On Join Irreducible J-Trivial Semigroups

Total Page:16

File Type:pdf, Size:1020Kb

On Join Irreducible J-Trivial Semigroups On join irreducible J-trivial semigroups Edmond W. H. Lee (∗) { John Rhodes (∗∗) { Benjamin Steinberg (∗∗∗) Abstract { A pseudovariety of semigroups is join irreducible if whenever it is contained in the complete join of some pseudovarieties, then it is contained in one of the pseudovarieties. A finite semigroup is join irreducible if it generates a join irreducible pseudovariety. New finite J -trivial semigroups Cn (n ≥ 2) are exhibited I with the property that while each Cn is not join irreducible, the monoid Cn is join I irreducible. The monoids Cn are the first examples of join irreducible J -trivial semigroups that generate pseudovarieties that are not self-dual. Several sufficient conditions are also established under which a finite semigroup is not join irreducible. Based on these results, join irreducible pseudovarieties generated by a J -trivial semigroup of order up to six are completely described. I It turns out that besides known examples and those generated by C2 and its dual monoid, there are no further examples. Mathematics Subject Classification (2010). 20M07, 08B15. Keywords. Semigroup, J-trivial, pseudovariety, join irreducible. (∗) Indirizzo dell'A.: Department of Mathematics, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA E-mail: [email protected] (∗∗) Indirizzo dell'A.: Department of Mathematics, University of California, Berkeley, 970 Evans Hall #3840, Berkeley, CA 94720, USA E-mail: [email protected] (∗∗∗) Indirizzo dell'A.: Department of Mathematics, City College of New York, NAC 8/133, Convent Avenue at 138th Street, New York, NY 10031, USA E-mail: [email protected] 2 E. W. H. Lee et al. 1. Introduction 1.1 { Join irreducibility The class S of finite semigroups is closed under the formation of homomor- phic images, subalgebras, and finitary direct products; such a class is called a pseudovariety. Under class inclusion, the subpseudovarieties of S form a lattice, which is denoted by L (S). The lattice L (S) rose to prominence inthe1970safterEilenberg[7]andSchutze¨ nbergerestablishedanisomor- phism between L (S) and the lattice of varieties of regular languages. Since then, several theories have been developed in the study of L (S). Most no- tably,Reiterman[21]characterizedpseudovarietiesasclassesdefinedby pseudoidentities.ThisresultledtothesyntacticapproachofAlmeida[3] that has became a fundamental technique in finite semigroup theory. The pseudovariety generated by a class fSi j i 2 Ig of finite semigroups is denoted by hhSi j i 2 Iii. A pseudovariety V is finitely generated if it is generated by a finite class of finite semigroups, that is, V = hhS1;S2;:::;Snii = hhS1 × S2 × · · · × Snii for some S1;S2;:::;Sn 2 S. The compact elements of L (S) are precisely the finitely generated subpseudovarieties of S. The lattice L (S) is complete and join generated by its compact elements, and so is algebraic. Since L (S) is a lattice, it is natural to examine its elements that satisfy important lattice properties, such as those listed in Rhodes and Steinberg[22,Definition6.1.5].Thepresentarticleisprimarilyconcerned with pseudovarieties V that are join irreducible in the sense that for all X ⊆ L (S), the following implication holds: _ V ⊆ X =) V ⊆ X for some X 2 X : A finite semigroup S is join irreducible if the pseudovariety hhSii is join irreducible. Equivalently, S is join irreducible if and only if the class Excl(S) = fT 2 S j S2 = hhT iig; called the exclusion class of S, is a pseudovariety; in this case, the pseudo- variety Excl(S) is defined by a single pseudoidentity, called an exclusion pseudoidentity for S. It follows that the pseudovariety hhSii\ Excl(S) coin- cides with the unique maximal subpseudovariety of hhSii. For more information on join irreducibility and other related properties, seeRhodesandSteinberg[22,Section7.3]. On join irreducible J-trivial semigroups 3 1.2 { Overview A systematic study of join irreducible pseudovarieties was recently initiated bytheauthors[18].Thissubsectionisanoverviewofsomeresultsrelevant to the present article. 