Reference Computation Intuitionistic Type Theory

Total Page:16

File Type:pdf, Size:1020Kb

Reference Computation Intuitionistic Type Theory Reference and Computation in Intuitionistic Type Theory By J. G. Granstrom¨ Uppsala MMVIII Contents Contents iii List of Figures v List of Tables vii Preface ix Introduction xi Chapter I. Prolegomena 1 § 1. A threefold correspondence 1 § 2. The acts of the mind 5 § 3. The principle of compositionality 7 § 4. Lingua characteristica 10 Chapter II. Truth and Knowledge 13 § 1. The meaning of meaning 13 § 2. A division of being 16 § 3. Mathematical entities 19 § 4. Judgement and assertion 24 § 5. Reasoning and demonstration 27 § 6. The proposition 28 § 7. The laws of logic 39 § 8. Variables and generality 48 § 9. Division of definitions 54 Chapter III. The Notion of Set 57 § 1. A history of set-like notions 57 § 2. Set-theoretical notation 64 § 3. Making universal concepts into objects of thought 64 § 4. Canonical sets and elements 69 § 5. How to define a canonical set 75 § 6. More canonical sets 81 Chapter IV. Reference and Computation 85 § 1. Functions, algorithms, and programs 86 § 2. The concept of function 90 iv § 3. A formalization of computation 95 § 4. Noncanonical sets and elements 101 § 5. Nominal definitions 108 § 6. Functions as objects 110 § 7. Families of sets 114 Chapter V. Assumption and Substitution 121 § 1. The concept of function revisited 121 § 2. Hypothetical assertions 125 § 3. The calculus of substitutions 136 § 4. Sets and elements in hypothetical assertions 148 § 5. Closures and the λ-calculus 152 § 6. The disjoint union of a family of sets 160 § 7. Elimination rules 162 § 8. Propositions as sets 170 Chapter VI. Intuitionism 175 § 1. The intuitionistic interpretation of apagoge 175 § 2. The law of excluded middle 184 § 3. The philosophy of mathematics 192 Summary in Swedish 197 Bibliography 199 Index of Proper Names 211 Index of Subjects 215 List of Figures 1 The relation between object, concept, and expression 3 2 Meaning, referent, and term 14 3 Mediate vs. immediate reference 15 4 Division of modes of being into real and ideal 17 5 The threefold correspondence for universal concepts 18 6 The threefold correspondence for beings of reason 22 7 The disjoint union of a family of sets 116 8 Example of a dependently typed function 118 9 A context, telescopic in the sense of de Bruijn 127 List of Tables 1 Division of logic according to the acts of the mind 6 2 The interpretation of the propositional connectives 31 3 Classification of mathematical categorems 51 4 Four different notions of set 59 5 Classification of assertions and inference rules 77 6 Overview of seven different notions of function 122 7 The Curry-Howard correspondence 171 8 Two types of knowledge 179 Omnia cum veterum sint explorata libellis, Multa loqui breviter sit novitatis opus.† †Preface to Phocas’ grammar, quoted in de Bury, Philobiblon, p. 50. Preface y interest in the foundations of mathematics began while I was writing a dissertation on class number formulae as a student of mathematics at Stockholm University. The M modern treatment of this subject involves a great deal of ring theory wherein the machinery of extensional set theory and the law of excluded middle are fully employed ; furthermore, in modern treatments, many central concepts in this field are indirectly defined. In trying to read such a modern treatment, two foundational problems become very tangible. First, that one can read a proof of a theorem, see that it follows the rules of the game, but still not accept the conclusion.1 Next, that one can read the definition of some characteristic, say of a number field, without getting a hint of how to compute it.2 These problems spurred me on to studying the foundations of math- ematics, albeit on my own and with little success. Disillusioned, I even- tually gave up mathematics and accepted an offer to work as a computer programmer. This brought me for the first time into contact with LISP and functional programming, something which later proved very valu- able. Need I add that my dissertation on class number formulae never got finished ? A couple of years later occurred one of those twists of fate which in retrospect seem providential. While still working as a computer pro- grammer, I decided to attend Prof. Per Martin-L¨of’s course on type theory, given at Stockholm University, 2003. Not only did I attend, but it seems as if I had the necessary background to actually understand what was going on. At this point I started to inquire Prof. Martin-L¨of about every aspect of his type theory and I have not stopped yet. I soon cancelled my job and started to look for a scholarship to write a PhD dissertation with type theory as the subject. It did not take me long to be accepted to FMB, which is an abbreviation in Swedish which translates as Graduate school in Mathematics and Computing. At FMB, I had the fortune of getting Prof. Erik Palmgren as supervisor and, thanks to the generosity of FMB, we managed to get funding for me to also have Prof. Martin-L¨ofas supervisor. 