The Association of Cytochrome P450 Genetic Polymorphisms With

Total Page:16

File Type:pdf, Size:1020Kb

The Association of Cytochrome P450 Genetic Polymorphisms With The Pharmacogenomics Journal (2014) 14, 263–271 & 2014 Macmillan Publishers Limited All rights reserved 1470-269X/14 www.nature.com/tpj ORIGINAL ARTICLE The association of cytochrome P450 genetic polymorphisms with sulfolane formation and the efficacy of a busulfan-based conditioning regimen in pediatric patients undergoing hematopoietic stem cell transplantation CRS Uppugunduri1,2, MA Rezgui3, PH Diaz1,2, AK Tyagi1,2, J Rousseau3, Y Daali2,4, M Duval3,5, H Bittencourt3,5, M Krajinovic3,5,6 and M Ansari1,2 Cytochrome P450 enzymes (CYPs) and flavin-containing monooxygenases (FMOs) likely have a role in the oxidation of intermediate metabolites of busulfan (Bu). In vitro studies to investigate the involvement of these enzymes are cumbersome because of the volatile nature of the intermediate metabolite tetrahydrothiophene (THT) and the lack of sensitive quantitation methods. This study explored the association between the CYP2C9, CYP2C19, CYP2B6 and FMO3 genotypes and sulfolane (Su, a water soluble metabolite of Bu) plasma levels in children undergoing hematopoietic stem cell transplantation (HSCT). The relationship between these genotypes and the effectiveness of myeloablative conditioning was also analyzed. Sixty-six children receiving an intravenous Bu-based myeloablative conditioning regimen were genotyped for common functional variant alleles in CYP2C9 (*2 and *3), CYP2C19 (*2 and *17), FMO3 (rs2266780, rs2266782 and rs1736557) and CYP2B6 (*5 and *9). The plasma levels of Bu and its metabolite Su were measured after the ninth Bu dose in a subset of 44 patients for whom plasma samples were available. The ratio of Bu to Su was considered the metabolic ratio (MR) and was compared across the genotype groups. Higher MRs were observed in CYP2C9*2 and *3 allele carriers (mean±s.d.: 7.8±3.6 in carriers vs 4.4±2.2 in non-carriers; P ¼ 0.003). An increased incidence of graft failure was observed among patients with an MR45 compared with those with MR values o5 (20% vs 0%; P ¼ 0.02). In contrast, a significantly higher incidence of relapse and graft failure (evaluated as event-free survival) was observed in patients with malignant disease who carried CYP2B6 alleles with reduced function on both chromosomes compared with carriers of at least one normal allele (100% vs 40%; P ¼ 0.0001). These results suggest that CYP2C9 has a role in the oxidation reactions of THT and indicate that it may be possible to predict the efficacy of Bu-based myeloablative conditioning before HSCT on the basis of CYP genotypes and Bu MRs. The Pharmacogenomics Journal (2014) 14, 263–271; doi:10.1038/tpj.2013.38; published online 29 October 2013 Keywords: busulfan; CYP2C9; graft failure; HSCT; metabolic ratio; sulfolane INTRODUCTION several studies have investigated the relationship between Busulfan (Bu) is a bi-functional alkylating agent and a widely genetic variants of the GSTA1 and GSTM1 genes and the 6–11 used component of myeloablative and non-myeloablative con- pharmacokinetics of Bu. ditioning regimens before hematopoietic stem cell transplantation Cytochrome P450 enzymes (CYPs) are likely involved in the 12 (HSCT) in children.1 Bu is metabolized via conjugation with oxidation reactions of THT to Su. However, data are not currently glutathione (GSH), which is predominantly catalyzed by available to specify which CYPs are involved. Limited data are glutathione-S-transferase alpha 1.2 The GSH conjugate available with regard to the inter-individual variability of CYP dissociates to tetrahydrothiophene (THT), which is oxidized to activity and expression levels in children. On the basis of the sulfolane (Su) and subsequently to 3-hydroxy Su.3,4 The metabolic observations of altered expression and the liver volumes of fetal fate of Bu is briefly outlined in Figure 1. Inter-individual variability and adult livers, CYP activity might differ in children and adults or in Bu plasma levels occurs when orally or intravenously remain similar for all age groups (for example, CYP3A4/3A5, administered; this administration requires drug concentration 1A2).13–15 Nevertheless, the presence of a significant proportion of monitoring to adjust the dosage and maintain the Bu levels within CYP2C isoforms in the livers of younger children suggests their the therapeutic range.5,6 Observed variability might be attributed importance with regard to the metabolism of certain drugs and to enzyme activity that alters the metabolism of Bu.7 Because GST the oxidation of Bu intermediate metabolites.15 CYPs, particularly isoforms are predominantly involved in the metabolism of Bu, CYP2C9 and CYP2C19, participate in the oxidation of sulfur in 1Department of Pediatrics, Onco-Hematology