Features of Alpine Scenery Due to Glacial Protection Author(S): E

Total Page:16

File Type:pdf, Size:1020Kb

Features of Alpine Scenery Due to Glacial Protection Author(S): E Features of Alpine Scenery Due to Glacial Protection Author(s): E. J. Garwood Source: The Geographical Journal, Vol. 36, No. 3 (Sep., 1910), pp. 310-336 Published by: geographicalj Stable URL: http://www.jstor.org/stable/1777308 Accessed: 20-06-2016 10:24 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/1777308?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Wiley, The Royal Geographical Society (with the Institute of British Geographers) are collaborating with JSTOR to digitize, preserve and extend access to The Geographical Journal This content downloaded from 131.172.36.29 on Mon, 20 Jun 2016 10:24:19 UTC All use subject to http://about.jstor.org/terms 310 FEATURES OF ALPINE SCENERY DUE TO GLACIAL PROTECTION. expedition loaded itself with scientific treasures, which, no doubt, will throw new light on Central Asia in former times beyond what the archaological section of the Asiatic Museum of the Imperial Academy of Sciences affords. FEATURES OF ALPINE SCENERY DUE TO GLACIAL PROTECTION.* By Professor E. J. GARWOOD, M.A., Sec. G.S. 1. Introduction. 5. Hanging Valleys. 2. The Plateau. 6. Valley Steps. 3. Aretes. 7. The Steep South Side of the Alps. 4. Cirques. 8. Conclusion. 1. INTRODUCTION. WHEN we review the progress that has been made in the study of Physical Geography, or, more strictly, Geomorphology, during the last few years, we find nothing more striking than the revived interest in the features characteristic of glaciated districts. Thus the Alps, Himalayas, Scandinavia, Alaska, and New Zealand have in turn received attention. On the whole, there appears to be a strong consensus of opinion that glacial action has been a much more potent agent in the production of Alpine scenery than was formerly imagined. The monumental work of Penck and Bruckner on the Alps in the glacial period,~ founded as it is on care- fully observed facts, must long remain a classic work on this fascinating region; while Prof. W. M. Davis, in America, has applied the deductive method with the scholarly thoroughness which distinguishes all his writings. These authors, together with Hess, Tarr, and others, have all been led to assign to ice-erosion a very important part in the formation of the features peculiar to Alpine scenery. Their views may be summed up in the words of Prof. Davis: " The rate of glacial erosion, in whatever way it may be accomplished, need not be very rapid, the only requirement in this respect being . that it shall be significantly more rapid than normal erosion." + This is really the crux of the matter. Does an ice-cap lying on a plateau carve the surface more rapidly than the normal weathering agents ? Do snow and ice lying on ledges, or resting in gullies, degrade more rapidlythan do frost or water f. and does a glacier overdeepen its bed more rapidly than would a river flowing in the same valley 2 The difference of opinion in this respect dates from some years back; as long ago as 1888 Mr. Douglas Freshfield published a paper in this Society's Proceedings on " The Conservative Action of Ice," while Prof. Bonney has more than once expressed very similar views. No one with any knowledge of glaciated regions doubts that moving * Royal Geographical Society, June 20, 1910. t ' Die Alpen im Eiszeitalter.' Leipzig: 1909. t W. M. Davis, Q.J.G.S., vol. 65, p. 313. This content downloaded from 131.172.36.29 on Mon, 20 Jun 2016 10:24:19 UTC All use subject to http://about.jstor.org/terms FEATURES OF ALPINE SCENERY DUE TO GLACIAL PROTECTION. 311 ice erodes; that is not now the question.* The whole problem turns on the relative rate of erosion accomplished by ice as compared with that which would take place over the same district by ordinary erosive agents, namely, weathering, wind, frost, rain, and running water, more especially in a district which is partially covered and partially free from ice. It may eventually be proved beyond doubt that ice is the greater erosive agent, but this has not been done. It may also be shown conclusively that all the features to be presently described can be satisfactorily accounted for by ice erosion; but so far this is not the case. It is intended in the present communication to consider more fully than has yet been done, what characteristic Alpine features might be developed on the assumption that ice, on the whole, erodes less rapidly than other denuding agents, and that, under certain conditions, it may act relatively as a protective agent. 