Nine Chapters on the Semigroup Art

Total Page:16

File Type:pdf, Size:1020Kb

Nine Chapters on the Semigroup Art Alan J. Cain Nine Chapters on the Semigroup Art Lecture notes for a tour through semigroups Porto & Lisbon 2020 version 0.66.62 (2020-06-13) [A4 / Two-sided / Greyscale] 3b9596955641bc1af1e88645064dd8dc6c2cf041 : 000000005ee533ff To download the most recent version, and files suitable for colour or greyscale printing, or for viewing on tablets and ebook readers, visit http://www-groups.mcs.st-andrews.ac.uk/~alanc/pub/c_ semigroups/ • © 2012–20 Alan J. Cain ([email protected]) This work is licensed under the Creative Commons Attribu- tion–Non-Commercial–NoDerivs 4.0 International Licence. To view a copy of this licence, visit https://creativecommons.org/licenses/by-nc-nd/4.0/ Contents Preface v Prerequisites vii ◆ Acknowledgements vii Chapter 1 | Elementary semigroup theory 1 Basic concepts and examples 1 ◆ Generators and subsemi- groups 8 ◆ Binary relations 11 ◆ Orders and lattices 15 ◆ Homomorphisms 19 ◆ Congruences and quotients 20 ◆ Generating equivalences and congruences 22 ◆ Subdirect products 28 ◆ Actions 29 ◆ Cayley graphs 30 ◆ Exercises 32 ◆ Notes 34 Chapter 2 | Free semigroups & presentations 37 Alphabets and words 37 ◆ Universal property 38 ◆ Proper- ties of free semigroups 41 ◆ Semigroup presentations 42 ◆ Exercises 51 ◆ Notes 53 Chapter 3 | Structure of semigroups 55 Green’s relations 55 ◆ Simple and 0-simple semigroups 58 ◆ D-class structure 60 ◆ Inverses and D-classes 63 ◆ Schützenberger groups 65 ◆ Exercises 68 ◆ Notes 70 Chapter 4 | Regular semigroups 73 Completely 0-simple semigroups 75 ◆ Ideals and completely 0-simple semigroups 81 ◆ Completely simple semigroups 82 ◆ Completely regular semigroups 84 ◆ Left and right groups 86 ◆ Homomorphisms 88 ◆ Exercises 89 ◆ Notes 91 Chapter 5 | Inverse semigroups 93 Equivalent characterizations 93 ◆ Vagner–Preston theo- rem 97 ◆ The natural partial order 100 ◆ Clifford semi- groups 102 ◆ Free inverse semigroups 106 ◆ Exercises 116 ◆ Notes 119 Chapter 6 | Commutative semigroups 121 Cancellative commutative semigroups 121 ◆ Free commut- ative semigroups 123 ◆ Rédei’s theorem 125 ◆ Exercises 128 ◆ Notes 129 • iii Chapter 7 | Finite semigroups 131 Green’s relations and ideals 131 ◆ Semidirect and wreath products 133 ◆ Division 135 ◆ Krohn–Rhodes decomposition theorem 140 ◆ Exercises 147 ◆ Notes 148 Chapter 8 | Varieties & pseudovarieties 149 Varieties 149 ◆ Pseudovarieties 157 ◆ Pseudovarieties of semigroups and monoids 159 ◆ Free objects for pseudovari- eties 161 ◆ Projective limits 162 ◆ Pro-V semigroups 164 ◆ Pseudoidentities 167 ◆ Semidirect products of pseudovarie- ties 172 ◆ Exercises 173 ◆ Notes 174 Chapter 9 | Automata & finite semigroups 175 Finite automata and rational languages 175 ◆ Syntactic sem- igroups and monoids 184 ◆ Eilenberg correspondence 188 ◆ Schützenberger’s theorem 195 ◆ Exercises 201 ◆ Notes 202 Solutions to exercises 203 Bibliography 251 Index 255 List of Tables Table 8.1 Varieties of semigroups 156 Table 8.2 Varieties of monoids 156 Table 8.3 Varieties of semigroups with a unary operation −1 157 Table 8.4 S-pseudovarieties of semigroups 169 Table 8.5 M-pseudovarieties of monoids 169 Table 9.3 Varieties of rational ∗-languages 193 Table 9.4 Varieties of rational +-languages 193 • iv • Preface A preface is frequently a superior composition to the work itself ‘ — Isaac D’Israeli,’ ‘Prefaces’. In: Curiosities of Literature. • This course is a tour through selected areas of semi- group theory. There are essentially three parts: ◆ Chapters 1–3 study general semigroups, including presentations for semigroups and basic structure theory. ◆ Chapters 4–6 examine special classes: namely regular, inverse, and commutative semigroups. ◆ Chapters 7–9 study finite semigroups, their classification using pseu- dovarieties, and connections with the theory of automata and regular languages. The course is broad rather than deep. It is not intended to be comprehens- ive: it does not try to study (for instance) structure theory as deeply as Howie, Fundamentals of Semigroup Theory, pseudovarieties as deeply as Almeida, Finite Semigroups and Universal Algebra, or languages as deeply as Pin, Varieties of Formal Languages; rather, it samples highlights from each area. It should be emphasized that there is very little that is original in this course. It is heavily based on the treatments in these and other standard textbooks, as the bibliographic notes in each chapter make clear. The main novelty is in the selection and arrangement of material, the slightly slower