unit, University Hospital of Geneva, Geneva, Switzerland; 2CANSEARCH Research Laboratory, Geneva Medical University, Geneva, Switzerland; 3Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; 4Department of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland; 5Department of Pediatrics, Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada and 6Department of Pharmacology, University of Montreal, Montreal, Quebec, Canada. Correspondence: Dr CRS Uppugunduri, CANSEARCH Research Laboratory, Geneva Medical University, 64 Avenue De La Roseraie, Geneva 1205, Switzerland or Dr M Ansari, Department of Pediatrics, Onco-Hematology Unit; Geneva University Hospital, Rue Willy Donze´ 6, Geneva CH-1211, Switzerland. E-mail: [email protected] or [email protected] Received 30 May 2013; revised 6 August 2013; accepted 9 September 2013; published online 29 October 2013 Busulfan metabolic ratio and CYP2C9 genotypes CRS Uppugunduri et al 264 Figure 1. Metabolic fate of busulfan. Cytochrome P450 enzymes likely have a role in the formation of sulfolane; however, the specific subfamily of enzymes involved is unknown. CYPs, cytochrome P450 isoform enzymes; CTH, cystathionine gamma-lyase; DPEP, dipeptidase/ cysteinylglycine; FMO, flavin-containing monooxygenase; GGT, gamma-glutamyl transferase; GSTA1, GSTM1 and GSTP1, glutathione S transferase enzymes, subtypes alpha1, mu1 and pi1, respectively; NAT, N-acetyl transferase. THT; CYP2B6 and CYP3A5 are also involved to a certain extent.16,17 samples collected at 15, 30, 60, 120 and 180 min after the first dose.23 The In addition, flavin-containing monooxygenases (FMOs) likely pharmacokinetic parameters of the first dose were estimated using non- catalyze the oxidation reactions of Bu metabolites.18,19 FMO1 compartmental analysis (Winnolin, Pharsight Corporation, Version 3.1), and the dosage was adjusted at the fifth administration to achieve a target and FMO3 are predominantly expressed in fetal and adult liver, À 1 respectively. Three non-synonymous variants at frequencies steady-state concentration (Css) of 600–900 ng ml . The hospital ethics committee approved the study protocol, and all patients/parents signed an higher than 5% were reported in the FMO3 of Caucasians from informed consent form (IRB number: 2450). This study was fully registered the HapMap project, whereas FMO1 does not have polymorphic 20 in a public trials registry as part of an ongoing prospective EBMT alleles in the coding gene region. In vitro studies of the multicenter study (registered at Clinical Trials.gov, NCT01257854). Blood functional role of specific CYP isoforms in the oxidation of Su and samples before conditioning were collected for genomic DNA extraction THT are difficult because of the volatile nature of THT and the lack and banking at CHU Sainte Justine’s. Plasma samples for MR analysis (after of highly sensitive analytical methods to quantify the metabolites. ninth dose) were available for 44 out of the 66 patients. Plasma samples Recently, we developed and validated a method to quantify Su in were collected between 10am and midday after infusion of the ninth dose the plasma of patients receiving Bu to facilitate investigations of of Bu, as a similar schedule was followed for Bu administration the role of Bu metabolites.21 This method was sensitive enough to (0800–1000 h). The time point for MR measurement was chosen on the basis of a pilot study that showed higher levels of Su in the plasma after detect in vivo Su levels from the plasma of patients receiving the infusion of the ninth dose.21 Table 1 displays the overall patient higher doses of Bu. Using this approach to estimate Su levels, we demographics and disease characteristics. Cyclosporine was administered explored the association between CYP2C9, CYP2C19, FMO3 and to all patients as prophylaxis for graft versus host disease (GVHD); steroids CYP2B6 genotypes and the metabolic ratio (MR) of Bu/Su after the were added to the cyclosporine regimen of 39 patients, and methotrexate ninth dose. We also explored the association between the Bu MRs was added to the cyclosporine regimen of 26 patients. Anti-thymocyte and CYP genotypes with regard to the effectiveness of globulin was administered to 78.8% (n ¼ 52) of the patients. Ursodeoxy- myeloablative conditioning. cholic acid was administered to all patients as a prophylaxis for VOD. Table 2 displays the demographics of the patients included in the MR analysis (n ¼ 44). Of the 44 patients included in the MR analysis, one MATERIALS AND METHODS received phenytoin, two received midazolam and the remainder received Patient samples and treatment regimen lorazepam for seizure prophylaxis. All patients received a Bu-based myeloablative conditioning regimen, with cyclophosphamide (CY) added
Recommended publications
  • Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles.
