An Assessment of Flywheel High Power Energy Storage Technology for Hybrid Vehicles

Total Page:16

File Type:pdf, Size:1020Kb

An Assessment of Flywheel High Power Energy Storage Technology for Hybrid Vehicles ORNL/TM-2010/280 An Assessment of Flywheel High Power Energy Storage Technology for Hybrid Vehicles December 2011 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source. Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Web site http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ORNL/TM-2010/280 Materials Science and Technology Division An Assessment of Flywheel High Power Energy Storage Technology for Hybrid Vehicles James G. R. Hansen David U. O’Kain * * David U. O’Kain is retired from ORNL and is participating in this assessment as a consultant to ORNL December 2011 Prepared for Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy, Department of Energy Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6285 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 This page intentionally left blank. ii TABLE OF CONTENTS LIST OF TABLES .....................................................................................................................v LIST OF FIGURES ................................................................................................................ vii LIST OF ABBREVIATIONS AND ACRONYMS ................................................................ ix 1. EXECUTIVE SUMMARY ..................................................................................................1 2. INTRODUCTION ................................................................................................................4 3. BACKGROUND ..................................................................................................................5 3.1 Flywheel High Power Energy Storage for Hybrid Vehicles .......................................... 5 3.2 Hybrid Electric Versus All-Mechanical Flywheel System Implementation .................. 6 3.3 Energy Stored and Delivered ......................................................................................... 7 3.4 Flywheel Stresses and Materials .................................................................................... 9 4. STATE OF THE ART IN FLYWHEEL HIGH POWER ENERGY STORAGE ..............13 4.1 Maturity of Flywheel Systems ..................................................................................... 19 4.2 Flywheel System Performance Parameters .................................................................. 22 4.3 Flywheel Systems Compared to Batteries and Ultracapacitors ................................... 27 5. FLYWHEEL SAFETY AND CONTAINMENT ...............................................................32 5.1 Composite Rotors Have Different Failure Characteristics ........................................... 32 5.2 Design Approaches To Reduce Flywheel Risk ............................................................ 33 5.3 Flywheel Standard for Safe and Reliable Operation for Space Applications .............. 36 6. CONCLUSIONS.................................................................................................................37 7. RECOMMENDATIONS ....................................................................................................38 8. REFERENCES ...................................................................................................................39 APPENDIX A – SUMMARY INFORMATION PROVIDED BY DEVELOPERS OF FLYWHEEL ENERGY STORAGE SYSTEMS ................................................................. A-1 APPENDIX B – FIA ENVIRONMENTALLY SUSTAINABLE MOTOR SPORT POLICY .................................................................................................................................B-1 APPENDIX C – HOOP STRESS IN A THIN ROTATING RING ......................................C-1 APPENDIX D - THICK RIGHT CIRCULAR CYLINDER RIMS AND ROTORS WITH VARIABLE THICKNESS ................................................................................................... D-1 APPENDIX E - EVALUATION OF THE ENERGY STORAGE REQUIREMENT FOR A LIGHT DUTY VEHICLE ................................................................................................. E-1 iii This page intentionally left blank. iv LIST OF TABLES Table 2-1. Flywheel requirements ............................................................................................ 4 Table 3-1. Max specific energies for thin ring flywheels made of different materials ........... 10 Table 4-1. Nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles ........................................................................................................... 13 Table 4-2. Respondent organizations ..................................................................................... 14 Table 4-3. Level of maturity of flywheel systems ................................................................. 15 Table 4-4. Performance summary of flywheels for hybrid vehicle applications ................... 17 Table 4-5. Flywheels compared with USABC Power Assist HEV Battery Goals ................. 30 Table 4-6. Flywheels compared with USABC Plug-in HEV Battery Goals .......................... 30 Table 4-7. Flywheels compared with USABC Goals for Advanced Batteries for EVs ......... 31 Table 4-8. Flywheels compared with FreedomCar ultracapacitor end-of-life requirements .. 