pace, and the general policy of avoiding leaving proofs to the reader when the corresponding results are required for later proofs. Figure P.1 shows the dependencies between the chapters. At the end of each chapter, there are a number of exercises, intended to reinforce concepts introduced in the chapter, and also to explore some related topics that are not covered in the main text. The most important exercises are marked with a star ✴ . Solutions are supplied for all exercises. At the end of each chapter are bibliographic notes, which give sources and suggestions for further reading. Warnings against potential misunderstandings are marked (like this) with a ‘dangerous bend’ symbol, as per Bourbaki or Knuth. Important observations that are not potential misunderstandings per se are marked with an ‘exclamation’ symbol (like this). This course was originally delivered to master’s students at the Uni- • v Chapter 1 Elementary semigroup theory Chapter 2 Free semigroups & presentations Chapter 3 Structure of semigroups Chapter 4 Regular semigroups Chapter 5 Inverse semigroups Chapter 6 Commutative semigroups Chapter 7 Finite semigroups FIGURE P.1 Chapter 8 Chart of the dependencies Varieties & pseudovarieties between the chapters. Dotted arrows indicate that the Chapter 9 dependency is only in the Automata & finite semigroups exercises, not in the main text. versities of Porto and Santiago de Compostella. The course was covered during 56 hours of classes, which included lectures and discussions of the exercises. Revisions have increased the length of the notes, and about 70 hours of class time would now be required to cover them fully. These notes were heavily revised in 2013–15. Most of the main text is now stable, but Chapter 8 will be further revised, and further exercises will be added. At present, the index is limited to names and ‘named results’ only. There may be minor typesetting problems that arise from the ‘in-development’ status of the LuaLaTEX software and many of the required packages. The author welcomes any corrections, observations, or constructive criticisms; please send them to the email address on the copyright page. vi • Preface Prerequisites There are few formal prerequisites: general mathematical maturity is the main one. An understanding of the most basic concepts from elementary group theory is assumed, such as the definition of groups, cosets, and factor groups. Some knowledge of linear algebra will help with understanding certain examples, but is not vital. For Chapters 1 and 5, knowledge of the basic definitions of graph theory is assumed. Some basic topology is necessary to appreciate part of Chapter 8 fully (although most of the chapter can be understood without it, and the relevant sections can simply be skipped), and some background in universal algebra is useful, but not essential. For Chapter 9, some experience with formal language theory and automata is useful, but again not essential. Acknowledgements Attila Egri-Nagy, Darij Grinberg, Akihiko Koga, and Guil- herme Rito made valuable suggestions and indicated various errors. Some exercises were suggested by Victor Maltcev. Typos were pointed out by Nick Ham, Samuel Herman, José Manuel dos Santos dos Santos, and Alexandre Trocado. Many improvements are due to the students who took the first version of this course: Miguel Couto, Xabier García, and Jorge Soares. The imperfections that remain are my responsibility. The title alludes to 九章算術 (Jiuzhāngˇ Suànshù), Nine Chapters on the Mathematical Art. A. J. C. • Prerequisites • vii viii • Elementary semigroup theory 1 I use the word “elementary” in the sense ‘ in which professional mathematicians use it — G.H. Hardy, A Mathematician’s’ Apology, § 21. • A binary operation ∘ on a set 푆 is a map ∘ ∶ 푆 × 푆 → 푆. Binary operation This operation is associative if 푥 ∘ (푦 ∘ 푧) = (푥 ∘ 푦) ∘ 푧 for all elements 푥, 푦, 푧 ∈ 푆.A semigroup is a non-empty set equipped with an associative Semigroup binary operation. Semigroups are therefore one of the most basic types of algebraic structure. We could weaken the definition further by removing the as- sociativity condition and requiring only a binary operation on a set. A structure that satisfies this weaker condition is called a magma or group- oid. (These ‘groupoids’ are different from the category-theoretic notion of groupoid.) On the other hand, we can strengthen the definition by requiring an identity and inverses. Structures satisfying this stronger condition are of course groups. However, there are many more semigroups than groups. For instance, there are 5 essentially