    [Show full text]
  • Pgx - Cytochrome P450 2C19 (CYP2C19)
    PGx - Cytochrome P450 2C19 (CYP2C19) This assay is used to identify patients who may be at risk for altered metabolism of drugs that are modified by CYP2C19. Cytochrome P450 (CYP) isozyme 2C19 is responsible for phase I metabloism of about 40% of drugs including: clopidogrel, phenytoin, diazepam, R-warfarin, tamoxifen, some antidepressants, proton pump inhibitors, and antimalarials. Testing Method and Background This test utilizes the eSensor® 2C19 Genotyping Test is an in vitro diagnostic for the detection and genotyping a panel of variants involved with enzyme metabolism using isolated genomic DNA. The eSensor® technology uses a solid-phase electrochemical method for determining the genotyping status. The eSensor® 2C19 Genotyping Test is for research use only (RUO). CYP2C19 drug metabolism varies among individuals depending on specific genotype. The CYP2 family has many single- nucleotide polymorphisms (SNPs). CYP2C19 gene is located on chromosome 10q23.33 and is highly polymorphic, which can lead to large individual variation in CYP2C19 enzyme activity and related drug response phenotypes and/or undesired adverse drug events. Specifically, the CYP2C19 gene has more than 34 variant alleles identified, which in turn affects the pharmacokinetics of many drugs. Highlights of PGx - Cytochrome P450 2C19 (CYP2C19) Targeted Region CYP2C19: Detects 11 variants/polymorphisms 681G>A (*2) 636G>A (*3) 1A>G (*4) 1297C>T (*5) 395G>A (*6) 19294T>A (*7) 358T>C (*8) 431G>A (*9) 680C>T (*10) 1228C>T (*13) -806C>T (*17) Ordering Information Get started
    [Show full text]
  • Polymorphic Human Sulfotransferase 2A1 Mediates the Formation of 25-Hydroxyvitamin
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/01/17/dmd.117.078428.DC1 1521-009X/46/4/367–379$35.00 https://doi.org/10.1124/dmd.117.078428 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:367–379, April 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Polymorphic Human Sulfotransferase 2A1 Mediates the Formation of 25-Hydroxyvitamin D3-3-O-Sulfate, a Major Circulating Vitamin D Metabolite in Humans s Timothy Wong, Zhican Wang, Brian D. Chapron, Mizuki Suzuki, Katrina G. Claw, Chunying Gao, Robert S. Foti, Bhagwat Prasad, Alenka Chapron, Justina Calamia, Amarjit Chaudhry, Erin G. Schuetz, Ronald L. Horst, Qingcheng Mao, Ian H. de Boer, Timothy A. Thornton, and Kenneth E. Thummel Departments of Pharmaceutics (T.W., Z.W., B.D.C., M.S., K.G.C., C.G., B.P., Al.C., J.C., Q.M., K.E.T.), Medicine and Kidney Research Institute (I.H.d.B.), and Biostatistics (T.A.T.), University of Washington, Seattle, Washington; Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., South San Francisco, California (Z.W.); Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (R.S.F.); St. Jude Children’s Research Hospital, Memphis, Tennessee Downloaded from (Am.C., E.G.S.); and Heartland Assays LLC, Ames, Iowa (R.L.H.) Received September 1, 2017; accepted January 10, 2018 ABSTRACT dmd.aspetjournals.org Metabolism of 25-hydroxyvitamin D3 (25OHD3) plays a central role in with the rates of dehydroepiandrosterone sulfonation. Further analysis regulating the biologic effects of vitamin D in the body.
    [Show full text]
  • Frequencies of Clinically Important CYP2C19 and CYP2D6 Alleles Are Graded Across Europe
    European Journal of Human Genetics (2020) 28:88–94 https://doi.org/10.1038/s41431-019-0480-8 ARTICLE Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe 1,2 2 1 Jelena Petrović ● Vesna Pešić ● Volker M. Lauschke Received: 15 March 2019 / Revised: 3 July 2019 / Accepted: 17 July 2019 / Published online: 29 July 2019 © The Author(s) 2019. This article is published with open access Abstract CYP2C19 and CYP2D6 are important drug-metabolizing enzymes that are involved in the metabolism of around 30% of all medications. Importantly, the corresponding genes are highly polymorphic and these genetic differences contribute to interindividual and interethnic differences in drug pharmacokinetics, response, and toxicity. In this study we systematically analyzed the frequency distribution of clinically relevant CYP2C19 and CYP2D6 alleles across Europe based on data from 82,791 healthy individuals extracted from 79 original publications and, for the first time, provide allele confidence intervals for the general population. We found that frequencies of CYP2D6 gene duplications showed a clear South-East to North- West gradient ranging from <1% in Sweden and Denmark to 6% in Greece and Turkey. In contrast, an inverse distribution was observed for the loss-of-function alleles CYP2D6*4 and CYP2D6*5. Similarly, frequencies of the inactive CYP2C19*2 allele were graded from North-West to South-East Europe. In important contrast to previous work we found that the increased activity allele CYP2C19*17 was most prevalent in Central Europe (25–33%) with lower prevalence in Mediterranean-South Europeans (11–24%). In summary, we provide a detailed European map of common CYP2C19 and CYP2D6 variants and find that frequencies of the most clinically relevant alleles are geographically graded reflective of Europe’s migratory history.