31 v This page intentionally left blank. vi LIST OF FIGURES Figure 3-1. Comparison of typical hybrid electric and mechanical energy storage and power delivery systems ........................................................................................................................ 7 Figure 3-2. Delivered energy versus speed ratio ...................................................................... 8 Figure 3-3. Idealized flywheel – rotating thin ring with wall thickness t ................................. 9 Figure 3-4. Flywheel rim specific energy vs radius ratio and velocity ................................... 11 Figure 3-5. Flywheel rim energy density vs radius ratio and velocity .................................... 12 Figure 4-1. Peak power versus delivered energy .................................................................... 24 Figure 4-2. Specific power versus specific energy ................................................................. 25 Figure 4-3. Power density versus energy density ................................................................... 26 vii This page intentionally left blank. viii LIST OF ABBREVIATIONS AND ACRONYMS AC Alternating Current AFRL Air Force Research Laboratory AIAA American Institute of Aeronautics and Astronautics ANSI American National Standards Institute BEV Battery Electric Vehicle CCM Centre for Concepts in Mechatronics CFT Clutched Flywheel Transmission CRADA Cooperative Research and Development Agreement CVT Continuously Variable Transmission DARPA Defense Advanced Research Projects Agency DC Direct Current DOE U.S. Department of Energy DOT U.S. Department of Transportation EV Electric Vehicle FHSPV Flywheel Hybrid System for Premium Vehicles FIA Fédération Internationale de l'Automobile FMECA Failure Mode Effects and Criticality Analysis HEV Hybrid Electric Vehicle ICE Internal Combustion Engine IGBT Insulated Gate Bipolar Transistor ISS International Space Station g Acceleration of gravity, 9.81 m/s2 J Joules KERS Kinetic Energy Recovery System LLNL Lawrence Livermore National Laboratory kW Kilowatts kWh Kilowatt-hours LEESS Lower Energy-Energy Storage System MLC Magnetically Loaded Composite MTBF Mean Time Between Failures NEV Neighborhood Electric Vehicle OEM Original Equipment Manufacturer ORNL Oak Ridge National Laboratory PAHEV Power Assist Hybrid Electric Vehicle PHEV Plug-In Hybrid Electric Vehicle PM Permanent Magnet PNGV Partnership for a New Generation of Vehicles RPM (rpm) Revolutions per Minute SPU Surge Power Unit UPS Uninterruptible Power Supply USABC United States
Recommended publications
  • Installation Guide R2.8 CM2220 R101B
    Installation Guide R2.8 CM2220 R101B Copyright© 2018 Bulletin 5504137 Cummins Inc. Printed 10-JANUARY-2018 All rights reserved To buy Cummins Parts and Service Manuals, Training Guides, or Tools go to our website at https://store.cummins.com Foreword Thank you for depending on Cummins® products. If you have any questions about this product, please contact your Cummins® Authorized Repair Location. You can also visit cumminsengines.com or quickserve.cummins.com for more information, or go to locator.cummins.com for Cummins® distributor and dealer locations and contact information. Read and follow all safety instructions. See the General Safety Instructions in Section i - Introduction. To buy Cummins Parts and Service Manuals, Training Guides, or Tools go to our website at https://store.cummins.com Table of Contents Section Introduction ........................................................................................................................................................ i Engine and System Identification .................................................................................................................... E Pre-Install Preparation ...................................................................................................................................... 1 Installation .......................................................................................................................................................... 2 Pre-Start Preparation ........................................................................................................................................
    [Show full text]
  • Theory of Machines
    THEORY OF MACHINES For MECHANICAL ENGINEERING THEORY OF MACHINES & VIBRATIONS SYLLABUS Theory of Machines: Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope. Vibrations: Free and forced vibration of single degree of freedom systems, effect of damping; vibration isolation; resonance; critical speeds of shafts. ANALYSIS OF GATE PAPERS Exam Year 1 Mark Ques. 2 Mark Ques. Total 2003 6 - 15 2004 8 - 18 2005 6 - 14 2006 9 - 21 2007 1 6 13 2008 1 3 7 2009 2 4 10 2010 5 3 11 2011 1 3 7 2012 2 1 4 2013 3 2 7 2014 Set-1 2 3 8 2014 Set-2 2 3 8 2014 Set-3 2 4 10 2014 Set-4 2 3 8 2015 Set-1 1 2 5 2015 Set-2 2 2 6 2015 Set-3 3 3 9 2016 Set-1 2 3 8 2016 Set-2 1 2 5 2016 Set-3 3 3 9 2017 Set-1 1 3 7 2017 Set-2 2 4 10 2018 Set-1 2 3 8 2018 Set-2 2 1 4 © Copyright Reserved by Gateflix.in No part of this material should be copied or reproduced without permission CONTENTS Topics Page No 1. MECHANICS 1.1 Introduction 01 1.2 Kinematic chain 05 1.3 3-D Space Mechanism 07 1.4 Bull Engine / Pendulum Pump 12 1.5 Basic Instantaneous centers in the mechanism 15 1.6 Theorem of Angular Velocities 16 1.7 Mechanical Advantage of the mechanism 22 2.
