Nine Chapters on the Semigroup Art
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Techniques in Finite Semigroup Theory
COMPUTATIONAL TECHNIQUES IN FINITE SEMIGROUP THEORY Wilf A. Wilson A Thesis Submitted for the Degree of PhD at the University of St Andrews 2018 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/16521 This item is protected by original copyright Computational techniques in finite semigroup theory WILF A. WILSON This thesis is submitted in partial fulfilment for the degree of Doctor of Philosophy (PhD) at the University of St Andrews November 2018 Declarations Candidate's declarations I, Wilf A. Wilson, do hereby certify that this thesis, submitted for the degree of PhD, which is approximately 64500 words in length, has been written by me, and that it is the record of work carried out by me, or principally by myself in collaboration with others as acknowledged, and that it has not been submitted in any previous application for any degree. I was admitted as a research student at the University of St Andrews in September 2014. I received funding from an organisation or institution and have acknowledged the funders in the full text of my thesis. Date: . Signature of candidate:. Supervisor's declaration I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date: . Signature of supervisor: . Permission for publication In submitting this thesis to the University of St Andrews we understand that we are giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby. -
Equidivisible Pseudovarieties of Semigroups
Pr´e-Publica¸c˜oes do Departamento de Matem´atica Universidade de Coimbra Preprint Number 16–05 EQUIDIVISIBLE PSEUDOVARIETIES OF SEMIGROUPS JORGE ALMEIDA AND ALFREDO COSTA Abstract: We give a complete characterization of pseudovarieties of semigroups whose finitely generated relatively free profinite semigroups are equidivisible. Be- sides the pseudovarieties of completely simple semigroups, they are precisely the pseudovarieties that are closed under Mal’cev product on the left by the pseudova- riety of locally trivial semigroups. A further characterization which turns out to be instrumental is as the non-completely simple pseudovarieties that are closed under two-sided Karnofsky-Rhodes expansion. Keywords: semigroup, equidivisible, pseudovariety, Karnofsky-Rhodes expansion, connected expansion, two-sided Cayley graph. AMS Subject Classification (2010): Primary 20M07, 20M05. 1. Introduction A pseudovariety of semigroups is a class of finite semigroups closed un- der taking subsemigroups, homomorphic images and finitary products. In the past few decades, pseudovarieties provided the main framework for the research on finite semigroups, motivated by Eilenberg’s correspondence the- orem between pseudovarieties and varieties of languages. In this context, the finitely generated relatively free profinite semigroups associated to each pseu- dovariety proved to be of fundamental importance. We assume the reader has some familiarity with this background. The books [19, 1] are indicated as supporting references. The paper [2] might also be useful for someone looking for a brief introduction. In this paper we are concerned with equidivisible relatively free profinite semigroups. A semigroup S is equidivisible if for every u,v,x,y ∈ S, the equality uv = xy implies that u = x and v = y, or that there is t ∈ S such that ut = x and v = ty, or such that xt = u and y = tv. -
On Identities in Groups of Fractions of Cancellative Semigroups
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 133, Number 7, Pages 1873–1879 S 0002-9939(05)07903-7 Article electronically published on February 24, 2005 ON IDENTITIES IN GROUPS OF FRACTIONS OF CANCELLATIVE SEMIGROUPS S. V. IVANOV AND A. M. STOROZHEV (Communicated by Jonathan I. Hall) Abstract. To solve two problems of Bergman stated in 1981, we construct agroupG such that G contains a free noncyclic subgroup (hence, G satisfies no group identity) and G, as a group, is generated by its subsemigroup that satisfies a nontrivial semigroup identity. 1. Introduction AsemigroupS is called cancellative if for arbitrary a, b, x ∈ S either of equalities xa = xb, ax = bx implies that a = b. AsemigroupS is said to satisfy the left (resp. right) Ore condition if for arbitrary a, b ∈ S there are x, y ∈ S such that xa = yb (resp. ax = by). It is well known that a cancellative semigroup S with the left (or right) Ore condition embeds in a group F(S)=S−1S = SS−1 of its fractions (see [M53], [NT63], [CP67, Theorem 1.23]; recall that, in general, a cancellative semigroup need not embed in a group, see [M37]) and a group F(S)offractionsofS is unique in the sense that if G is a group such that G contains S and G, as a group, is generated by S,thenG is naturally isomorphic to F(S). In particular, if S is a cancellative semigroup satisfying a nontrivial identity, then S satisfies (both) Ore conditions and so S embeds in the group F(S) of its fractions. -