1.2.1 { Examples of join irreducible semigroups EveryatominthelatticeL(S)isjoinirreducible[22,Table7.2].Inother words, cyclic groups p Zp = hg j g = 1i of prime order p and all semigroups of order two|the nilpotent semigroup N2 = f0; ng, the semilattice S`2 = f0; 1g, the left zero band L2 = fe; fg, and the right zero band R2=fe;fg|arejoinirreducible;seeTable1. Z2 1 g N2 0 n S`2 0 1 L2 e f R2 e f 1 1 g 0 0 0 0 0 0 e e e e e f g g 1 n 0 0 1 0 1 f f f f e f Table 1. Multiplication tables of semigroups of order two n More generally, every cyclic group Zpn of prime power order p and every monogenic nilpotent semigroup n Nn = hn j n = 0i of order n ≥ 1 is join irreducible. Conversely, each join irreducible mono- genic semigroup is isomorphic to some ZpnorNn;seeCorollary4.16. Some examples of join irreducible semigroups generated by two elements include the non-orthodox 0-simple semigroup 2 2 A2 = ha; e j a = 0; aea = a; e = eae = ei oforderfive[9],theBrandtsemigroup 2 2 B2 = ha; b j a = b = 0; aba = a; bab = bi oforderfive[22,Example7.3.4],andtheJ-trivialsemigroups 2 2 n Hn = he; f j e = e; f = f; (ef) = 0i 2 2 n and Kn = he; f j e = e; f = f; (ef) e = 0i oforders4nand4n+2,respectively[14]. 4 E. W. H. Lee et al. 1.2.2 { Constructing new join irreducible semigroups One way to locate new examples of join irreducible semigroups|and an important problem on its own|is to find operators on S that preserve join irreducibility. Given any semigroup S, let Sop denote the opposite semigroup obtained by reversing the multiplication on S, let SI = S [ fIg denote the monoid obtained by adjoining an external identity element I to S, and let S• denote the smallest monoid containing S, that is, ( S if S is a monoid; S• = SI otherwise: Then the operators S 7! Sop and S 7! S• on S preserve join irreduci- bility[3,Exercise10.10.1].TheoperatorS7!SIonS,ontheotherhand, does not preserve join irreducibility of every semigroup. For example, the I I semigroup Z2 is join irreducible but Z2 is not, since hhZ2ii = hhZ2ii_ hhS`2ii. A more substantial operator is the augmentation Sbar of a semigroup S thatisobtainedbyaddingtoSconstantmapsonS•;seeSubsection2.1. Not only does the operator S 7! Sbar on S preserve join irreducibility, it can also produce join irreducible semigroups from certain non-join irreducible ones. For example, the semigroup n+1 n 2 On = ha; e j a = a e = 0; ea = a; e = ei bar of order 2n + 1 is not join irreducible, while its augmentation On is join irreducible[18,Subsection4.5]. Apart from preserving join irreducibility, the operators S 7! Sop and S 7! Sbar on S, when iterated repeatedly, can produce infinite classes of join irreducible semigroups. For instance, by letting [ = op ◦ bar ◦ op, then starting with any join irreducible semigroup S, the pseudovarieties hhSbarii; hh(Sbar)[ii; hh((Sbar)[)barii; hh(((Sbar)[)bar)[ii;::: are join irreducible and form a strictly increasing chain in the lattice L (S) [18,Corollary4.11]. 1.2.3 { Classification of small join irreducible semigroups In view of all the results, techniques, and classes of examples discovered so far, the time seems ripe for a classification of join irreducible pseudovarie- ties. Two semigroups are distinct if they are neither isomorphic nor anti- isomorphic. Given that the number ∆n of distinct semigroups of order n On join irreducible J-trivial semigroups 5 increasesveryrapidly[5,Table1],efficientmethodsarecrucialtoany classification attempt. n 1 2 3 4 5 6 7 8 ∆n 1 4 18 126 1,160 15,973 836,021 1,843,120,128 Table 2. Number ∆n of distinct semigroups of order n ≤ 8 An obvious approach is to develop sufficient conditions to determine if one of the following outcomes holds for a finite input semigroup S: • hhSii = hhT ii for some known join irreducible semigroup T ; • S is not join irreducible. A number