    [Show full text]
  • Theoretical and Experimental Investigation of a Kinematically Driven Flywheel for Reducing Rotational Vibrations
    11th International Conference on Vibration Problems Z. Dimitrovova´ et.al. (eds.) Lisbon, Portugal, 9–12 September 2013 THEORETICAL AND EXPERIMENTAL INVESTIGATION OF A KINEMATICALLY DRIVEN FLYWHEEL FOR REDUCING ROTATIONAL VIBRATIONS M. Pfabe*1, C. Woernle1 1University of Rostock fmathias.pfabe, [email protected] Keywords: rotational vibration, torque compensation, driven flywheel, gear wheel mechanism, combustion engine Abstract. Modern turbocharged internal combustion engines induce high fluctuating torques at the crankshaft. They result in rotational crankshaft vibrations that are transferred both to the gearbox and the auxiliary engine systems. To reduce the rotational crankshaft vibrations, a passive mechanical device for compensating fluctuating engine torques has been developed. It comprises a flywheel that is coupled to the crankshaft by means of a non-uniformly transmit- ting mechanism. The kinematical transfer behavior of the mechanism is synthesized in such a manner that the inertia torque of the flywheel compensates at least one harmonic of the fluc- tuating engine torque. The degree of non-uniformity of the mechanism has to be adapted to the actual load and rotational speed of the engine. As a solution, a double-crank mechanism with cycloidal-crank input and adjustable crank length is proposed and analyzed. Parameter synthesis is achieved by means of a simplified mechanical model that calculates the required transfer function for a given engine torque. To analyze the overall dynamic behavior, the device is modeled in a multibody domain. Simulation results are validated using an electrically driven test rig. Comparisons between simulation and experimental results demonstrate the potential of the device. M. Pfabe, C. Woernle 1 Introduction The strong demand for more efficient automobiles forces the development of so-called down- sized combustion engines with high specific power.
    [Show full text]
  • Piston Crown Markings All in the Piston Crown
    PISTON CROWN MARKINGS ALL IN THE PISTON CROWN The different piston crown markings and what they mean: Looking at a piston, the markings on the piston crown attract attention. In addition to dimensional and clearance specifications, most pistons show information about their fitting orientation. The pistons are marked with fitting orientations according to specifications from our production customers – the engine manufacturers. Many customers – this means also many different requests and specifications for piston markings. This multitude of markings may appear to the onlooker somewhat like Egyptian hieroglyphs. For this reason, we are giving you here an overview of the most important markings and their meaning: SYMBOL FITTING ORIENTATION IN ENGINE EXAMPLE Steering side (opposite power output/clutch) MB, VW, Opel, BMW Flywheel (power output/clutch) Peugeot, Opel Notch Steering side (opposite power output/clutch) Perkins, Opel (cast-in) Steering side (opposite power output/clutch) „AV“ stands for the AV Citroen, Renault French word „avant“ = in front Flywheel (power output/clutch) „AR“ stands for the French word „ar- Citroen, Renault AR rière“ = at the back Flywheel (power output/clutch) „V“ stands for the French word „vo- V Renault, Peugeot lant“ = flywheel Flywheel (power output/clutch) Renault, Peugeot, Citroen FRONT Steering side (opposite power output/clutch) GM, Perkins vorn Steering side (opposite power output/clutch) Hatz, Liebherr Abluft Exhaust-air side for some air cooled engine Deutz, MWM Special case for two-stroke engines: direction exhaust manifold Zündapp, Husqvarna Special case for some V engines: direction engine centre MB Why is it important to observe the fitting orientation for pistons? Pistons with asymmetric crown shape or pistons that are designed with different sizes of valve pockets in the piston head can only be fitted to the engine in a particular orientation.