1Cf. the quotation from Skolem on p. 193. 2Cf. Ch. IV. x Now more than five years ago, in July 2003, I began my PhD studies in Uppsala. The first two years were mainly spent reading courses and getting better acquainted with my subject matter ; the last three years have been spent writing this thesis. During this time, my understanding of type theory has developed, and this explains the distinct characters that the different parts of this thesis have. I soon discovered that a lot in type type theory happens, as it were, under the hood : the more philosophical parts of this thesis is the result of my efforts to find out what that was. Apart from this excursion into philosophy, I have more or less remained faithful to the original plan of writing about matters pertaining to computation and eager evaluation in type theory. In addition to excellent supervision, another benefit of being in Up- psala is the weekly Stockholm-Uppsala logic seminar with its many prominent guests. One especially distinguished and frequent guest at the Stockholm-Uppsala logic seminar has been Prof. Helmut Schwicht- enberg who spent the 2005-2006 winter term in Uppsala. Thanks to Prof. Schwichtenberg I could spend the 2006-2007 winter term at LMU, Munich, under the auspices of the MATHLOGAPS program. This ex- perience has certainly broadened my view on logic. Acknowledgments. I would like thank the following individuals and organizations who in various ways have contributed to the completion of this thesis : my parents and my brother for their continual support ; my supervisors Prof. Martin-L¨ofand Prof. Palmgren for trying to infuse in me high academic standards—if I fail to live up to them, the fault is entirely my own ; Prof. Martin-L¨ofagain, this time for discovering my subject matter ; FMB for financial support ; the Department of Math- ematics at Uppsala University for providing me with a working envi- ronment ; Prof. Schwichtenberg, Dr. Peter Schuster, LMU, Munich, and MATHLOGAPS, for making my stay in Munich possible and enjoyable ; Mr. Bo Hagerf, Rev. H˚akan Lindstr¨om,Prof. Viggo Stoltenberg-Hansen, and Mr. Isidor Johan Kullbom, who have read and commented on early drafts of this thesis ; and all my friends and colleagues with whom I have discussed matters related to type theory. Johan Georg Granstr¨om Uppsala, Sweden October 26th, 2008 Introduction he prerequisites for understanding this thesis have been kept at a minimum. All that is required is some background in mathematics and the ability to follow a rigorous proof. Back- T ground in philosophy and computer science is helpful but not necessary. This thesis is about intuitionistic type theory, but no back- ground in logic is required, even though some familiarity with natural deduction is an advantage. In fact, profound knowledge of extensional set theory can be an impediment, rather than a help, since it is difficult to forget what one already knows. The easiest way to learn intuition- istic type theory is to disregard any preconceptions about logic and set theory and start afresh with the definitions and axioms of intuitionis- tic type theory. Only after having understood the whole system and its methodology, one should make a comparison with what one knew before. The kind of type theory presented in this thesis has been variously called intuitionistic type theory, constructive type theory, dependent type theory, and, after its first expounder, Martin-L¨of’s type theory. As often is the case when one subject has many different names, there are different nuances to them—so also in this case. I have chosen the name intuitionistic type theory because it was the first name applied to the subject and because the type theory in question is the natural adaption of earlier type theories, e.g., the ramified and simple type theories, to intuitionistic principles. In this thesis I will present intuitionistic type theory together with my own contributions to it, resulting in a version of intuitionistic type theory which is essentially backwards compatible with Martin-L¨of’s ver- sion.3 My technical contributions are the following : (1) coinductive definitions of sets are treated on a par with inductive definitions (cf. Def. 4 on p. 70) ; 3Martin-L¨of’s 1984 book Intuitionistic Type Theory contains the essential ideas of intuitionistic type theory, but several important contributions to the system have been presented only in the form of lectures. At present, the most authoritative presentation of intuitionistic type theory is Nordstr¨om, Petersson and Smith, Programming in Martin-L¨of’s Type Theory.
