Computer / Electrical and (1) Department of Computer / Electrical and Electronics Engineering, The Federal University of Electronics Engineering, The Federal University of Technology, Akure. Nigeria. Technology, Akure. Nigeria. [email protected] (2) Biomedical Computing and Engineering Technology, Applied Research Group, Coventry University, Coventry, United Kingdom [email protected], [email protected] Abstract—Convolutional neural network (CNN) and analysis, by automatic or semiautomatic means, of models are beneficial to image classification large quantities of data in order to discover meaningful algorithms training for highly abstract features patterns [1,2]. The domains of data mining include: and work with less parameter. Over-fitting, image mining, opinion mining, web mining, text mining, exploding gradient, and class imbalance are CNN and graph mining and so on. Some of its applications major challenges during training; with appropriate include anomaly detection, financial data analysis, management training, these issues can be medical data analysis, social network analysis, market diminished and enhance model performance. The analysis [3]. Recent progress in deep learning using models are 128 by 128 CNN-ML and 256 by 256 CNN machine learning (CNN-ML) has been helpful in CNN-ML training (or learning) and classification. decision support and contributed to positive outcome, The results were compared for each model significantly. The application of CNN-ML to diverse classifier. The study of 128 by 128 CNN-ML model areas of soft computing is adapted diagnosis has the following evaluation results consideration procedure to enhance time and accuracy [4]. -
Neural Networks for Machine Learning Lecture 4A Learning To
Neural Networks for Machine Learning Lecture 4a Learning to predict the next word Geoffrey Hinton with Nitish Srivastava Kevin Swersky A simple example of relational information Christopher = Penelope Andrew = Christine Margaret = Arthur Victoria = James Jennifer = Charles Colin Charlotte Roberto = Maria Pierro = Francesca Gina = Emilio Lucia = Marco Angela = Tomaso Alfonso Sophia Another way to express the same information • Make a set of propositions using the 12 relationships: – son, daughter, nephew, niece, father, mother, uncle, aunt – brother, sister, husband, wife • (colin has-father james) • (colin has-mother victoria) • (james has-wife victoria) this follows from the two above • (charlotte has-brother colin) • (victoria has-brother arthur) • (charlotte has-uncle arthur) this follows from the above A relational learning task • Given a large set of triples that come from some family trees, figure out the regularities. – The obvious way to express the regularities is as symbolic rules (x has-mother y) & (y has-husband z) => (x has-father z) • Finding the symbolic rules involves a difficult search through a very large discrete space of possibilities. • Can a neural network capture the same knowledge by searching through a continuous space of weights? The structure of the neural net local encoding of person 2 output distributed encoding of person 2 units that learn to predict features of the output from features of the inputs distributed encoding of person 1 distributed encoding of relationship local encoding of person 1 inputs local encoding of relationship Christopher = Penelope Andrew = Christine Margaret = Arthur Victoria = James Jennifer = Charles Colin Charlotte What the network learns • The six hidden units in the bottleneck connected to the input representation of person 1 learn to represent features of people that are useful for predicting the answer. -
Lecture 10: Recurrent Neural Networks
Lecture 10: Recurrent Neural Networks Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - 1 May 4, 2017 Administrative A1 grades will go out soon A2 is due today (11:59pm) Midterm is in-class on Tuesday! We will send out details on where to go soon Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - 2 May 4, 2017 Extra Credit: Train Game More details on Piazza by early next week Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - 3 May 4, 2017 Last Time: CNN Architectures AlexNet Figure copyright Kaiming He, 2016. Reproduced with permission. Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - 4 May 4, 2017 Last Time: CNN Architectures Softmax FC 1000 Softmax FC 4096 FC 1000 FC 4096 FC 4096 Pool FC 4096 3x3 conv, 512 Pool 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool Pool 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool Pool 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 Pool Pool 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 128 Pool Pool 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 Input Input VGG16 VGG19 GoogLeNet Figure copyright Kaiming He, 2016. Reproduced with permission. Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - 5 May 4, 2017 Last Time: CNN Architectures Softmax FC 1000 Pool 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64 relu 3x3 conv, 64 3x3 conv, 64 F(x) + x 3x3 conv, 64 ..