different groups with 8 elements (the cyclic group 퐶8, the direct products 퐶4 × 퐶2 and 퐶2 × 퐶2 × 퐶2, the dihed- ral group 퐷4, and the quaternion group 푄8), but there are 3 684 030 417 different (non-isomorphic) semigroups with 8 elements. Some authors define a semigroup as a (possibly empty) set equipped with ‘Empty semigroup’ an associative binary operation. That is, the empty set forms the ‘empty semigroup’. This has advantages from a category-theoretic viewpoint. Note, however, that other definitions must be adjusted if a semigroup can be empty. In these notes, semigroups are required to be non-empty. Basic concepts and examples Throughout this chapter, 푆 will denote a semigroup with operation ∘. Formally, we write (푆, ∘) to indicate that we are considering the set 푆 with the operation ∘, but we will only do this when we need to distinguish a particular operation. Unless we need to distinguish between • 1 different operations, we will often write 푥푦 instead of 푥∘푦 (where 푥, 푦 ∈ 푆) Multiplication, product and we will call the operation multiplication and the element 푥푦 (i.e. the result of applying the operation to 푥 and 푦) the product of the elements 푥 and 푦.
Recommended publications
  • Computational Techniques in Finite Semigroup Theory
    COMPUTATIONAL TECHNIQUES IN FINITE SEMIGROUP THEORY Wilf A. Wilson A Thesis Submitted for the Degree of PhD at the University of St Andrews 2018 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/16521 This item is protected by original copyright Computational techniques in finite semigroup theory WILF A. WILSON This thesis is submitted in partial fulfilment for the degree of Doctor of Philosophy (PhD) at the University of St Andrews November 2018 Declarations Candidate's declarations I, Wilf A. Wilson, do hereby certify that this thesis, submitted for the degree of PhD, which is approximately 64500 words in length, has been written by me, and that it is the record of work carried out by me, or principally by myself in collaboration with others as acknowledged, and that it has not been submitted in any previous application for any degree. I was admitted as a research student at the University of St Andrews in September 2014. I received funding from an organisation or institution and have acknowledged the funders in the full text of my thesis. Date: . Signature of candidate:. Supervisor's declaration I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date: . Signature of supervisor: . Permission for publication In submitting this thesis to the University of St Andrews we understand that we are giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby.
    [Show full text]
  • Equidivisible Pseudovarieties of Semigroups
    Pr´e-Publica¸c˜oes do Departamento de Matem´atica Universidade de Coimbra Preprint Number 16–05 EQUIDIVISIBLE PSEUDOVARIETIES OF SEMIGROUPS JORGE ALMEIDA AND ALFREDO COSTA Abstract: We give a complete characterization of pseudovarieties of semigroups whose finitely generated relatively free profinite semigroups are equidivisible. Be- sides the pseudovarieties of completely simple semigroups, they are precisely the pseudovarieties that are closed under Mal’cev product on the left by the pseudova- riety of locally trivial semigroups. A further characterization which turns out to be instrumental is as the non-completely simple pseudovarieties that are closed under two-sided Karnofsky-Rhodes expansion. Keywords: semigroup, equidivisible, pseudovariety, Karnofsky-Rhodes expansion, connected expansion, two-sided Cayley graph. AMS Subject Classification (2010): Primary 20M07, 20M05. 1. Introduction A pseudovariety of semigroups is a class of finite semigroups closed un- der taking subsemigroups, homomorphic images and finitary products. In the past few decades, pseudovarieties provided the main framework for the research on finite semigroups, motivated by Eilenberg’s correspondence the- orem between pseudovarieties and varieties of languages. In this context, the finitely generated relatively free profinite semigroups associated to each pseu- dovariety proved to be of fundamental importance. We assume the reader has some familiarity with this background. The books [19, 1] are indicated as supporting references. The paper [2] might also be useful for someone looking for a brief introduction. In this paper we are concerned with equidivisible relatively free profinite semigroups. A semigroup S is equidivisible if for every u,v,x,y ∈ S, the equality uv = xy implies that u = x and v = y, or that there is t ∈ S such that ut = x and v = ty, or such that xt = u and y = tv.