Recommended publications
  • NSP4 Pragmatist Kant
    Nordic NSP Studies in Pragmatism Helsinki — 2019 Giovanni Maddalena “Anti-Kantianism as a Necessary Characteristic of Pragmatism” In: Krzysztof Piotr Skowronski´ and Sami Pihlstrom¨ (Eds.) (2019). Pragmatist Kant—Pragmatism, Kant, and Kantianism in the Twenty-first Century (pp. 43–59). Nordic Studies in Pragmatism 4. Helsinki: Nordic Pragmatism Network. issn-l 1799-3954 issn 1799-3954 isbn 978-952-67497-3-0 Copyright c 2019 The Authors and the Nordic Pragmatism Network. This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. CC BY NC For more information, see http://creativecommons.org/licenses/by-nc/3.0/ Nordic Pragmatism Network, NPN Helsinki 2019 www.nordprag.org Anti-Kantianism as a Necessary Characteristic of Pragmatism Giovanni Maddalena Universit`adel Molise 1. Introduction Pragmatists declared their anti-Cartesianism at the first appearance of the movement, in Peirce’s series on cognition written for the Journal of Specu- lative Philosophy (1867–8). As is well known, the brilliant young scientist characterized Cartesian doubt as a “paper doubt”, by opposing it to sci- entists’ true “living doubt” (Peirce 1998 [1868], 115).1 Some readers have not understood the powerful novelty that his opposition to Cartesianism implies. According to Peirce, research does not proceed from skeptical, “paper” doubt. For Peirce, doubt is possible because of a previous cer- tainty, a position which is similar to the one held by Augustine (Augustine 1970). Research moves from one certainty to another; the abandonment of an initial certainty is only reasonable in the presence of a real and surprising phenomenon that alters one of the pillars on which it stands.
    [Show full text]
  • Constructivity in Homotopy Type Theory
    Ludwig Maximilian University of Munich Munich Center for Mathematical Philosophy Constructivity in Homotopy Type Theory Author: Supervisors: Maximilian Doré Prof. Dr. Dr. Hannes Leitgeb Prof. Steve Awodey, PhD Munich, August 2019 Thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in Logic and Philosophy of Science contents Contents 1 Introduction1 1.1 Outline................................ 3 1.2 Open Problems ........................... 4 2 Judgements and Propositions6 2.1 Judgements ............................. 7 2.2 Propositions............................. 9 2.2.1 Dependent types...................... 10 2.2.2 The logical constants in HoTT .............. 11 2.3 Natural Numbers.......................... 13 2.4 Propositional Equality....................... 14 2.5 Equality, Revisited ......................... 17 2.6 Mere Propositions and Propositional Truncation . 18 2.7 Universes and Univalence..................... 19 3 Constructive Logic 22 3.1 Brouwer and the Advent of Intuitionism ............ 22 3.2 Heyting and Kolmogorov, and the Formalization of Intuitionism 23 3.3 The Lambda Calculus and Propositions-as-types . 26 3.4 Bishop’s Constructive Mathematics................ 27 4 Computational Content 29 4.1 BHK in Homotopy Type Theory ................. 30 4.2 Martin-Löf’s Meaning Explanations ............... 31 4.2.1 The meaning of the judgments.............. 32 4.2.2 The theory of expressions................. 34 4.2.3 Canonical forms ...................... 35 4.2.4 The validity of the types.................. 37 4.3 Breaking Canonicity and Propositional Canonicity . 38 4.3.1 Breaking canonicity .................... 39 4.3.2 Propositional canonicity.................. 40 4.4 Proof-theoretic Semantics and the Meaning Explanations . 40 5 Constructive Identity 44 5.1 Identity in Martin-Löf’s Meaning Explanations......... 45 ii contents 5.1.1 Intensional type theory and the meaning explanations 46 5.1.2 Extensional type theory and the meaning explanations 47 5.2 Homotopical Interpretation of Identity ............