Arxiv:1707.05940V1 [Math.OA] 19 Jul 2017 ..Aeaiiyo Eirusi Em Fc-Lers66 61 47 C*-Algebras of Terms in Semigroups Red of of Amenability Descriptions C*-Algebra 6.8
SEMIGROUP C*-ALGEBRAS XIN LI Abstract. We give an overview of some recent developments in semigroup C*-algebras. Contents 1. Introduction 2 2. C*-algebrasgeneratedbyleftregularrepresentations 3 3. Examples 4 3.1. The natural numbers 4 3.2. Positive cones in totally ordered groups 4 3.3. Monoids given by presentations 5 3.4. Examples from rings in general, and number theory in particular 8 3.5. Finitely generated abelian cancellative semigroups 9 4. Preliminaries 9 4.1. Embedding semigroups into groups 9 4.2. Graph products 11 4.3. Krull rings 14 5. C*-algebras attached to inverse semigroups, partial dynamical systems, and groupoids 16 5.1. Inverse semigroups 16 5.2. Partial dynamical systems 22 5.3. Etale´ groupoids 26 5.4. The universal groupoid of an inverse semigroup 29 5.5. InversesemigroupC*-algebrasasgroupoidC*-algebras 30 5.6. C*-algebras of partial dynamical systems as C*-algebras of partial transformation groupoids 33 arXiv:1707.05940v1 [math.OA] 19 Jul 2017 5.7. The case of inverse semigroups admitting an idempotent pure partial homomorphism to a group 36 6. Amenability and nuclearity 37 6.1. Groups and groupoids 37 6.2. Amenability for semigroups 40 6.3. Comparing reduced C*-algebras for left cancellative semigroups and their left inverse hulls 42 6.4. C*-algebrasgeneratedbysemigroupsofprojections 47 6.5. The independence condition 54 6.6. Construction of full semigroup C*-algebras 61 6.7. Crossed product and groupoid C*-algebra descriptions of reduced semigroup C*-algebras 63 6.8. Amenability of semigroups in terms of C*-algebras 66 1 2 XIN LI 6.9. -
A Characterization of Seminormal C-Monoids
Bollettino dell’Unione Matematica Italiana https://doi.org/10.1007/s40574-019-00194-9 A characterization of seminormal C-monoids Alfred Geroldinger1 · Qinghai Zhong1 Received: 27 September 2018 / Accepted: 30 January 2019 © The Author(s) 2019 Abstract It is well-known that a C-monoid is completely integrally closed if and only if its reduced class semigroup is a group and if this holds, then the C-monoid is a Krull monoid and the reduced class semigroup coincides with the usual class group of Krull monoids. We prove that a C-monoid is seminormal if and only if its reduced class semigroup is a union of groups. Based on this characterization we establish a criterion (in terms of the class semigroup) when seminormal C-monoids are half-factorial. Keywords Krull monoids · C-monoids · Seminormal · Class semigroups · Half-factorial Mathematics Subject Classification 20M13 · 13A05 · 13A15 · 13F05 · 13F45 1 Introduction A C-monoid H is a submonoid of a factorial monoid, say H ⊂ F,suchthatH × = H ∩ F× and the reduced class semigroup is finite. A commutative ring is a C-ring if its multiplicative monoid of regular elements is a C-monoid. Every C-monoid is Mori (i.e., v-noetherian), its complete integral closure H is a Krull monoid with finite class group C(H),andthe conductor (H : H) is non-trivial. Conversely, every Mori domain R with non-zero conductor f = (R : R), for which the residue class ring R/f and the class group C(R) are finite, is a C-domain ([10, Theorem 2.11.9]), and these two finiteness conditions are equivalent to being a C-domain for non-local semilocal noetherian domains ([23, Corollary 4.5]). -
Bisimple Semigroups
/-BISIMPLE SEMIGROUPS BY R. J. WARNE Let S be a semigroup and let Es denote the set of idempotents of S. As usual Es is partially ordered in the following fashion: if e,feEs, efíf if and only if ef=fe = e. Let /denote the set of all integers and let 1° denote the set of nonnegative integers. A bisimple semigroup Sis called an 7-bisimple semigroup if and only if Es is order isomorphic to 7 under the reverse of the usual order. We show that S is an 7-bisimple semigroup if and only if S^Gx Ixl, where G is a group, under the multiplication (g, a, b)(h, c, d) = (gfb-}c.chab-cfb-c.d, a,b + d-c) if b ^ c, = (fc~-\,ag<xc~''fc-b,bh,a+c-b, d) if c ^ b, where a is an endomorphism of G, a0 denoting the identity automorphism of G, and for me Io, ne I, /o,n=e> the identity of G while if m>0, fim.n = un + i"m~1un + 2am-2- ■ -un + (m.X)aun + m, where {un : ne/} is a collection of elements of G with un = e, the identity of G, if n > 0. If we let G = {e}, the one element group, in the above multiplication we obtain S=IxI under the multiplication (a, b)(c, d) = (a + c —r, b + d—r). We will denote S under this multiplication by C*, and we will call C* the extended bicyclic semigroup. C* is the union of the chain I of bicyclic semigroups C. -