    [Show full text]
  • On Identities in Groups of Fractions of Cancellative Semigroups
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 133, Number 7, Pages 1873–1879 S 0002-9939(05)07903-7 Article electronically published on February 24, 2005 ON IDENTITIES IN GROUPS OF FRACTIONS OF CANCELLATIVE SEMIGROUPS S. V. IVANOV AND A. M. STOROZHEV (Communicated by Jonathan I. Hall) Abstract. To solve two problems of Bergman stated in 1981, we construct agroupG such that G contains a free noncyclic subgroup (hence, G satisfies no group identity) and G, as a group, is generated by its subsemigroup that satisfies a nontrivial semigroup identity. 1. Introduction AsemigroupS is called cancellative if for arbitrary a, b, x ∈ S either of equalities xa = xb, ax = bx implies that a = b. AsemigroupS is said to satisfy the left (resp. right) Ore condition if for arbitrary a, b ∈ S there are x, y ∈ S such that xa = yb (resp. ax = by). It is well known that a cancellative semigroup S with the left (or right) Ore condition embeds in a group F(S)=S−1S = SS−1 of its fractions (see [M53], [NT63], [CP67, Theorem 1.23]; recall that, in general, a cancellative semigroup need not embed in a group, see [M37]) and a group F(S)offractionsofS is unique in the sense that if G is a group such that G contains S and G, as a group, is generated by S,thenG is naturally isomorphic to F(S). In particular, if S is a cancellative semigroup satisfying a nontrivial identity, then S satisfies (both) Ore conditions and so S embeds in the group F(S) of its fractions.
    [Show full text]
  • Arxiv:1707.05940V1 [Math.OA] 19 Jul 2017 ..Aeaiiyo Eirusi Em Fc-Lers66 61 47 C*-Algebras of Terms in Semigroups Red of of Amenability Descriptions C*-Algebra 6.8
    SEMIGROUP C*-ALGEBRAS XIN LI Abstract. We give an overview of some recent developments in semigroup C*-algebras. Contents 1. Introduction 2 2. C*-algebrasgeneratedbyleftregularrepresentations 3 3. Examples 4 3.1. The natural numbers 4 3.2. Positive cones in totally ordered groups 4 3.3. Monoids given by presentations 5 3.4. Examples from rings in general, and number theory in particular 8 3.5. Finitely generated abelian cancellative semigroups 9 4. Preliminaries 9 4.1. Embedding semigroups into groups 9 4.2. Graph products 11 4.3. Krull rings 14 5. C*-algebras attached to inverse semigroups, partial dynamical systems, and groupoids 16 5.1. Inverse semigroups 16 5.2. Partial dynamical systems 22 5.3. Etale´ groupoids 26 5.4. The universal groupoid of an inverse semigroup 29 5.5. InversesemigroupC*-algebrasasgroupoidC*-algebras 30 5.6. C*-algebras of partial dynamical systems as C*-algebras of partial transformation groupoids 33 arXiv:1707.05940v1 [math.OA] 19 Jul 2017 5.7. The case of inverse semigroups admitting an idempotent pure partial homomorphism to a group 36 6. Amenability and nuclearity 37 6.1. Groups and groupoids 37 6.2. Amenability for semigroups 40 6.3. Comparing reduced C*-algebras for left cancellative semigroups and their left inverse hulls 42 6.4. C*-algebrasgeneratedbysemigroupsofprojections 47 6.5. The independence condition 54 6.6. Construction of full semigroup C*-algebras 61 6.7. Crossed product and groupoid C*-algebra descriptions of reduced semigroup C*-algebras 63 6.8. Amenability of semigroups in terms of C*-algebras 66 1 2 XIN LI 6.9.