of these conditions are equational in the sense that they solely require checking if the input semigroup S satisfies and violates certain identities;seeSubsections3.1and4.1.Ingeneral,equationalsufficient conditions are difficult to establish, but the main advantage is that they can be applied by a computer to quickly examine a large number of finite semigroups. Inarecentstudyofjoinirreduciblesemigroups[18],someequational sufficient conditions in the literature, together with a few newly established ones, were used to completely determine the join irreducibility of all pseudo- varieties generated by a semigroup of order up to five. Theorem1.1([18,Theorem7.1]).Amongallpseudovarietiesgenerated by a nontrivial semigroup of order five or less, precisely 30 are join irreducible: bar bar op hhZ2ii; hhZ3ii; hhZ4ii; hhZ5ii; hhZ2 ii; hh(Z2 ) ii; bar bar op hhN2ii; hhN3ii; hhN4ii; hhN5ii; hhN2 ii; hh(N2 ) ii; I I I I bar I bar I op hhN1ii; hhN2ii; hhN3ii; hhN4ii; hh(N2 ) ii; hh((N2 ) ) ii; op I I op bar bar op hhL2ii; hhL2 ii; hhL2ii; hh(L2) ii; hhL2 ii; hh(L2 ) ii; I bar bar op hhA2ii; hhB2ii; hhH1ii; hhH1ii; hhO1 ii; hh(O1 ) ii: bar bar bar bar Information on the augmentation semigroups Z2 , N2 , L2 , and O1 I op canbefoundinSubsection2.1.NotethathhN1ii = hhS`2ii, hhL2 ii = hhR2ii, I op I bar op op bar and hh(L2) ii = hhR2ii. But hh(L2 ) ii6= hh(L2 ) ii because the latter variety bar coincides with hhR2 ii = hhR2ii. 6 E. W. H. Lee et al. 1.3 { Main results The present article continues the investigation of join irreducible semi- groups but with main emphasis on J -trivial semigroups. The class J of finite J -trivial semigroups coincides with the pseudovariety defined by the pseudoidentities (1.1) x!+1 ≈ x!; (xy)! ≈ (yx)!: The pseudovariety J can be generated by several sequences of well-known semigroups, such as the monoid OEn of order-preserving extensive trans- formations on f1; 2; : : : ; ng; in other words, _ hhOE2ii⊂ hhOE3ii⊂ · · · ⊂ hhOEnii = J: n≥2 SeeVolkov[23]forothersequencesofgeneratorsforJ.
Recommended publications
  • Equidivisible Pseudovarieties of Semigroups
    Pr´e-Publica¸c˜oes do Departamento de Matem´atica Universidade de Coimbra Preprint Number 16–05 EQUIDIVISIBLE PSEUDOVARIETIES OF SEMIGROUPS JORGE ALMEIDA AND ALFREDO COSTA Abstract: We give a complete characterization of pseudovarieties of semigroups whose finitely generated relatively free profinite semigroups are equidivisible. Be- sides the pseudovarieties of completely simple semigroups, they are precisely the pseudovarieties that are closed under Mal’cev product on the left by the pseudova- riety of locally trivial semigroups. A further characterization which turns out to be instrumental is as the non-completely simple pseudovarieties that are closed under two-sided Karnofsky-Rhodes expansion. Keywords: semigroup, equidivisible, pseudovariety, Karnofsky-Rhodes expansion, connected expansion, two-sided Cayley graph. AMS Subject Classification (2010): Primary 20M07, 20M05. 1. Introduction A pseudovariety of semigroups is a class of finite semigroups closed un- der taking subsemigroups, homomorphic images and finitary products. In the past few decades, pseudovarieties provided the main framework for the research on finite semigroups, motivated by Eilenberg’s correspondence the- orem between pseudovarieties and varieties of languages. In this context, the finitely generated relatively free profinite semigroups associated to each pseu- dovariety proved to be of fundamental importance. We assume the reader has some familiarity with this background. The books [19, 1] are indicated as supporting references. The paper [2] might also be useful for someone looking for a brief introduction. In this paper we are concerned with equidivisible relatively free profinite semigroups. A semigroup S is equidivisible if for every u,v,x,y ∈ S, the equality uv = xy implies that u = x and v = y, or that there is t ∈ S such that ut = x and v = ty, or such that xt = u and y = tv.