2. THE PLATEAU. Let us consider, in the first place, a tableland on which snow accumu- lates during a glacial period. This snow gradually compacted into ice will cover the plateau and protect it from all the ordinary weathering agents of a temperate climate, including the action of frost, just as effectually as if it were covered by a deposit of impervious clay. Any erosion, then, that the ground beneath sustains must be due to the action of the ice itself. Erosion from this cause must be very slight indeed, as the motion will resemble the creep of a sheet of lead covering a counter, and the chief movement will take place in the upper layers. It seems practically certain, then, that an ice-covered surface which is on the whole horizontal will be relatively protected, and that the tablelands and plateaux in a glaciated district will have their pre-glacial features to a great extent preserved; the sharp edges of a plateau, however, where snow cannot lie continuously, but must melt and slide in summer, will not be protected in the same way, but will be subjected to other denuding agents. This fact was vividly brought home to the writer during two visits to Spits- bergen. Here plateau protection reaches its most marked development, while the plateau edges show some of the most remarkable examples of symmetrical river drainage to be found in the world. This is due to the present climatic conditions; the snow accumulated on the plateau during the long winter night melts continuously during the summer day, thus supplying abundant water, which, pouring over the plateau edge, sculptures the flanks into the almost ideal drainage system shown in Plate I. Fig. 1. Similar features on a smaller scale are constantly found in the Alps: a good example is the old Badile plateau, near the head of the Bondasca valley, shown in Plate I. Fig. 2, where the stream has cut back its head- waters into the old plateau step by step as the ice melted back and ceased to afford protection. * Garwood, "Hanging Valleys in the Alps and Himalayas," Q.J.G.S., vol. 58, 1902. This content downloaded from 131.172.36.29 on Mon, 20 Jun 2016 10:24:19 UTC All use subject to http://about.jstor.org/terms 312 FEATURES OF ALPINE SCENERY DUE TO GLACIAL PROTECTION. 3. AReTES. The symmetrical ridges known as aretes, found in so many mountain districts, are essentially characteristic of glaciated countries. Their notable feature is the wonderfully even grade of their crests, cutting the sky-line in a distant view as though (as noted by Ruskin) drawn with a ruler, or slightly concave, resembling the most perfect denudation curve (P1. II. Fig. 1). Many of these aretes, however, on a nearer view, show the presence of sharp projecting towers of rock, the " gendarmes " so well known to mountaineers, which figure so prominently in accounts of Alpine ascents. The arete, indeed, is the route most usually followed during ascents of the higher peaks, as it forms generally, not only the safest, but often the quickest and least tedious route to the summit, on account of the even slope of its crest. It is curious that this even character, which, as stated above, is essentially a feature of glaciated regions, has not received more attention. It cannot have been produced by water-erosion, and cannot be considered a feature retained from pre- glacial times; neither would the disintegrating action of frost alone account for its symmetrical character. It appears to be essentially a case where ice protection may be legitimately invoked. At the beginning of a glacial period snow would gradually accumulate above the snow- line in the uneven hollows of the pre-glacial ridge, where it would become gradually compacted into ice and remain. In the mean time the steep projecting portions would be subject to the action of frost, by which they would be gradually converted into gendarmes, and finally reduced to the level of the surface of the ice in the hollows. After this the ice and the rock bounding it would be reduced at an equal rate, until finally there would be no hollows left in which snow could accumulate, and the arete would be reduced to an even grade. If wide enough, this might be uniformly covered with snow, as in the case of portions of the Bernina and Roseg aretes (P1. II. Fig. 2). It is obvious that this condition is only approximately produced; the even grade in other cases is partly due to the infilling of the depressions by ice, thus raising the surface to an average level.