    [Show full text]
  • A Characterization of Seminormal C-Monoids
    Bollettino dell’Unione Matematica Italiana https://doi.org/10.1007/s40574-019-00194-9 A characterization of seminormal C-monoids Alfred Geroldinger1 · Qinghai Zhong1 Received: 27 September 2018 / Accepted: 30 January 2019 © The Author(s) 2019 Abstract It is well-known that a C-monoid is completely integrally closed if and only if its reduced class semigroup is a group and if this holds, then the C-monoid is a Krull monoid and the reduced class semigroup coincides with the usual class group of Krull monoids. We prove that a C-monoid is seminormal if and only if its reduced class semigroup is a union of groups. Based on this characterization we establish a criterion (in terms of the class semigroup) when seminormal C-monoids are half-factorial. Keywords Krull monoids · C-monoids · Seminormal · Class semigroups · Half-factorial Mathematics Subject Classification 20M13 · 13A05 · 13A15 · 13F05 · 13F45 1 Introduction A C-monoid H is a submonoid of a factorial monoid, say H ⊂ F,suchthatH × = H ∩ F× and the reduced class semigroup is finite. A commutative ring is a C-ring if its multiplicative monoid of regular elements is a C-monoid. Every C-monoid is Mori (i.e., v-noetherian), its complete integral closure H is a Krull monoid with finite class group C(H),andthe conductor (H : H) is non-trivial. Conversely, every Mori domain R with non-zero conductor f = (R : R), for which the residue class ring R/f and the class group C(R) are finite, is a C-domain ([10, Theorem 2.11.9]), and these two finiteness conditions are equivalent to being a C-domain for non-local semilocal noetherian domains ([23, Corollary 4.5]).
    [Show full text]
  • Bisimple Semigroups
    /-BISIMPLE SEMIGROUPS BY R. J. WARNE Let S be a semigroup and let Es denote the set of idempotents of S. As usual Es is partially ordered in the following fashion: if e,feEs, efíf if and only if ef=fe = e. Let /denote the set of all integers and let 1° denote the set of nonnegative integers. A bisimple semigroup Sis called an 7-bisimple semigroup if and only if Es is order isomorphic to 7 under the reverse of the usual order. We show that S is an 7-bisimple semigroup if and only if S^Gx Ixl, where G is a group, under the multiplication (g, a, b)(h, c, d) = (gfb-}c.chab-cfb-c.d, a,b + d-c) if b ^ c, = (fc~-\,ag<xc~''fc-b,bh,a+c-b, d) if c ^ b, where a is an endomorphism of G, a0 denoting the identity automorphism of G, and for me Io, ne I, /o,n=e> the identity of G while if m>0, fim.n = un + i"m~1un + 2am-2- ■ -un + (m.X)aun + m, where {un : ne/} is a collection of elements of G with un = e, the identity of G, if n > 0. If we let G = {e}, the one element group, in the above multiplication we obtain S=IxI under the multiplication (a, b)(c, d) = (a + c —r, b + d—r). We will denote S under this multiplication by C*, and we will call C* the extended bicyclic semigroup. C* is the union of the chain I of bicyclic semigroups C.
    [Show full text]
  • Semigroups of I-Quotients
    Semigroups of I-quotients Nassraddin Ghroda A Thesis Submitted for the Degree of PhD University of York Department of Mathematics August 2011 TTIOAR tr.Tror-SITY ..11B2ARY VAT, .1.01.0qmannimer.....f Abstract Let Q be an inverse semigroup. A subsemigroup S of Q is a left I-order in Q or Q is a semigroup of left I-quotients of S, if every element in Q can be written as a—l b where a, b E S and a' is the inverse of a in the sense of inverse semigroup theory. If we insist on a and b being 7Z-related in Q, then we say that S is straight in Q and Q is a semigroup of straight left I-quotients of S. We give a theorem which determines when two semigroups of straight left I- quotients of given semigroup are isomorphic. Clifford has shown that, to any right cancellative monoid with the (LC) condition, we can associate an inverse hull. By saying that a semigroup S has the (LC) condition we mean for any a, b E S there is an element c E S such that SanSb = Sc. According to our notion, we can regard such a monoid as a left I-order in its inverse hull. We extend this result to the left ample case where we show that, if a left ample semigroup has the (LC) condition, then it is a left I-order in its inverse hull. The structure of semigroups which are semilattices of bisimple inverse monoids, in which the set of identity elements forms a subsemigroup, has been given by Cantos.