    [Show full text]
  • Semigroup, Monoid and Group Models of Groupoid Identities 1. Introduction
    Quasigroups and Related Systems 16 (2008), 25 ¡ 29 Semigroup, monoid and group models of groupoid identities Nick C. Fiala Abstract In this note, we characterize those groupoid identities that have a (nite) non-trivial (semigroup, monoid, group) model. 1. Introduction Denition 1.1. A groupoid consists of a non-empty set equipped with a binary operation, which we simply denote by juxtaposition. A groupoid G is non-trivial if jGj > 1, otherwise it is trivial.A semigroup is a groupoid S that is associative ((xy)z = x(yz) for all x; y; z 2 S). A monoid is a semigroup M possessing a neutral element e 2 M such that ex = xe = x for all x 2 M (the letter e will always denote the neutral element of a monoid). A group is a monoid G such that for all x 2 G there exists an inverse x¡1 such that x¡1x = xx¡1 = e.A quasigroup is a groupoid Q such that for all a; b 2 Q, there exist unique x; y 2 Q such that ax = b and ya = b.A loop is a quasigroup possessing a neutral element. A groupoid term is a product of universally quantied variables. A groupoid identity is an equation, the left-hand side and right-hand side of which are groupoid terms. By the words term and identity, we shall always mean groupoid term and groupoid identity, respectively. The letters s and t will always denote terms. We will say that an identity s = t has a (nite) non-trivial model if there exists a (nite) non-trivial groupoid G such that s = t is valid in G.
    [Show full text]
  • Semigroups with Operation-Compatible Green’S Quasiorders
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Essex Research Repository SEMIGROUPS WITH OPERATION-COMPATIBLE GREEN'S QUASIORDERS ZSOFIA´ JUHASZ,´ ALEXEI VERNITSKI Abstract. We call a semigroup on which the Green's quasiorder ≤J (≤L, ≤R) is operation-compatible, a ≤J -compatible (≤L-compatible, ≤R-compatible) semigroup. We study the classes of ≤J -compatible, ≤L-compatible and ≤R-compatible semigroups, using the smallest operation-compatible quasiorders containing Green's quasiorders as a tool. We prove a number of results, including the following. The class of ≤L-compatible (≤R-compatible) semigroups is closed under taking homomorphic images. A regular periodic semigroup is ≤J -compatible if and only if it is a semilattice of simple semi- groups. Every negatively orderable semigroup can be embedded into a negatively orderable ≤J -compatible semigroup. 1. Introduction Green's relations L, R and J are one of the most important tools in studying the structure of semigroups. They can also be viewed from a less common angle: as being defined via quasiorders (or pre- orders), which we shall refer to as Green's quasiorders and denote by ≤L, ≤R and ≤J , respectively. Studying the properties of these qua- siorders is of interest, because of the importance of Green's relations and due to the fact that in a certain sense these associated quasiorders contain `more information' about a semigroup than Green's relations: given only a Green's quasiorder on a semigroup we can reconstruct the corresponding Green's relation, whereas the converse is not true.
    [Show full text]
  • Representation Theory of Finite Semigroups, Semigroup Radicals and Formal Language Theory
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 361, Number 3, March 2009, Pages 1429–1461 S 0002-9947(08)04712-0 Article electronically published on October 20, 2008 REPRESENTATION THEORY OF FINITE SEMIGROUPS, SEMIGROUP RADICALS AND FORMAL LANGUAGE THEORY JORGE ALMEIDA, STUART MARGOLIS, BENJAMIN STEINBERG, AND MIKHAIL VOLKOV Abstract. In this paper we characterize the congruence associated to the direct sum of all irreducible representations of a finite semigroup over an ar- bitrary field, generalizing results of Rhodes for the field of complex numbers. Applications are given to obtain many new results, as well as easier proofs of several results in the literature, involving: triangularizability of finite semi- groups; which semigroups have (split) basic semigroup algebras, two-sided semidirect product decompositions of finite monoids; unambiguous products of rational languages; products of rational languages with counter; and Cern´ˇ y’s conjecture for an important class of automata. 1. Introduction For over 100 years, the theory of linear representations has played a fundamental role in studying finite groups, finite dimensional algebras and Lie algebras as well as other parts of algebra. By way of contrast, the theory of semigroup representations, which was intensively developed during the 1950s and 1960s in classic work such as Clifford [15], Munn [29, 30] and Ponizovsky (see [16, Chapter 5] for an account of this work, as well as [26, 56] for nicer treatments restricting to the case of finite semigroups) has found almost no applications in the theory of finite semigroups. It was pointed out by McAlister in his survey of 1971 [28] that the only paper applying representation theoretic results to finite semigroups was the paper [51] of Rhodes.