    [Show full text]
  • CORVETTE C7/C6/C5/C4 the World's Fastest C7s and C6s Are Powered by Procharger
    ProCharger® Intercooled Supercharger Systems for CORVETTE C7/C6/C5/C4 The World's Fastest C7s and C6s are Powered by ProCharger “ When you blast past a Lamborghini like it was standing still, there is great satisfaction to be had in knowing that you did it effortlessly and for significantly less money.”–Vette CORVETTE CONTENTS Proven Performance, Reliability and Drivability .........................4 Street/Strip Systems C7 (LT1) .......................................................8 C7 Z06 (LT4) ...................................................10 C6 (LS3) ......................................................12 C6 Z06 (LS7) ..................................................14 C6 (LS2) ......................................................16 C5 (LS1) ......................................................18 C5 Z06 (LS6) ..................................................19 C4 (LT1/LT4) ...................................................20 C4 (TPI L98) ...................................................21 Thermal Advantage/Intercooling Leadership ..........................22 Centrifugal Innovation ..............................................28 P-1X/D-1X Superchargers ...........................................34 Race Systems Bypass Valves ................................................35 Racing Domination ............................................36 F-Series ......................................................37 Building the Power. 40 Leadership Through Innovation ......................................42 Word on the Street .................................................44
    [Show full text]
  • ZF Microcommand User Manual
    INSTALLATION, OPERATION AND TROUBLESHOOTING MM9110 - MICROCOMMANDER USER MANUAL MARINE PROPULSION SYSTEMS COPYRIGHT Released by After Sales dept. Data subject to change without notice. We decline all responsibility for the use of non-original components or accessories wich have not been tested and submitted for approval. =)UHVHUYHVDOOULJKWVUHJDUGLQJWKHVKRZQWHFKQLFDOLQIRUPDWLRQLQFOXGLQJWKHULJKWWRÀOHLQGXVWULDOSURSHUW\ULJKWDSSOLFD - tions and the industrial property rights resulting from these in Germany and abroad. © ZF Friedrichshafen AG, 2014. 2 EN 3340.758.008a - 2014-10 TABLE OF CONTENT Table of Contents SW15623.0P MicroCommander User Manual..................................................... 1 Table of Contents .................................................................................3 Preface ...............................................................................................15 Revision List .......................................................................................19 1 Introduction........................................................................................21 1.1 Basic Theory of Operation............................................................................................................... 21 1.2 System Features.............................................................................................................................. 21 2 Operation ...........................................................................................23 2.1 DC Power On..................................................................................................................................
    [Show full text]
  • The Modeling for Flywheel Mass with Parameters of Crank & Linkage in Engine
    ISSN 2664-4150 (Print) & ISSN 2664-794X (Online) South Asian Research Journal of Engineering and Technology Abbreviated Key Title: South Asian Res J Eng Tech | Volume-3 | Issue-3 | May-Jun -2021 | DOI: 10.36346/sarjet.2021.v03i03.008 Review Article The Modeling for Flywheel Mass with Parameters of Crank & Linkage in Engine Run Xu* Yantai University, WenJing College, Mechanical Electricity Department,Yantai 264005, China *Corresponding Author Run Xu Article History Received: 19.05.2021 Accepted: 23.06.2021 Published: 28.06.2021 Abstract: The mass of flywheel will incline as the punch speed inclines; it will decline as radius inclines. It would incline when the punch mould mass inclines. So it is chosen that big radius and small mould mass for saving cost of material and machine. The biggest mass of flywheel is about 10Kg at 0.1m of radius and 7Kg of piston at the time of 0.06s and crank length R=75mm and linkage length L=255mm. So it is important for us to choose the piston mass. If it is 5Kg the biggest one will 10Kg at the time of 0.06s and crank length R=80mm and linkage length L=245mm then choosing crank length is second factor. Keywords: Modelling; flywheel; piston mass; radius; engine; parameter; cost control. 1. INTRODUCTION relieved impact and speed, it has many places to apply in modern industrial field. So it needs to be investigated in detail with a certain parameters for its wide usefulness in many machines. So in this study the flywheel mass with the rotation speed and its radius is modeled to find a certain intrinsic relations for process of motor housing punch.