Semigroups of I-Quotients
Semigroups of I-quotients Nassraddin Ghroda A Thesis Submitted for the Degree of PhD University of York Department of Mathematics August 2011 TTIOAR tr.Tror-SITY ..11B2ARY VAT, .1.01.0qmannimer.....f Abstract Let Q be an inverse semigroup. A subsemigroup S of Q is a left I-order in Q or Q is a semigroup of left I-quotients of S, if every element in Q can be written as a—l b where a, b E S and a' is the inverse of a in the sense of inverse semigroup theory. If we insist on a and b being 7Z-related in Q, then we say that S is straight in Q and Q is a semigroup of straight left I-quotients of S. We give a theorem which determines when two semigroups of straight left I- quotients of given semigroup are isomorphic. Clifford has shown that, to any right cancellative monoid with the (LC) condition, we can associate an inverse hull. By saying that a semigroup S has the (LC) condition we mean for any a, b E S there is an element c E S such that SanSb = Sc. According to our notion, we can regard such a monoid as a left I-order in its inverse hull. We extend this result to the left ample case where we show that, if a left ample semigroup has the (LC) condition, then it is a left I-order in its inverse hull. The structure of semigroups which are semilattices of bisimple inverse monoids, in which the set of identity elements forms a subsemigroup, has been given by Cantos. -
Semigroup, Monoid and Group Models of Groupoid Identities 1. Introduction
Quasigroups and Related Systems 16 (2008), 25 ¡ 29 Semigroup, monoid and group models of groupoid identities Nick C. Fiala Abstract In this note, we characterize those groupoid identities that have a (nite) non-trivial (semigroup, monoid, group) model. 1. Introduction Denition 1.1. A groupoid consists of a non-empty set equipped with a binary operation, which we simply denote by juxtaposition. A groupoid G is non-trivial if jGj > 1, otherwise it is trivial.A semigroup is a groupoid S that is associative ((xy)z = x(yz) for all x; y; z 2 S). A monoid is a semigroup M possessing a neutral element e 2 M such that ex = xe = x for all x 2 M (the letter e will always denote the neutral element of a monoid). A group is a monoid G such that for all x 2 G there exists an inverse x¡1 such that x¡1x = xx¡1 = e.A quasigroup is a groupoid Q such that for all a; b 2 Q, there exist unique x; y 2 Q such that ax = b and ya = b.A loop is a quasigroup possessing a neutral element. A groupoid term is a product of universally quantied variables. A groupoid identity is an equation, the left-hand side and right-hand side of which are groupoid terms. By the words term and identity, we shall always mean groupoid term and groupoid identity, respectively. The letters s and t will always denote terms. We will say that an identity s = t has a (nite) non-trivial model if there exists a (nite) non-trivial groupoid G such that s = t is valid in G. -
Left Equalizer Simple Semigroups
LEFT EQUALIZER SIMPLE SEMIGROUPS 1 ATTILA NAGY Department of Algebra, Mathematical Institute Budapest University of Technology and Economics 1521 Budapest, PO Box 91 e-mail: [email protected] Abstract In this paper we characterize and construct semigroups whose right regular representation is a left cancellative semigroup. These semigroups will be called left equalizer simple semigroups. For a congruence ̺ on a semigroup S, let F[̺] denote the ideal of the semigroup algebra F[S] which determines the kernel of the extended homomorphism of F[S] onto F[S/̺] induced by the canonical homomorphism of S onto S/̺. We examine the right colons (F[̺] :r F[S]) = {a ∈ F[S] : F[S]a ⊆ F[̺]} in general, and in that special case when ̺ has the property that the factor semigroup S/̺ is left equalizer simple. 1 Introduction and motivation Let S be a semigroup. For an arbitrary element a of S, let ̺a denote the transformation of S defined by ̺a : s 7→ sa (s ∈ S). It is well known that θS = {(a,b) ∈ S × S : (∀x ∈ S) xa = xb} is a congruence on S; this congruence is the kernel of the homomorphism ϕ : a 7→ ̺a of S into the semigroup of all right translations of S. The homomorphism ϕ is called the right regular representation of S; this is faithful if and only if S is a left reductive semigroup (that is, whenever xa = xb for some a,b ∈ S and for all x ∈ S then a = b). For convenience (as in [3] or [4]), the semigroup ϕ(S) is also called the right regular representation of S. -
Non-Commutative Krull Monoids: a Divisor Theoretic Approach and Their