    [Show full text]
  • A the Green-Rees Local Structure Theory
    A The Green-Rees Local Structure Theory The goal of this appendix is to give an admittedly terse review of the Green- Rees structure theory of stable semigroups (or what might be referred to as the local theory, in comparison with the semilocal theory of Section 4.6). More complete references for this material are [68, 139, 171]. A.1 Ideal Structure and Green's Relations If S is a semigroup, then SI = S I , where I is a newly adjoined identity. If X; Y are subsets of S, then XY[=f gxy x X; y Y . f j 2 2 g Definition A.1.1 (Ideals). Let S be a semigroup. Then: 1. = R S is a right ideal if RS R; ; 6 ⊆ ⊆ 2. = L S is a left ideal if SL L; ; 6 ⊆ ⊆ 3. = I S is an ideal if it is both a left ideal and a right ideal. ; 6 ⊆ If s S, then sSI is the principal right ideal generated by s, SI s is the principal2left ideal generated by s and SI sSI is the principal ideal generated by s. If S is a monoid, then SI s = Ss, sSI = sS and SI sSI = SsS. A semigroup is called left simple, right simple, or simple if it has no proper, respectively, left ideal, right ideal, or ideal. The next proposition is straight- forward; the proof is left to the reader. Proposition A.1.2. Let I; J be ideals of S. Then IJ = ij i I; j J f j 2 2 g is an ideal and = IJ I J.
    [Show full text]
  • On the Structure Theory of Partial Automaton Semigroups
    On the Structure Theory of Partial Automaton Semigroups Daniele D’Angeli∗1, Emanuele Rodaro2 and Jan Philipp Wächter3 1 Università degli Studi Niccolò Cusano, Via Don Carlo Gnocchi, 3, 00166 Roma, Italy 2 Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy 3 Institut für Formale Methoden der Informatik (FMI), Universität Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany July 17, 2020 We study automaton structures, i. e. groups, monoids and semigroups gen- erated by an automaton, which, in this context, means a deterministic finite- state letter-to-letter transducer. Instead of considering only complete au- tomata, we specifically investigate semigroups generated by partial automata. First, we show that the class of semigroups generated by partial automata coincides with the class of semigroups generated by complete automata if and only if the latter class is closed under removing a previously adjoined zero, which is an open problem in (complete) automaton semigroup theory stated by Cain. Then, we show that no semidirect product (and, thus, also no di- rect product) of an arbitrary semigroup with a (non-trivial) subsemigroup of the free monogenic semigroup is an automaton semigroup. Finally, we con- centrate on inverse semigroups generated by invertible but partial automata, which we call automaton-inverse semigroups, and show that any inverse au- tomaton semigroup can be generated by such an automaton (showing that automaton-inverse semigroups and inverse automaton semigroups coincide). Keywords. Automaton Semigroup, Partial Automaton, Inverse Semigroup, Preston-Vagner Theorem 1 Introduction Automaton groups have proven to be a valuable source for groups with interesting prop- arXiv:1811.09420v3 [cs.FL] 16 Jul 2020 erties.