Recommended publications
  • NORSK GEOLOGISK TIDSSKRIFT 45 by IVAR KLOVNING and ULF
    NORSK GEOLOGISK TIDSSKRIFT 45 AN EARLY POST-GLACIAL POLLEN PROFILE FROM FLÅMSDALEN, A TRIBUTARY VALLEY TO THE SOGNEFJORD, WESTERN NORWAY BY IVAR KLOVNING and ULF HAFSTEN (University Botanical Museum, Bergen) Abstract. Pollen analysis and radiocarbon measurements of nekron-mud from the base of a 5 m deep organic deposit in a pot-hole on Furuberget, a rocky promontory in the lower part of the Flåmsdalen valley, show that this part of the valley was free of ice befare 7000 B.C. Introduction Flåmsdalen, a 20 km long, much glaciated tributary valley to the Sognefjord, cutting southwards into the peripheral parts of the Har­ dangervidda plateau, contains a number of erosional features from the time the ice retreated from this valley (H. HoLTEDAHL 1960). Among these is a series of sharply incised, mostly very narrow canyons of different sizes and shapes, often fringed with pot-hoies. The canyons form a system, with a major canyon, present in parts of the main valley, forming the river channel of the present river and a series of tributary canyons which are mostly dry at the present time. These tributary canyons, which are supposed to be sub-glacial erosional phenomena, are very numerous on and around Furuberget, a broad and steep, rocky promontory (riegel), nearly 200m high, that almost doses the Flåmsdalen valley 5 km south of the head of the Aurland fjord (Fig. 1). The fact that the river here, at this typical valley step, has cut a deep canyon, indicates that the valley once was com­ pletely closed at this place. The most extensive canyon occurring on Furuberget runs in an are from southwest to east across the central part of the promontory and contains a series of pot-hales that are, especially in the flat, eastern part of the canyon, completely filled with organic matter (KLOVNING 1963).
    [Show full text]
  • Würm- Eiszeitliche Kiese Nördlich Gmunden (OÖ.): Entstehung, Abbau Und Rohstoffkunde
    DIPLOMARBEIT Titel der Diplomarbeit Würm- Eiszeitliche Kiese nördlich Gmunden (OÖ.): Entstehung, Abbau und Rohstoffkunde angestrebter akademischer Grad Magister der Naturwissenschaften (Mag. rer.nat.) Verfasser: Martin Trausinger Matrikel-Nummer: 0204019 Studienrichtung /Studienzweig Lehramtsstudium (lt. Studienblatt): UF Biologie und Umweltkunde, UF Psychologie und Philosophie Betreuer: Ao. Univ.-Prof. Dr. Michael Wagreich Wien, am 19.03.2010 Ich versichere: • dass ich die Diplomarbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient habe. • dass ich dieses Diplomarbeitsthema bisher weder im In- noch im Ausland in irgendeiner Form als Prüfungsarbeit vorgelegt habe. _______________ _________________________ Datum Unterschrift Danksagung Ich möchte mich herzlich bei meinem Betreuer Ao. Univ.-Prof. Dr. Michael Wagreich für seine Unterstützung bei der Erstellung der Arbeit bedanken. Er war bei Anfragen immer rasch zur Stelle. Danke auch an Dr. Dirk van Husen, Spezialist auf dem Gebiet der Quartärforschung im Traunseegebiet, der mit mir einige Begehungen ins Gelände zu den Kiesgruben unternahm. Bedanken möchte ich mich weiters bei der Firma Asamer & Hufnagl GmbH, im Besonderen bei Hrn. Stefan Lobmayr von der Betriebstechnik des Unternehmens, für die Einsichtnahme in Betriebsabläufe. Die Firma Asamer gewährte mir jederzeit Zutritt ins Werkgelände und in die Kiesgruben und dessen Mitarbeiter waren stets bereit, diverse Fragen zu beantworten und die nötigen Informationen zur Verfügung zu stellen. Besonderen Dank gilt meinen Freunden Robert Wurzinger, Wilfried Miedler und Martin Eisl, die mir während der Diplomarbeit zur Seite standen und die Bereitschaft zeigten, jederzeit fachliche Diskussionen zu führen. Nicht zuletzt gebührt der Dank meinen Eltern, die mir das universitäre Studium ermöglichten und stets für mich da waren.