    [Show full text]
  • The Proper Explanation of Intuitionistic Logic: on Brouwer's Demonstration
    The proper explanation of intuitionistic logic: on Brouwer’s demonstration of the Bar Theorem Göran Sundholm, Mark van Atten To cite this version: Göran Sundholm, Mark van Atten. The proper explanation of intuitionistic logic: on Brouwer’s demonstration of the Bar Theorem. van Atten, Mark Heinzmann, Gerhard Boldini, Pascal Bourdeau, Michel. One Hundred Years of Intuitionism (1907-2007). The Cerisy Conference, Birkhäuser, pp.60- 77, 2008, 978-3-7643-8652-8. halshs-00791550 HAL Id: halshs-00791550 https://halshs.archives-ouvertes.fr/halshs-00791550 Submitted on 24 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License The proper explanation of intuitionistic logic: on Brouwer’s demonstration of the Bar Theorem Göran Sundholm Philosophical Institute, Leiden University, P.O. Box 2315, 2300 RA Leiden, The Netherlands. [email protected] Mark van Atten SND (CNRS / Paris IV), 1 rue Victor Cousin, 75005 Paris, France. [email protected] Der … geführte Beweis scheint mir aber trotzdem . Basel: Birkhäuser, 2008, 60–77. wegen der in seinem Gedankengange enthaltenen Aussagen Interesse zu besitzen. (Brouwer 1927B, n. 7)1 Brouwer’s demonstration of his Bar Theorem gives rise to provocative ques- tions regarding the proper explanation of the logical connectives within intu- itionistic and constructivist frameworks, respectively, and, more generally, re- garding the role of logic within intuitionism.
    [Show full text]
  • THE LOOICAL ATOMISM J. D. MACKENZIE Date Submitted Thesis
    THE LOOICAL ATOMISM OF F. P. RAMSEY J. D. MACKENZIE Date submitted Thesis submitted for the Degree of Master of Arts in the School of Philosophy University of New South Wales (i) SYNOPSIS The first Chapter sets Ramsey in histor:iealperspective as a Logical Atomist. Chapter Two is concerned with the impasse in which Russell found himself ,d.th general propositions, Wittgenstein's putative solution in terms of his Doctrine of Showing, and Ramsey's "Wittgensteinian" solution, which is not satisfactory. An attempt is then ma.de to describe a Ramseian solution on the basis of what he says about the Axiom of Infi- nity, and to criticize this solution. In Chapter Three Ramsay's objections to the Pl4 definition of identity are considered, and consequences of his rejection of that definition for the Theory of Classes and the Axiom of Choice are drawn. In Chapter Four, Ramsey•s modifications to Russell's Theory of Types are discussed. His division of the Paradoxes into two groups is defended, but his redefinition of 'predicative' is rejected. Chapter Five deals with Ra.msey's analysis of propositional attitudes and negative propositions, and Chapter Six considers the dispute between Russell and Ramsey over the nature and status of universals. In Chapter Seven, the conclusions are summarized, and Ramsay's contribution to Logical Atom.ism are assessed. His main fail­ ing is found to be his lack of understanding of impossibility, especially with regard to the concept of infinity. (ii) PREFACE The thesis is divided into chapters, which are in turn divided into sections.