    [Show full text]
  • On Join Irreducible J-Trivial Semigroups
    Rend. Sem. Mat. Univ. Padova, DRAFT, 1{37 On join irreducible J-trivial semigroups Edmond W. H. Lee (∗) { John Rhodes (∗∗) { Benjamin Steinberg (∗∗∗) Abstract { A pseudovariety of semigroups is join irreducible if whenever it is contained in the complete join of some pseudovarieties, then it is contained in one of the pseudovarieties. A finite semigroup is join irreducible if it generates a join irreducible pseudovariety. New finite J -trivial semigroups Cn (n ≥ 2) are exhibited I with the property that while each Cn is not join irreducible, the monoid Cn is join I irreducible. The monoids Cn are the first examples of join irreducible J -trivial semigroups that generate pseudovarieties that are not self-dual. Several sufficient conditions are also established under which a finite semigroup is not join irreducible. Based on these results, join irreducible pseudovarieties generated by a J -trivial semigroup of order up to six are completely described. I It turns out that besides known examples and those generated by C2 and its dual monoid, there are no further examples. Mathematics Subject Classification (2010). 20M07, 08B15. Keywords. Semigroup, J-trivial, pseudovariety, join irreducible. (∗) Indirizzo dell'A.: Department of Mathematics, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA E-mail: [email protected] (∗∗) Indirizzo dell'A.: Department of Mathematics, University of California, Berkeley, 970 Evans Hall #3840, Berkeley, CA 94720, USA E-mail: [email protected] (∗∗∗) Indirizzo dell'A.: Department of Mathematics, City College of New York, NAC 8/133, Convent Avenue at 138th Street, New York, NY 10031, USA E-mail: [email protected] 2 E.
    [Show full text]
  • Linear Representations of Certain Compact Semigroupso
    transactions of the american mathematical society Volume 160, October 1971 LINEAR REPRESENTATIONS OF CERTAIN COMPACT SEMIGROUPSO BY D. R. BROWN AND MICHAEL FRIEDBERG Abstract. In this paper we initiate the study of representation theory of compact, not necessarily commutative, uniquely divisible semigroups. We show that a certain class of semigroups are all topologically isomorphic to real matrix semigroups. The proof utilizes a group embedding theorem and the standard results on homomor- phisms of Lie groups into matrix groups. 1. Introduction. A semigroup S is (uniquely) divisible provided for each x e S, and each positive integer n there exists a (unique) y e S such that yn = x. The basic properties of uniquely divisible semigroups have been developed in [5], [10], and [11]. Representation theory of these objects has been examined in [3], [4], [16], and [17]. Related material occurs in [13]. In this paper we initiate the study of representation theory of compact, not necessarily commutative, uniquely divisible semigroups. We shall be concerned exclusively with faithful (real) finite-dimensional linear representations. Clearly, objects admitting such representations are necessarily finite dimensional. For earlier work involving representations of (nongroup) topological semigroups, see [2] and [9]. §§2 and 3 are preparatory in nature. In §4 we show that a certain class of semi- groups are all topologically isomorphic to real matrix semigroups. The conditions such semigroups satisfy are restrictive. However, for mitigation the reader is asked to recall the following: (1) the structure of real matrix semigroups is quite special, and (2) the theorem proved is one in which no linear structure is presumed upon the semigroup investigated.
    [Show full text]
  • Expansions and Covers
    Expansions and covers Jean-Eric´ Pin LIAFA, CNRS and University Paris Diderot York, November 2011 LIAFA, CNRS and University Paris Diderot Summary This talk is partly based on an illuminating lecture given by Jon McCammond in Braga in 2003. (1) Covers and expansions (2) Mal’cev expansions (3) Stabilisers (4) Unitary semigroups LIAFA, CNRS and University Paris Diderot Removing singularities In mathematics, objects do not necessarily behave regularly and may sometimes have undesirable properties. A standard attempt to avoid such singularities is to replace defective objects by smoother ones. The notion of cover in semigroup theory shares the same idea: removing singularities. LIAFA, CNRS and University Paris Diderot A-generated semigroups An A-generated semigroup is a semigroup S together with a surjective morphism u → (u)S from + A onto S. Then (u)S is called the value of u in S. A morphism between two A-generated semigroups T and S is a surjective semigroup morphism γ : T → S such that the triangle below is commutative: A+ ()T ()S γ T S LIAFA, CNRS and University Paris Diderot Covers A cover associates to each semigroup S a semigroup S and a surjective morphism πS : S → S. b b Properties of the cover depend on the type of singularities to be removed. Properties of π are also sometimes required. For instance, if S is an A-generated semigroup, the map ()S A+ S is the free cover of S. It gets rid of the relations between the generators. LIAFA, CNRS and University Paris Diderot Expansions An expansion is a functorial cover.