    [Show full text]
  • Determining Rock Surface Micro-Roughness and Search For
    Landform Analysis, Vol. 21: 3–8 (2012) Determining rock surface micro-roughness and search for new method of relative dating of glacial landforms; a case study from Fláajökull (SE Iceland) and Biferten glacier (Swiss Alps) forefields Maciej Dąbski Department of Geomorphology, Faculty of Geography and Regional Studies, University of Warsaw, Poland, e-mail: [email protected] Abstract: Micro-roughness was recorded on glacially abraded stones deposited since Little Ice Age by two glaciers: Fláajökull in SE Iceland (basalts) and Biferten glacier in Swiss Alps (limestones) in order to find indices of relative age of the glacial landforms. Micro-roughness of rock surfaces was analysed with use of Handysurf E35-B electronic profilometer which calculates following roughness parameters: Rz, Rzmax, Ra and Rsm. An increase in roughness parameters towards older moraines is observed in both forefields, however the change is more significant on limestone surfaces. Time-depend- ent surface deterioration is visible only within first decades of weathering of both types of rock, and further weathering does not cause increase in micro-roughness. Keywords: Micro-roughness, proglacial weathering, Fláajökull, Iceland, Biferten glacier, Swiss Alps Introduction Previous measurements of rock surface (micro) roughness in relative dating of glacial landforms were performed on gneiss within Storbreen forefiled (McCarroll 1992) and in Oldedalen (McCarroll & Nesje 1996). In both cases a hand profilometer was used which enabled measurement of relative heights of micro-depressions and micro-elevations with a theoretical precision up to 0.01 mm, and the range of micro-denivelations was usually 0.5–6 mm. Results proved to be useful in roughness differentiation be- tween Little Ice Age (LIA) landforms and those from the onset of Holocene.
    [Show full text]
  • List of Publications of Eduard Briickner
    List of Publications of Eduard Briickner CLIMATE 1. Uber die Methode der Zahlung der Regentage und deren EinjlufJ auf die resultierende Periode der Regenhaufigkeit. Meteorologische Zeitschrift, Volume 3, 1887. 2. Notre climat subit-i/ des changements? Archives des sciences physiques et naturelles Sept.-Okt., 1888. 3. Die meteorologische Station auf dem Santis. Meteorologische Zeit­ schrift, Volume 5, 1888. 4. In wie weit ist das heutige Klima konstant?455 Verhandlungen des VIII. Deutschen Geographentages, 1889. 5 . Klimaschwankungen seit 1700 nebst Bemerkungen iiber die Klimaschwankungen der Diluvialzeit.456 Pencks Geographische Abhandlungen, Volume 4, 1890. 6. Verdunstung einer Schneedecke. Meteorologische Zeitschrift, Volume 7, 1890. 7. Das Klima der Eiszeit. Verhandlungen der 73. Jahresversammlung der Schweizer Naturforschenden Gesellschaft, Davos, 1891. 8. Uber die Bedeutung der Klimaschwankungen for das praktische Leben. Compte rendu du V. Congres International des Science Geographie, 1891. 455 Chapter 3 in this book 456 Excerpts in Chapter 4 313 314 EDUARD BROCKNER 9. Materialien zur Verfolgung mehrjiihriger oder siikuliirer Perioden der Witterung. Meteorologische Zeitschrift, Volume 9,1892. 10. Uber den Einfluft der Schneedecke aUf das Klima der Alpen.457 Zeit- schrift des Deutschen und Osterreichischen Alpen-Vereins, 1893. 11. Diirren in Ostasien. Meteorologische Zeitschrift, Volume 11, 1894. 12. Das Klima von Odessa. Meteorologische Zeitschrift, Volume 11, 1894. 13. Meteorologische Stationen in den Franzosischen Alpen. Meteorolo­ gische Zeitschrift, Volume 12, 1895. 14. Der Einfluft der Klimaschwankungen auf die Ernteertriige und Getrei­ depreise in Europa. 4S8 Geographische Zeitschrift, Volume 1, 1895. 15. Uber die Herkunft des Regens. Verhandlungen des VII. Internationalen Geographenkongresses in Berlin 1899. 16. Uber die Herkunft des Regens. Geographische Zeitschrift, Volume 6, 1900.