    [Show full text]
  • Semigroup, Monoid and Group Models of Groupoid Identities 1. Introduction
    Quasigroups and Related Systems 16 (2008), 25 ¡ 29 Semigroup, monoid and group models of groupoid identities Nick C. Fiala Abstract In this note, we characterize those groupoid identities that have a (nite) non-trivial (semigroup, monoid, group) model. 1. Introduction Denition 1.1. A groupoid consists of a non-empty set equipped with a binary operation, which we simply denote by juxtaposition. A groupoid G is non-trivial if jGj > 1, otherwise it is trivial.A semigroup is a groupoid S that is associative ((xy)z = x(yz) for all x; y; z 2 S). A monoid is a semigroup M possessing a neutral element e 2 M such that ex = xe = x for all x 2 M (the letter e will always denote the neutral element of a monoid). A group is a monoid G such that for all x 2 G there exists an inverse x¡1 such that x¡1x = xx¡1 = e.A quasigroup is a groupoid Q such that for all a; b 2 Q, there exist unique x; y 2 Q such that ax = b and ya = b.A loop is a quasigroup possessing a neutral element. A groupoid term is a product of universally quantied variables. A groupoid identity is an equation, the left-hand side and right-hand side of which are groupoid terms. By the words term and identity, we shall always mean groupoid term and groupoid identity, respectively. The letters s and t will always denote terms. We will say that an identity s = t has a (nite) non-trivial model if there exists a (nite) non-trivial groupoid G such that s = t is valid in G.
    [Show full text]
  • Left Equalizer Simple Semigroups
    LEFT EQUALIZER SIMPLE SEMIGROUPS 1 ATTILA NAGY Department of Algebra, Mathematical Institute Budapest University of Technology and Economics 1521 Budapest, PO Box 91 e-mail: [email protected] Abstract In this paper we characterize and construct semigroups whose right regular representation is a left cancellative semigroup. These semigroups will be called left equalizer simple semigroups. For a congruence ̺ on a semigroup S, let F[̺] denote the ideal of the semigroup algebra F[S] which determines the kernel of the extended homomorphism of F[S] onto F[S/̺] induced by the canonical homomorphism of S onto S/̺. We examine the right colons (F[̺] :r F[S]) = {a ∈ F[S] : F[S]a ⊆ F[̺]} in general, and in that special case when ̺ has the property that the factor semigroup S/̺ is left equalizer simple. 1 Introduction and motivation Let S be a semigroup. For an arbitrary element a of S, let ̺a denote the transformation of S defined by ̺a : s 7→ sa (s ∈ S). It is well known that θS = {(a,b) ∈ S × S : (∀x ∈ S) xa = xb} is a congruence on S; this congruence is the kernel of the homomorphism ϕ : a 7→ ̺a of S into the semigroup of all right translations of S. The homomorphism ϕ is called the right regular representation of S; this is faithful if and only if S is a left reductive semigroup (that is, whenever xa = xb for some a,b ∈ S and for all x ∈ S then a = b). For convenience (as in [3] or [4]), the semigroup ϕ(S) is also called the right regular representation of S.