    [Show full text]
  • INTERNAL COMBUSTION ENGINE COOLING STRATEGIES: THEORY and TEST John Chastain Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 12-2006 INTERNAL COMBUSTION ENGINE COOLING STRATEGIES: THEORY AND TEST John Chastain Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Engineering Mechanics Commons Recommended Citation Chastain, John, "INTERNAL COMBUSTION ENGINE COOLING STRATEGIES: THEORY AND TEST" (2006). All Theses. 23. https://tigerprints.clemson.edu/all_theses/23 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. INTERNAL COMBUSTION ENGINE COOLING STRATEGIES: THEORY AND TEST A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Mechanical Engineering by John Howard Chastain, Jr. December 2006 Accepted by: Dr. John Wagner, Committee Chair Dr. Richard Figliola Dr. Darren Dawson ABSTRACT Advanced automotive thermal management systems integrate electro-mechanical components for improved fluid flow and thermodynamic control action. Progressively, the design of ground vehicle heating and cooling management systems require analytical and empirical models to establish a basis for real time control algorithms. One of the key elements in this computer controlled system is the smart thermostat valve which replaces the traditional wax-based unit. The thermostat regulates the coolant flow through the radiator and/or engine bypass to control the heat exchange between the radiator’s coolant fluid and the ambient air. The electric water pump improves upon this concept by prescribing the coolant flow rate based on the engine’s overall operation and the driver commands rather than solely on the crankshaft speed.
    [Show full text]
  • Engine and Powerplant Optimization and Vehicle and Trailer Efficiency
    Truck Technology Assessment Workshop Trucks and TRU Session September 2, 2014 Vehicle /Trailer Efficiency 1 Background ◦ Phase 1 and Phase 2 Standards ◦ Potential for Further GHG Reduction Key Engine and Vehicle Technologies for Various Vehicle Classes Key Technology Descriptions GHG/NOx Tradeoff Conclusions and Next Steps Contacts 2 3 Technologies being evaluated to set stringency of Phase 2 standards. Phase 1 GHG standards serve as the baseline for the technology assessment. ◦ Handout contains tables of Phase 1 engine and vehicle standards. 4 Category Phase 1 Potential from Difference Technology 2010 baseline Reductions from (based on NAS*) 2010 baseline HD Tractor- Up to 23% 48% 25% Trailer (Class 7-8) HD Vocational 6-9% 19-33% 13-24% (Class 3-8) HD Pick-ups 12-17% 32% 15-20% and vans (Class 2b) * Does not include Hybrid or Electric (covered in Hybrid Technology Assessment category) 5 6 DIESEL ENGINE TECHNOLOGIES VEHICLE EFFICIENCY TECHNOLOGIES 1. Advanced Transmissions/Engine 1. Aerodynamics Downspeeding 2. Lightweighting 2. Advanced Combustion Cycles 3. Low-Rolling Resistance Tires 3. Waste Heat Recovery 4. Automatic Tire Inflation System 4. Engine Downsizing 5. Vehicle Speed Limiters 5. Stop-Start 6. Connected Vehicles (Platooning, 6. Automatic Neutral Idle predictive cruise control) 7. Combustion and Fuel Injection 7. Axle Efficiency Optimization 8. Idle Reduction 8. Higher-Efficiency Aftertreatment 9. Improved Air Conditioning System 9. Reduced Friction and Auxiliary Load Reduction 10. Air Handling Improvements 11. Variable Valve Actuation/ Cylinder De- activation GASOLINE ENGINE TECHNOLOGIES (Class 2b and 3) 1. Lean Burn Gas Direct injection (GDI) 2. Stoichiometric GDI 7 8 Three main categories: ◦ Heavy Duty Tractors (Class 7-8) ◦ Heavy Duty Vocational (Class 3-8) ◦ Heavy-Duty Pick-ups and Vans (Class 2b-3) 9 Aerodynamic Losses: 85kWh 21% Engine Losses: 240kWh 60% Rolling Resistance Losses: Drivetrain Losses: 51 kWh Auxilary Loads: 9 kWh 15kWh 13% 2% 4% Based on Data from U.S.