    [Show full text]
  • Understanding Intuitionism
    Understanding Intuitionism by Edward Nelson Department of Mathematics Princeton University http:==www.math.princeton.edu= nelson=papers.html ∼ Intuitionism was the creation of L. E. J. Brouwer [Br], and I like to think that classical mathematics was the creation of Pythagoras. Imag- ine a conversation between a classical mathematician and an intuitionist, say a woman and a man respectively. She speaks first: I have just proved xA. Congratulations! What9 is it? I don't know. I assumed x A and derived a contradiction. Oh. You proved x A.8 : That's what I said.:8 : Or another: I have proved A B. Good. Which did_ you prove? What? You said you proved A or B; which did you prove? Neither; I assumed A & B and derived a contradiction. Oh, you proved [ :A & :B]. That's right. It's: another: : way of putting the same thing. But he does not agree with her last statement; they have a different semantics and a different notion of proof. This paper is an attempt to understand the differences between them. I am grateful to Mitsuru Yasuhara for stimulating discussions of this material and for pinpointing errors and obscurities in earlier drafts. I also wish to thank Simon Kochen and Per Martin-L¨offor helpful comments. 1. Incomplete communications For a classical mathematician, a closed formula, true in a given structure, is a complete communication. It expresses an objective state of affairs in the universe of discourse; it is an ontological assertion. But 1 2 1. INCOMPLETE COMMUNICATIONS to an intuitionist, a closed true formula may be an incomplete communi- cation.
    [Show full text]
  • Intuition As Evidence in Philosophical Analysis: Taking Connectionism Seriously
    Intuition as Evidence in Philosophical Analysis: Taking Connectionism Seriously by Tom Rand A thesis submitted in conformity with the requirements for the degree of Ph.D. Graduate Department of Philosophy University of Toronto (c) Copyright by Tom Rand 2008 Intuition as Evidence in Philosophical Analysis: Taking Connectionism Seriously Ph.D. Degree, 2008, by Tom Rand, Graduate Department of Philosophy, University of Toronto ABSTRACT 1. Intuitions are often treated in philosophy as a basic evidential source to confirm/discredit a proposed definition or theory; e.g. intuitions about Gettier cases are taken to deny a justified-true-belief analysis of ‘knowledge’. Recently, Weinberg, Nichols & Stitch (WN&S) provided evidence that epistemic intuitions vary across persons and cultures. In- so-far as philosophy of this type (Standard Philosophical Methodology – SPM) is committed to provide conceptual analyses, the use of intuition is suspect – it does not exhibit the requisite normativity. I provide an analysis of intuition, with an emphasis on its neural – or connectionist – cognitive backbone; the analysis provides insight into its epistemic status and proper role within SPM. Intuition is initially characterized as the recognition of a pattern. 2. The metaphysics of ‘pattern’ is analyzed for the purpose of denying that traditional symbolic computation is capable of differentiating the patterns of interest. 3. The epistemology of ‘recognition’ is analyzed, again, to deny that traditional computation is capable of capturing human acts of recognition. 4. Fodor’s informational semantics, his Language of Thought and his Representational Theory of Mind are analyzed and his arguments denied. Again, the purpose is to deny traditional computational theories of mind.
    [Show full text]
  • Constructive Logic for All
    Constructive Logic for All Greg Restall∗ Philosophy Department Macquarie University June 14, 2000 Abstract It is a commonplace in recent metaphysics that one's logical commit- ments go hand in hand with one's metaphysics. Brouwer, Heyting and Dummett have each championed the move to constructive (intuitionistic) reasoning on the grounds of anti-realism. I hope to break this close connec- tion, to explain why a realist ought to reason constructively. 1 Introduction Let me start by explaining the terms of the discussion. In this area of philo- sophical logic there seems to be some confusion in the use of terms such as “intuitionistic” and “constructive.” It will help to get the use of these terms somewhat fixed before I start to argue my case. 1.1 Logic First, logic. The subject Logic is the study of logical consequence. Logical con- sequence is a matter of the validity and invalidity of arguments. An argument is valid just when in any case in which the premises of the argument are true, so is the conclusion. It is often helpful, in discussing logical consequence, to have a formal language in which to express the premises and conclusions of ar- guments. One such language is the language of first-order logic, with primitive expressions for the connectives and quantifiers ^ conjunction _ disjunction conditional ⊃ ∼ negation x universal quantifier 8 (with x a variable) x existential quantifier 9 (with x a variable) For some, logic is at heart the study of the behaviour of these connectives. For others, the singling out of particular parts of the language is an incidental mat- ter.