    [Show full text]
  • Glacial Cirques As Palaeoenvironmental Indicators: Their Potential and Limitations
    Glacial cirques as palaeoenvironmental indicators: their potential and limitations Barr, I. D., & Spagnolo, M. (2015). Glacial cirques as palaeoenvironmental indicators: their potential and limitations. Earth-Science Reviews, 151, 48-78. https://doi.org/10.1016/j.earscirev.2015.10.004 Published in: Earth-Science Reviews Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights ©2015 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc- nd/4.0/ which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:24. Sep. 2021 Glacial cirques as palaeoenvironmental indicators: their potential and limitations Iestyn D. Barr (Corresponding author) School of Geography, Archaeology and Palaeoecology, Queen’s University Belfast, BT7 1NN, Belfast, UK Email: [email protected] Tel: +44 (0)28 9097 5146 Matteo Spagnolo School of Geosciences, University of Aberdeen, Elphinstone Road, AB243UF, Aberdeen, UK Abstract Glacial cirques are armchair-shaped erosional hollows, typified by steep headwalls and, often, overdeepened floors.
    [Show full text]
  • Of SE Iranian Mountains Exemplified by the Kuh-I-Jupar, Kuh-I-Lalezar and Kuh-I-Hezar Massifs in the Zagros
    Umbruch 77.2-3 09.12.2008 15:43 Uhr Seite 71 Polarforschung 77 (2-3), 71 – 88, 2007 (erschienen 2008) The Pleistocene Glaciation (LGP and pre-LGP, pre-LGM) of SE Iranian Mountains Exemplified by the Kuh-i-Jupar, Kuh-i-Lalezar and Kuh-i-Hezar Massifs in the Zagros by Matthias Kuhle1 Abstract: Evidence has been provided of two mountain glaciations in the tion the Kuh-i-Lalezar massif (4374 m, 29°23'28.01" N 4135 m high, currently non-glaciated Kuh-i-Jupar massif in the semi-arid 56°44'49.38" E) has been visited in April and May 1973. The Zagros: an older period during the pre-LGP (Riss glaciation, c. 130 Ka) and a younger one during the LGP (Würm glaciation, Marine Isotope Stage (MIS) results attained by Quaternary geological and geomorpholo- 4-2: 60-18 Ka). During the pre-LGP glaciation the glaciers reached a gical methods stand in contrast to earlier assumptions concern- maximum of 17 km in length; during the LGP glaciation they were 10-12 km ing the former glaciation of these semi-arid Iranian mountains. long. They flowed down into the mountain foreland as far as 2160 m (LGP glaciation) and 1900 m (pre-LGP glaciation). The thickness of the valley Parts – Kuh-i-Jupar massif – were already published in glaciers reached 550 (pre-LGP glaciation) and 350 m (LGP glaciation). German. They are included in this paper in a summarized During the pre-LGP a 23 km-wide continuous piedmont glacier lobe devel- form. In continuation of these results new observations from oped parallel to the mountain foot.
    [Show full text]
  • November 1960 I Believe That the Major Exports of Antarctica Are Scientific Data
    JIET L S. Antarctic Projects OfficerI November 1960 I believe that the major exports of Antarctica are scientific data. Certainly that is true now and I think it will be true for a long time and I think these data may turn out to be of vastly, more value to all mankind than all of the mineral riches of the continent and the life of the seas that surround it. The Polar Regions in Their Relation to Human Affairs, by Laurence M. Gould (Bow- man Memorial Lectures, Series Four), The American Geographiql Society, New York, 1958 page 29.. I ITOJ TJM II IU1viBEt 3 IToveber 1960 CONTENTS 1 The First Month 1 Air Operations 2 Ship Oper&tions 3 Project MAGNET NAF McMurdo Sounds October Weather 4 4 DEEP FREEZE 62 Volunteers Solicited A DAY AT TEE SOUTH POLE STATION, by Paul A Siple 5 in Antarctica 8 International Cooperation 8 Foreign Observer Exchange Program 9 Scientific Exchange Program NavyPrograrn 9 Argentine Navy-U.S. Station Cooperation 9 10 Other Programs 10 Worlds Largest Aircraft in Antarctic Operation 11 ANTARCTICA, by Emil Schulthess The Antarctic Treaty 11 11 USNS PRIVATE FRANIC 3. FETRARCA (TAK-250) 1961 Scientific Leaders 12 NAAF Little Rockford Reopened 13 13 First Flight to Hallett Station 14 Simmer Operations Begin at South Pole First DEEP FREEZE 61 Airdrop 14 15 DEEP FREEZE 61 Cargo Antarctic Real Estate 15 Antarctic Chronology,. 1960-61 16 The 'AuuOiA vises to t):iank Di * ?a]. A, Siple for his artj.ole Wh.4b begins n page 5 Matera1 for other sections of bhis issue was drawn from radio messages and fran information provided bY the DepBr1nozrt of State the Nat0na1 Academy , of Soienoes the NatgnA1 Science Fouxidation the Office 6f NAval Re- search, and the U, 3, Navy Hydziograpbio Offioe, Tiis, issue of tie 3n oovers: i16, aótivitiès o events 11 Novóiber The of the Uxitéd States.
