The Galactic Evolution of Phosphorus⋆
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New M, L, and T Dwarf Companions to Nearby Stars from the Wide-Field Infrared Survey Explorer∗
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors The Astrophysical Journal, 760:152 (9pp), 2012 December 1 doi:10.1088/0004-637X/760/2/152 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. NEW M, L, AND T DWARF COMPANIONS TO NEARBY STARS FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER∗ Kevin L. Luhman1,2, Nicholas P. Loutrel1, Nicholas S. McCurdy1, Gregory N. Mace3, Nicole D. Melso1, Kimberly M. Star1, Michael D. Young4, Ryan C. Terrien1, Ian S. McLean3, J. Davy Kirkpatrick5, and Katherine L. Rhode4 1 Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA; [email protected] 2 Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA 3 UCLA Division of Astronomy and Astrophysics, Los Angeles, CA 90095, USA 4 Department of Astronomy, Indiana University, Swain West 319, 727 East Third Street, Bloomington, IN 47405, USA 5 Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125, USA Received 2012 August 24; accepted 2012 October 15; published 2012 November 16 ABSTRACT We present 11 candidate late-type companions to nearby stars identified with data from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All Sky Survey (2MASS). Eight of the candidates are likely to be companions based on their common proper motions with the primaries. The remaining three objects are rejected as companions, one of which is a free-floating T7 dwarf. -
A Near-Infrared Interferometric Survey of Debris-Disk Stars: VII
A near-infrared interferometric survey of debris- disk stars: VII. The hot-to-warm dust connection Item Type Article; text Authors Absil, O.; Marion, L.; Ertel, S.; Defrère, D.; Kennedy, G.M.; Romagnolo, A.; Le Bouquin, J.-B.; Christiaens, V.; Milli, J.; Bonsor, A.; Olofsson, J.; Su, K.Y.L.; Augereau, J.-C. Citation Absil, O., Marion, L., Ertel, S., Defrère, D., Kennedy, G. M., Romagnolo, A., Le Bouquin, J.-B., Christiaens, V., Milli, J., Bonsor, A., Olofsson, J., Su, K. Y. L., & Augereau, J.-C. (2021). A near-infrared interferometric survey of debris-disk stars: VII. The hot-to-warm dust connection. Astronomy and Astrophysics, 651. DOI 10.1051/0004-6361/202140561 Publisher EDP Sciences Journal Astronomy and Astrophysics Rights Copyright © ESO 2021. Download date 05/10/2021 23:39:44 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/661189 A&A 651, A45 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140561 & © ESO 2021 Astrophysics A near-infrared interferometric survey of debris-disk stars VII. The hot-to-warm dust connection? O. Absil1,?? , L. Marion1, S. Ertel2,3 , D. Defrère4 , G. M. Kennedy5, A. Romagnolo6, J.-B. Le Bouquin7, V. Christiaens8 , J. Milli7 , A. Bonsor9 , J. Olofsson10,11 , K. Y. L. Su3 , and J.-C. Augereau7 1 STAR Institute, Université de Liège, 19c Allée du Six Août, 4000 Liège, Belgium e-mail: [email protected] 2 Large Binocular Telescope Observatory, 933 North Cherry Avenue, Tucson, AZ 85721, USA 3 Steward Observatory, Department of Astronomy, University of Arizona, 993 N. -
Arxiv:1107.2657V1 [Astro-Ph.GA] 13 Jul 2011 S-L Nu82mtlsoea Aaa,Porme386.D-01 Programme Paranal, at Ca Telescope E
10 Astronomy (DOI: will be inserted by hand later) & c ESO 2021 Astrophysics The Galactic evolution of phosphorus ⋆ E. Caffau⋆⋆,1,2 P. Bonifacio,2 R. Faraggiana,3 M. Steffen4,2 1 Zentrum f¨ur Astronomie der Universit¨at Heidelberg, Landessternwarte, K¨onigstuhl 12, 69117 Heidelberg, Germany 2 GEPI, Observatoire de Paris, CNRS, Universit´eParis Diderot, Place Jules Janssen, 92190 Meudon, France 3 Universit`adegli Studi di Trieste, via G.B. Tiepolo 11, 34143 Trieste, Italy 4 Leibniz-Institut f¨ur Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany Received ...; Accepted ... ABSTRACT Context. As a galaxy evolves, its chemical composition changes and the abundance ratios of different elements are powerful probes of the underlying evolutionary processes. Phosphorous is an element whose evolution has remained quite elusive until now, because it is difficult to detect in cool stars. The infrared weak P i lines of the multiplet 1, at 1050-1082 nm, are the most reliable indicators of the presence of phosphorus. The availability of CRIRES at VLT has permitted access to this wavelength range in stellar spectra. Aims. We attempt to measure the phosphorus abundance of twenty cool stars in the Galactic disk. Methods. The spectra are analysed with one-dimensional model-atmospheres computed in Local Thermodynamic Equilibrium (LTE). The line formation computations are performed assuming LTE. Results. The ratio of phosphorus to iron behaves similarly to sulphur, increasing towards lower metallicity stars. Its ratio with respect to sulphur is roughly constant and slightly larger than solar, [P/S]=0.10 0.10. Conclusions. We succeed in taking an important step towards the understan± ding of the chemical evolution of phosphorus in the Galaxy. -