    [Show full text]
  • Paraconsistency and Duality
    Paraconsistency and duality: between ontological and 1 epistemological views 1 2 WALTER CARNIELLI AND ABILIO RODRIGUES 2 Abstract: The aim of this paper is to show how an epistemic approach to paraconsistency may be philosophically justified based on the duality be- tween paraconsistency and paracompleteness. The invalidity of excluded middle in intuitionistic logic may be understood as expressing that no con- 3 structive proof of a pair of propositions A and :A is available. Analogously, in order to explain the invalidity of the principle of explosion in paraconsis- tent logics, it is not necessary to consider that A and :A are true, but rather that there are conflicting and non-conclusive evidence for both. Keywords: Paraconsistent logic, Philosophy of paraconsistency, Evidence, Intuitionistic logic 4 1 Introduction 5 Paraconsistent logics have been assuming an increasingly important place 6 in contemporary philosophical debate. Although from the strictly techni- 7 cal point of view paraconsistent formal systems have reached a point of 8 remarkable development, there are still some aspects of their philosophi- 9 cal significance that have not been fully explored yet. The distinctive fea- 10 ture of paraconsistent logics is that the principle of explosion, according to 11 which anything follows from a contradiction, does not hold, thus allowing 12 for the presence of contradictions without deductive triviality. Dialetheism 13 is the view according to which there are true contradictions (cf. e.g. Priest 14 1The first author acknowledges support from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, thematic project LogCons) and from a CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) research grant.
    [Show full text]
  • Scott Soames, Philosophical Analysis in the Twentieth Century: Volume 1: the Dawn of Analysis Princeton University Press, 2003
    Philos Stud (2006) 129:637–643 DOI 10.1007/s11098-006-0015-3 DISCUSSION Scott Soames, Philosophical Analysis in the Twentieth Century: Volume 1: The Dawn of Analysis Princeton University Press, 2003 R.M. Sainsbury Accepted: 27 March 2006 Ó Springer Science+Business Media B.V. 2006 The jacket of this first volume of the two volume work tells us that this is a history of analytic philosophy from 1900 to mid-century. Accordingly, we can properly eval- uate it under three heads: (1) the care and accuracy of the scholarship; (2) the light it throws on the relationships among the various activities it describes; and (3) the quality of the philosophical argumentation. Evaluated under the third, the book deserves high praise. It provides serious philosophy: arguments are carefully set out and taken to pieces, objections and possible responses are developed in an orderly way. Most readers will learn something of philosophical value, and even on the issues about which they disagree with Soames, they will find him a worthy and helpful opponent. In this respect the text provides a model to which students should aspire. Every page demonstrates one way in which philosophy can be done excel- lently, as will be no surprise to those familiar with Soames’s other work. Evaluated under the other two heads, however, the book in my judgement falls short. Not only are there historical inaccuracies, the approach to reading, evaluating and interpreting texts is one I find uncongenial; and the attempt to impose some kind of overall developmental themes on the material under discussion strikes me as unsuccessful.
    [Show full text]
  • Intuitionism and Logical Revision
    UNIVERSITY OF SHEFFIELD Intuitionism and Logical Revision Julien Murzi A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy Faculty of Arts and Humanities Department of Philosophy Sheffield October 2010 To my parents. To Barbara. To Bob and Dam. Abstract The topic of this thesis is logical revision: should we revise the canons of classical reasoning in favour of a weaker logic, such as intuitionistic logic? In the first part of the thesis, I consider two metaphysical arguments against the classical Law of Excluded Middle-arguments whose main premise is the metaphysical claim that truth is knowable. I argue that the first argument, the Basic Revisionary Argument, validates a parallel argument for a conclusion that is unwelcome to classicists and intuitionists alike: that the dual of the Law of Excluded Middle, the Law of Non-Contradiction, is either unknown, or both known and not known to be true. As for the second argument, the Paradox of Knowability, I offer new reasons for thinking that adopting intuitionistic logic does not go to the heart of the matter. In the second part of the thesis, I motivate an inferentialist framework for assessing competing logics-one on which the meaning of the logical vocabulary is determined by the rules for its correct use. I defend the inferentialist account of understanding from the contention that it is inadequate in principle, and I offer reasons for thinking that the inferentialist approach to logic can help model- theorists and proof-theorists alike justify their logical choices. I then scrutinize the main meaning-theoretic principles on which the inferentialist approach to logic rests: the requirements of harmony and separability.