    [Show full text]
  • Advanced Vehicle Powertrain Design Using Model-Based Design David Andrew Ord
    Advanced Vehicle Powertrain Design using Model-Based Design David Andrew Ord Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Chair: Douglas J. Nelson Alexander Leonessa John B. Ferris May 5, 2014 Blacksburg, VA Keywords: model-based design, hybrid electric vehicle, plug-in, architecture selection, greenhouse gases, petroleum, fuel economy, powertrain modeling Copyright 2014, David Andrew Ord ADVANCED VEHICLE POWERTRAIN DESIGN USING MODEL-BASED DESIGN David Andrew Ord ABSTRACT The use of alternative fuels and advanced powertrain technologies has been increasing over the past few years as vehicle emissions and fuel economy have become prominent in both manufacturer needs and consumer demands. With more hybrids emerging from all automotive manufacturers, the use of computer modeling has quickly taken a lead in the testing of these innovative powertrain designs. Although on-vehicle testing remains an important part of the design process, modeling and simulation is proven to be an invaluable tool that can be applied anywhere from preliminary powertrain design to controller software validation. The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech is applying for participation in the next Advanced Vehicle Technology Competition. EcoCAR 3 is a new four year competition sponsored by the Department of Energy and General Motors with the intention of promoting sustainable energy in the automotive sector. The goal of the competition is to guide students from universities in North America to create new and innovative technologies to reduce the environmental impact of modern day transportation.
    [Show full text]
  • Training Event Classes Details List
    TRAINING EVENT CLASSES DETAILS LIST Sponsor Classes with Bullets Instructor(s) Session 1 Category WTI BMW Fuel Trim Eric Scharping 1 BMW Short Term Fuel Trim (OBDII) Long Term Fuel Trim (OBDII) Relationship between Oxygen Sensor and Fuel Trim Fuel Trim fault and Control Limits European Fuel Trim (additive/multiplicative) Additive and Multiplicative Fuel Trim Relationship BMW Fuel Trim Fault Specs Fuel Trim Diagnosis - Where to start Case Studies - Different Failure Scenarios (OBDII) Review Test Techniques and Apply What Was Discussed Earlier Case Studies - Different Failure Scenarios (BMW specific) Review Test Techniques and Apply What was Discussed Earlier WTI BMW Motorsports 4 Luke Murray 1 BMW Covering all “F” Chassis Motorsports Vehicles including M3, M4, M5, and M6 A look at What BMW Learned From the E70 MX5 Functional Understanding of Engine Mechanical Features From: S63 S63TU S55 Engine Management Electrical System Overview Design Overview of "M" Specific Chassis System Features Description of Changes to Body Electronics Used on Motorsports Vehicles Autologic/WTI BMW Diesel Technology Brian Chaffe 1 BMW Covering M57, N57, and N47 Mechanical Design Overview Air Management Page 1 of 49 *Classes may be subject to changes Rev 03102016 TRAINING EVENT CLASSES DETAILS LIST Swirl Flaps EGR Turbo Systems Crankcase Ventilation Common Rail Fuel Systems Glowplug System Diagnostic and Service Advice WTI Mini Drivetrain Drew Wolfe 1 Mini 5 and 6 speed Manual Transmissions Clutch and Flywheel Designs CVT Diagnostics
    [Show full text]
  • Accepted Version.PDF
    Citation for published version: Burke, RD, Brace, CJ, Stark, R & Pegg, I 2015, 'Investigation into the benefits of reduced oil flows in internal combustion engines', International Journal of Engine Research, vol. 16, no. 4, pp. 503-517. https://doi.org/10.1177/1468087414533954 DOI: 10.1177/1468087414533954 Publication date: 2015 Document Version Peer reviewed version Link to publication Burke, R D ; Brace, C J ; Stark, Roland ; Pegg, Ian. / Investigation into the benefits of reduced oil flows in internal combustion engines. In: International Journal of Engine Research. 2015 ; Vol. 16, No. 4. pp. 503-517. (C) IMechE 2014. Reprinted by permission of SAGE Publications. University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 Investigation into the Benefits of Reduced Oil Flows in Internal Combustion Engines R.D. Burke1, C.J. Brace1, R Stark2 and I. Pegg2 1. Department of Mechanical Engineering, University of Bath, UK 2. Dunton Technical Centre, Ford Motor Company, UK Contact author: R. Burke, Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK, +44 (0)1225 383481, [email protected] Abstract The engine lubrication system is a vital element for engine health but causes a parasitic load on the engine which increases the fuel consumption: this load can be reduced by matching the oil flow to lubricating requirements using a variable displacement oil pump (VDOP).
    [Show full text]