    [Show full text]
  • Flow and Structure in a Dendritic Glacier with Bedrock Steps
    Journal of Glaciology (2017), 63(241) 912–928 doi: 10.1017/jog.2017.58 © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Flow and structure in a dendritic glacier with bedrock steps HESTER JISKOOT,1 THOMAS A FOX,1 WESLEY VAN WYCHEN1,2 1Department of Geography, University of Lethbridge, Lethbridge, AB, Canada 2Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, ON, Canada Correspondence: Hester Jiskoot <[email protected]> ABSTRACT. We analyse ice flow and structural glaciology of Shackleton Glacier, a dendritic glacier with multiple icefalls in the Canadian Rockies. A major tributary-trunk junction allows us to investigate the potential of tributaries to alter trunk flow and structure, and the formation of bedrock steps at con- fluences. Multi-year velocity-stake data and structural glaciology up-glacier from the junction were assimilated with glacier-wide velocity derived from Radarsat-2 speckle tracking. Maximum flow − − speeds are 65 m a 1 in the trunk and 175 m a 1 in icefalls. Field and remote-sensing velocities are in good agreement, except where velocity gradients are high. Although compression occurs in the trunk up-glacier of the tributary entrance, glacier flux is steady state because flow speed increases at the junc- tion due to the funnelling of trunk ice towards an icefall related to a bedrock step. Drawing on a pub- lished erosion model, we relate the heights of the step and the hanging valley to the relative fluxes of the tributary and trunk.
    [Show full text]
  • The Harki Doon, Which Amused Mrs
    THE HARK I DOON J. T. M. GIBSON HE Harki Doon has long been known to shikaris and I have seen Ta painting belonging to Mrs. Quarry of Dehra Dun done there by her brother well back in the nineteenth century and very similar in composition and colour to a photograph I took last year. I was credited by the local press with having discovered the Harki Doon, which amused Mrs. Quarry, who produced this picture as evidence that I had not. Her father came to India in a sailing ship with his regiment, marched with them from Calcutta to Ambala, and then up to what is now Chakrata, which he built. I have read his diary with the account of the voyage and march, and you feel as you talk to people like Mrs. Quarry of what they remember of their early life in India that you are almost living in history. I had often been told what a wonderful place the Harki Doon was, but it was not until 1948 that I was first able to visit it. Then I had been trekking with Gurdial Singh in the hills round the Bhagirathi valley and we had come to Harsil. From there he had to return so I went on with some local porters, cver the Lamkhaga pass, down the Baspa valley to Chitkal, and then back over the Borasu into the Harki Doon. It was on this trip that I found my porters gambling one evening and using as 'counters some curious coins. I examined these and found written on them 'F.