    [Show full text]
  • Husserlian and Fichtean Leanings: Weyl on Logicism, Intuitionism, and Formalism
    Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 13-2 | 2009 Varia Husserlian and Fichtean Leanings: Weyl on Logicism, Intuitionism, and Formalism Norman Sieroka Electronic version URL: http://journals.openedition.org/philosophiascientiae/295 DOI: 10.4000/philosophiascientiae.295 ISSN: 1775-4283 Publisher Éditions Kimé Printed version Date of publication: 1 October 2009 Number of pages: 85-96 ISBN: 978-2-84174-504-3 ISSN: 1281-2463 Electronic reference Norman Sieroka, « Husserlian and Fichtean Leanings: Weyl on Logicism, Intuitionism, and Formalism », Philosophia Scientiæ [Online], 13-2 | 2009, Online since 01 October 2012, connection on 02 November 2020. URL : http://journals.openedition.org/philosophiascientiae/295 ; DOI : https:// doi.org/10.4000/philosophiascientiae.295 Tous droits réservés Husserlian and Fichtean Leanings: Weyl on Logicism, Intuitionism, and Formalism Norman Sieroka ETH Zürich Résumé : Vers 1918 Hermann Weyl abandonnait le logicisme et donc la ten- tative de réduire les mathématiques à la logique et la théorie des ensembles. Au niveau philosophique, ses points de référence furent ensuite Husserl et Fichte. Dans les années 1920 il distingua leurs positions, entre une direc- tion intuitionniste-phénoménologique d’un côté, et formaliste-constructiviste de l’autre. Peu après Weyl, Oskar Becker adopta une distinction similaire. Mais à la différence du phénoménologue Becker, Weyl considérait l’approche active du constructivisme de Fichte comme supérieure à la vision d’essences passive de Husserl. Dans cet essai, je montre ce développement dans la pensée de Weyl. Bien que certains points dans sa réception de Husserl et Fichte ne soient pas soutenables, je vais argumenter en faveur de la distinction fonda- mentale mentionnée ci-dessus.
    [Show full text]
  • Constructive Set Theory and Brouwerian Principles1
    Constructive Set Theory and Brouwerian Principles1 Michael Rathjen (Department of Mathematics, The Ohio State University,2 Email: [email protected]) Abstract: The paper furnishes realizability models of constructive Zermelo-Fraenkel set theory, CZF, which also validate Brouwerian principles such as the axiom of con- tinuous choice (CC), the fan theorem (FT), and monotone bar induction (BIM), and thereby determines the proof-theoretic strength of CZF augmented by these principles. The upshot is that CZF+CC+FT possesses the same strength as CZF, or more pre- 0 cisely, that CZF+CC+FT is conservative over CZF for Π2 statements of arithmetic, whereas the addition of a restricted version of bar induction to CZF (called decidable bar induction, BID) leads to greater proof-theoretic strength in that CZF+BID proves the consistency of CZF. Key Words: Constructive set theory, Brouwerian principles, partial combinatory al- gebra, realizability Category: F.4.1 1 Introduction Constructive Zermelo-Fraenkel Set Theory has emerged as a standard reference theory that relates to constructive predicative mathematics as ZFC relates to classical Cantorian mathematics. The general topic of Constructive Set Theory originated in the seminal 1975 paper of John Myhill (cf. [16]), where a specific ax- iom system CST was introduced. Myhill developed constructive set theory with the aim of isolating the principles underlying Bishop's conception of what sets and functions are. Moreover, he wanted \these principles to be such as to make the process of formalization completely trivial, as it is in the classical case" ([16], p. 347). Indeed, while he uses other primitives in his set theory CST besides the notion of set, it can be viewed as a subsystem of ZF.
    [Show full text]