NON-COMMUTATIVE KRULL MONOIDS: A DIVISOR THEORETIC APPROACH AND THEIR ARITHMETIC ALFRED GEROLDINGER Abstract. A (not necessarily commutative) Krull monoid—as introduced by Wauters—is defined as a completely integrally closed monoid satisfying the ascending chain condition on divisorial two-sided ideals. We study the structure of these Krull monoids, both with ideal theoretic and with divisor theoretic methods. Among others we characterize normalizing Krull monoids by divisor theories. Based on these results we give a criterion for a Krull monoid to be a bounded factorization monoid, and we provide arithmetical finiteness results in case of normalizing Krull monoids with finite Davenport constant. 1. Introduction The arithmetic concept of a divisor theory has its origin in early algebraic number theory. Axiomatic approaches to more general commutative domains and monoids were formulated by Clifford [17], by Borewicz and Safareviˇc[8],ˇ and then by Skula [61] and Gundlach [33]. The theory of divisorial ideals was developed in the first half of the 20th century by Pr¨ufer, Krull and Lorenzen [56, 44, 45, 46, 48], and its presentation in the book of Gilmer [31] strongly influenced the development of multiplicative ideal theory. The concept of a commutative Krull monoid (defined as completely integrally closed commutative monoids satisfying the ascending chain condition on divisorial ideals) was introduced by Chouinard [16] 1981 in order to study the Krull ring property of commutative semigroup rings. Fresh impetus came from the theory of non-unique factorizations in the 1990s. Halter-Koch observed that the concept of monoids with divisor theory coincides with the concept of Krull monoids [34], and Krause [43] proved that a commutative domain is a Krull domain if and only if its multiplicative monoid of non-zero elements is a Krull monoid. -
Inverse Semigroups and Varieties of Finite Semigroups
JOURNAL OF ALGEBRA 110, 306323 (1987) inverse Semigroups and Varieties of Finite Semigroups S. W. MARGOLIS Computer Science, Fergvson Budding, Universiry of Nebraska, Lincoln, Nebraska 68588-0115 AND J. E. PIN LITP, 4 Place Jussreu, Tow 55-65, 75252 Paris Cedes 05, France Received November 13, 1984 This paper is the third part of a series of three papers devoted to the study of inverse monoids. It is more specifically dedicated to finite inverse monoids and their connections with formal languages. Therefore, except for free monoids, all monoids considered in this paper will be finite. Throughout the paper we have adopted the point of view of varieties of monoids, which has proved to be an important concept for the study of monoids. Following Eilenberg [2], a variety of monoids is a class of monoids closed under taking submonoids, quotients, and finite direct products. Thus, at first sight, varieties seem to be inadequate for studying inverse monoids since a submonoid of an inverse monoid is not inverse in general. To overcome this difficulty, we consider the variety Inv generated by inverse monoids and closed under taking submonoids, quotients, and finite direct products. Now inverse monoids are simply the regular monoids of this variety and we may use the powerful machinery of variety theory to investigate the algebraic structure of these monoids. Our first result states that Inv is the variety generated by one of the following classes of monoids. (a) Semidirect products of a semilattice by a group. (b) Extensions of a group by a semilattice. (c) Schiitzenberger products of two groups. -
Semigroups with Operation-Compatible Green’S Quasiorders
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Essex Research Repository SEMIGROUPS WITH OPERATION-COMPATIBLE GREEN'S QUASIORDERS ZSOFIA´ JUHASZ,´ ALEXEI VERNITSKI Abstract. We call a semigroup on which the Green's quasiorder ≤J (≤L, ≤R) is operation-compatible, a ≤J -compatible (≤L-compatible, ≤R-compatible) semigroup. We study the classes of ≤J -compatible, ≤L-compatible and ≤R-compatible semigroups, using the smallest operation-compatible quasiorders containing Green's quasiorders as a tool. We prove a number of results, including the following. The class of ≤L-compatible (≤R-compatible) semigroups is closed under taking homomorphic images. A regular periodic semigroup is ≤J -compatible if and only if it is a semilattice of simple semi- groups. Every negatively orderable semigroup can be embedded into a negatively orderable ≤J -compatible semigroup. 1. Introduction Green's relations L, R and J are one of the most important tools in studying the structure of semigroups. They can also be viewed from a less common angle: as being defined via quasiorders (or pre- orders), which we shall refer to as Green's quasiorders and denote by ≤L, ≤R and ≤J , respectively. Studying the properties of these qua- siorders is of interest, because of the importance of Green's relations and due to the fact that in a certain sense these associated quasiorders contain `more information' about a semigroup than Green's relations: given only a Green's quasiorder on a semigroup we can reconstruct the corresponding Green's relation, whereas the converse is not true.