    [Show full text]
  • Non-Commutative Krull Monoids: a Divisor Theoretic Approach and Their
    NON-COMMUTATIVE KRULL MONOIDS: A DIVISOR THEORETIC APPROACH AND THEIR ARITHMETIC ALFRED GEROLDINGER Abstract. A (not necessarily commutative) Krull monoid—as introduced by Wauters—is defined as a completely integrally closed monoid satisfying the ascending chain condition on divisorial two-sided ideals. We study the structure of these Krull monoids, both with ideal theoretic and with divisor theoretic methods. Among others we characterize normalizing Krull monoids by divisor theories. Based on these results we give a criterion for a Krull monoid to be a bounded factorization monoid, and we provide arithmetical finiteness results in case of normalizing Krull monoids with finite Davenport constant. 1. Introduction The arithmetic concept of a divisor theory has its origin in early algebraic number theory. Axiomatic approaches to more general commutative domains and monoids were formulated by Clifford [17], by Borewicz and Safareviˇc[8],ˇ and then by Skula [61] and Gundlach [33]. The theory of divisorial ideals was developed in the first half of the 20th century by Pr¨ufer, Krull and Lorenzen [56, 44, 45, 46, 48], and its presentation in the book of Gilmer [31] strongly influenced the development of multiplicative ideal theory. The concept of a commutative Krull monoid (defined as completely integrally closed commutative monoids satisfying the ascending chain condition on divisorial ideals) was introduced by Chouinard [16] 1981 in order to study the Krull ring property of commutative semigroup rings. Fresh impetus came from the theory of non-unique factorizations in the 1990s. Halter-Koch observed that the concept of monoids with divisor theory coincides with the concept of Krull monoids [34], and Krause [43] proved that a commutative domain is a Krull domain if and only if its multiplicative monoid of non-zero elements is a Krull monoid.
    [Show full text]
  • Inverse Semigroups and Varieties of Finite Semigroups
    JOURNAL OF ALGEBRA 110, 306323 (1987) inverse Semigroups and Varieties of Finite Semigroups S. W. MARGOLIS Computer Science, Fergvson Budding, Universiry of Nebraska, Lincoln, Nebraska 68588-0115 AND J. E. PIN LITP, 4 Place Jussreu, Tow 55-65, 75252 Paris Cedes 05, France Received November 13, 1984 This paper is the third part of a series of three papers devoted to the study of inverse monoids. It is more specifically dedicated to finite inverse monoids and their connections with formal languages. Therefore, except for free monoids, all monoids considered in this paper will be finite. Throughout the paper we have adopted the point of view of varieties of monoids, which has proved to be an important concept for the study of monoids. Following Eilenberg [2], a variety of monoids is a class of monoids closed under taking submonoids, quotients, and finite direct products. Thus, at first sight, varieties seem to be inadequate for studying inverse monoids since a submonoid of an inverse monoid is not inverse in general. To overcome this difficulty, we consider the variety Inv generated by inverse monoids and closed under taking submonoids, quotients, and finite direct products. Now inverse monoids are simply the regular monoids of this variety and we may use the powerful machinery of variety theory to investigate the algebraic structure of these monoids. Our first result states that Inv is the variety generated by one of the following classes of monoids. (a) Semidirect products of a semilattice by a group. (b) Extensions of a group by a semilattice. (c) Schiitzenberger products of two groups.
    [Show full text]
  • Semigroups with Operation-Compatible Green’S Quasiorders
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Essex Research Repository SEMIGROUPS WITH OPERATION-COMPATIBLE GREEN'S QUASIORDERS ZSOFIA´ JUHASZ,´ ALEXEI VERNITSKI Abstract. We call a semigroup on which the Green's quasiorder ≤J (≤L, ≤R) is operation-compatible, a ≤J -compatible (≤L-compatible, ≤R-compatible) semigroup. We study the classes of ≤J -compatible, ≤L-compatible and ≤R-compatible semigroups, using the smallest operation-compatible quasiorders containing Green's quasiorders as a tool. We prove a number of results, including the following. The class of ≤L-compatible (≤R-compatible) semigroups is closed under taking homomorphic images. A regular periodic semigroup is ≤J -compatible if and only if it is a semilattice of simple semi- groups. Every negatively orderable semigroup can be embedded into a negatively orderable ≤J -compatible semigroup. 1. Introduction Green's relations L, R and J are one of the most important tools in studying the structure of semigroups. They can also be viewed from a less common angle: as being defined via quasiorders (or pre- orders), which we shall refer to as Green's quasiorders and denote by ≤L, ≤R and ≤J , respectively. Studying the properties of these qua- siorders is of interest, because of the importance of Green's relations and due to the fact that in a certain sense these associated quasiorders contain `more information' about a semigroup than Green's relations: given only a Green's quasiorder on a semigroup we can reconstruct the corresponding Green's relation, whereas the converse is not true.
    [Show full text]