    [Show full text]
  • Der Tölzer Lobus Des Würmeiszeitlichen Isar-Loisach-Gletschers Als Gegenstand Einer Geodidaktischen Exkursion
    Der Tölzer Lobus des würmeiszeitlichen Isar-Loisach-Gletschers als Gegenstand einer geodidaktischen Exkursion Eine empirische Untersuchung zur Exkursionsdidaktik Dissertation der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München vorgelegt von Franz Kestler August 2005 1. Gutachter: Prof. Dr. Josef Birkenhauer 2. Gutachter: Prof. Dr. Konrad Rögner Tag der mündlichen Prüfung: 29. November 2005 Inhaltsverzeichnis 3 Inhalt Inhaltsverzeichnis.................................................................................................................. 3 Abbildungsverzeichnis .......................................................................................................... 7 Tabellenverzeichnis............................................................................................................... 9 Verzeichnis der Anhänge .................................................................................................... 10 Vorwort................................................................................................................................ 11 0. Zielsetzung...................................................................................................................... 12 1. Geodidaktik.................................................................................................................... 14 1.1 Begriffsdefinition .......................................................................................................... 14 1.2 Notwendigkeit und Zustand geowissenschaftlicher
    [Show full text]
  • The Ice Caps on the Northern Continents, the Alpine Glaciers Grew and Sent Their Ice Streams As Far As the Swiss Plateau in the North and the Southern Alpine Valleys
    Book Sur les traces de l'histoire de la Terre en Suisse WILDI, Walter Abstract La Suisse est un petit pays sur cette planète. Son histoire géologique est certainement plus ancienne, mais seules les quelque 300 derniers millions d'années sont suffisamment documentées pour raconter l'histoire que le pays partage avec la Terre entière. Ce livre décrit un voyage géologique à travers le temps et la Suisse, depuis les forêts tropicales, par les déserts de sel et la mer alpine tropicale au plissement alpin, au froid arctique et au changement climatique moderne. Auf den Spuren der Erdgeschichte in der Schweiz Die Schweiz ist ein kleiner Fleck auf diesem Planeten. Ihre Geschichte ist sicher älter, aber einzig die letzten etwa 300 Millionen Jahre sind hinreichend dokumentiert, um die Geschichte zu erzählen, welche das Land mit der ganzen Erde teilt. Dieses Buch beschreibt eine geologische Zeit- und Schweizerreise von tropischen Regenwäldern durch Salzwüsten und das warme Alpenmeer zur Alpenfaltung, zu arktischer Kälte und dem heutigen Klimawandel. Traces of the history of the Earth in Switzerland Switzerland is a small spot on planet Earth. Its history is certainly older, but only the last 300 [...] Reference WILDI, Walter. Sur les traces de l'histoire de la Terre en Suisse. Berne : Erlebnis-Geologie, 2020, 92 p. Available at: http://archive-ouverte.unige.ch/unige:140171 Disclaimer: layout of this document may differ from the published version. 1 / 1 Traces of the history of the Earth in Switzerland A geological journey through time and Switzerland from tropical rainforests, salt deserts and the warm Alpine Sea to the formation of the Alps, the arctic cold and today's climate change Walter Wildi Section des sciences de la Terre et de l’environnement, Université de Genève Rue des Maraîchers 13, CH-1205 Genève https://www.erlebnis-geologie.ch/ 1 Fossil turtle, Glarner Dachschiefer (roof slates) from the former Engi mine (Lower Oligocene, Canton Glarus; Copyright: Dr.
    [Show full text]
  • Pleistocene Glaciations of the Northern Alpine Foreland Markus Fiebig, Frank Preusser 145
    Pleistocene glaciations of the northern Alpine Foreland Markus Fiebig, Frank Preusser 145 Pleistocene glaciations of the northern Alpine Foreland Markus Fiebig, Wien, Frank Preusser, Bern 3 Classical Alpine Quaternary stratigraphy Following several decades of work in the Alps, Penck 1 Introduction 1882) and Penck & Brückner 1901/ 09) recorded an increasing amount of evidence for more than one The Alps are an area on the globe where it was first glaciation. These authors observed a geomorphologi¬ recognised that climate and environment are not cal phenomenon which is referred to as a « Glaciale stable over geological time. The « ice age » theory Serie » glacial series). This feature, frequently found in and later a widely accepted Quaternary stratigraphy the Alpine Foreland, consists of three major elements: were developed in this region. Hence, palaeoclimate « Zungenbecken » glacial [ tongue] basin), « End¬ and - environmental research are long established in moränenwall » terminal moraine) and « Schotterfeld » the Alpine region. The Alps are also important with outwash plain) Fig. 1). This geomorphological com¬ regard to atmospheric circulation, representing the plex is interpreted as a record of the former maximum major weather divide in Europe. The area lies down¬ position of a stationary glacier. Of particular impor¬ wind of the North Atlantic Oscillation that strongly tance for Quaternary stratigraphy in the Penck & influenced climate change in the past. Brückner scheme are the outwash plains that extend from the maximum glacier position far into the fore¬ The article begins with a brief overview of the historic land and so into areas that were not directly affected aspects of the recognition of Pleistocene glaciations by Quaternary glaciations.
    [Show full text]