    [Show full text]
  • On the Expressive Power of Temporal Logic for Finite Words Joelle Cohen, Dominique Perrin, Jean-Eric Pin
    On the expressive power of temporal logic for finite words Joelle Cohen, Dominique Perrin, Jean-Eric Pin To cite this version: Joelle Cohen, Dominique Perrin, Jean-Eric Pin. On the expressive power of temporal logic for finite words. Journal of Computer and System Sciences, Elsevier, 1993, 46, pp.271-294. 10.1016/0022- 0000(93)90005-H. hal-00020069 HAL Id: hal-00020069 https://hal.archives-ouvertes.fr/hal-00020069 Submitted on 4 Mar 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the expressive power of temporal logic ∗ Jo¨elle Cohen, Dominique Perrin and Jean-Eric Pin LITP, Paris, FRANCE Abstract We study the expressive power of linear propositional temporal logic interpreted on finite sequences or words. We first give a trans- parent proof of the fact that a formal language is expressible in this logic if and only if its syntactic semigroup is finite and aperiodic. This gives an effective algorithm to decide whether a given rational lan- guage is expressible. Our main result states a similar condition for the \restricted" temporal logic (RTL), obtained by discarding the \un- til" operator. A formal language is RTL-expressible if and only if its syntactic semigroup is finite and satisfies a certain simple algebraic condition.
    [Show full text]
  • Nine Chapters on the Semigroup Art
    Alan J. Cain Nine Chapters on the Semigroup Art Lecture notes for a tour through semigroups Porto & Lisbon 2020 version 0.66.62 (2020-06-13) [A4 / Two-sided / Greyscale] 3b9596955641bc1af1e88645064dd8dc6c2cf041 : 000000005ee533ff To download the most recent version, and files suitable for colour or greyscale printing, or for viewing on tablets and ebook readers, visit http://www-groups.mcs.st-andrews.ac.uk/~alanc/pub/c_ semigroups/ • © 2012–20 Alan J. Cain ([email protected]) This work is licensed under the Creative Commons Attribu- tion–Non-Commercial–NoDerivs 4.0 International Licence. To view a copy of this licence, visit https://creativecommons.org/licenses/by-nc-nd/4.0/ Contents Preface v Prerequisites vii ◆ Acknowledgements vii Chapter 1 | Elementary semigroup theory 1 Basic concepts and examples 1 ◆ Generators and subsemi- groups 8 ◆ Binary relations 11 ◆ Orders and lattices 15 ◆ Homomorphisms 19 ◆ Congruences and quotients 20 ◆ Generating equivalences and congruences 22 ◆ Subdirect products 28 ◆ Actions 29 ◆ Cayley graphs 30 ◆ Exercises 32 ◆ Notes 34 Chapter 2 | Free semigroups & presentations 37 Alphabets and words 37 ◆ Universal property 38 ◆ Proper- ties of free semigroups 41 ◆ Semigroup presentations 42 ◆ Exercises 51 ◆ Notes 53 Chapter 3 | Structure of semigroups 55 Green’s relations 55 ◆ Simple and 0-simple semigroups 58 ◆ D-class structure 60 ◆ Inverses and D-classes 63 ◆ Schützenberger groups 65 ◆ Exercises 68 ◆ Notes 70 Chapter 4 | Regular semigroups 73 Completely 0-simple semigroups 75 ◆ Ideals and completely 0-simple
    [Show full text]
  • Semigroup Congruences: Computational Techniques and Theoretical Applications
    SEMIGROUP CONGRUENCES: COMPUTATIONAL TECHNIQUES AND THEORETICAL APPLICATIONS Michael Torpey A Thesis Submitted for the Degree of PhD at the University of St Andrews 2019 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/17350 This item is protected by original copyright 2 Declarations Candidate's declaration I, Michael Colin Torpey, do hereby certify that this thesis, submitted for the degree of PhD, which is approx- imately 59,000 words in length, has been written by me, and that it is the record of work carried out by me, or principally by myself in collaboration with others as acknowledged, and that it has not been submitted in any previous application for any degree. I was admitted as a research student at the University of St Andrews in September 2014. I received funding from an organisation or institution and have acknowledged the funder(s) in the full text of my thesis. Date: . Signature of candidate: . Supervisor's declaration I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date: . Signature of supervisor:. Permission for publication In submitting this thesis to the University of St Andrews we understand that we are giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby.
    [Show full text]