    [Show full text]
  • Cytochrome P450 2C19 Loss-Of-Function Polymorphism Is Associated with an Increased Treatment-Related Mortality in Patients Undergoing Allogeneic Transplantation
    Bone Marrow Transplantation (2007) 40, 659–664 & 2007 Nature Publishing Group All rights reserved 0268-3369/07 $30.00 www.nature.com/bmt ORIGINAL ARTICLE Cytochrome P450 2C19 loss-of-function polymorphism is associated with an increased treatment-related mortality in patients undergoing allogeneic transplantation AH Elmaagacli, M Koldehoff, NK Steckel, R Trenschel, H Ottinger and DW Beelen Department of Bone Marrow Transplantation, University Hospital of Essen, Essen, Germany The polymorphic gene expression of CYP2C19 causes characterized enzymes with a large number of genetic individual variability in drug metabolism and thereby in polymorphisms is cytochrome P450 (CYP) 2C19.1 Pre- pharmacologic and toxicologic responses. We genotyped vious studies on CYP2C19 using probe drugs such as 286 patients and their donors for the CYP2C19 gene who S-mephenytoin showed that individuals could be classified underwent allogeneic transplantation for various diseases into three different groups: poor metabolizers (PMs), and analyzed their outcome. Patients were classified as: intermediate metabolizers (IMs) and extensive metabolizers poor metabolizers (PMs; 3.1%), intermediate metaboli- (EMs). PMs have a genetically determined absence of active zers (IMs; 24.5%) and extensive metabolizers (EMs; enzymes, which is the cause for a slower metabolism of 72.5%). Patients genotyped as PMs had significant higher active drugs and is associated with prolonged side effects.1 hepato- and nephrotoxicities compared to IMs or EMs. If prodrugs are applied, the metabolism in their active form Maximum bilirubin and serum creatinine levels measured is delayed and reduced effectiveness may occur. Among the after transplant were approximately twofold higher than drugs which are metabolized by CYP2C19 enzymes are those of EMs or IMs.
    [Show full text]
  • The Effect of CYP2B6, CYP2D6, and CYP3A4 Alleles on Methadone Binding: a Molecular Docking Study
    Hindawi Publishing Corporation Journal of Chemistry Volume 2013, Article ID 249642, 7 pages http://dx.doi.org/10.1155/2013/249642 Research Article The Effect of CYP2B6, CYP2D6, and CYP3A4 Alleles on Methadone Binding: A Molecular Docking Study Nik Nur Syazana Bt Nik Mohamed Kamal,1 Theam Soon Lim,1 Gee Jun Tye,1 Rusli Ismail,2 and Yee Siew Choong1 1 Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia 2 Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence should be addressed to Yee Siew Choong; [email protected] Received 7 May 2013; Revised 23 July 2013; Accepted 5 August 2013 Academic Editor: Hugo Verli Copyright © 2013 Nik Nur Syazana Bt Nik Mohamed Kamal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Current methadone maintenance therapy (MMT) is yet to ensure 100% successful treatment as the optimum dosage has yet to be determined. Overdose leads to death while lower dose causes the opioid withdrawal effect. Single-nucleotide polymorphisms (SNP) in cytochrome P450s (CYPs), the methadone metabolizers, have been showen to be the main factor for the interindividual variability of methadone clinical effects. In this study, we investigated the effect of SNPs in three major methadone metabolizers ∗ ∗ ∗ (CYP2B6, CYP2D6, and CYP3A4) on methadone binding affinity. Results showed that CYP2B6 11, CYP2B6 12, CYP2B6 18,and ∗ CYP3A4 12 have significantly higher binding affinity to R-methadone compared to wild type.
    [Show full text]
  • Simulation of Physicochemical and Pharmacokinetic Properties of Vitamin D3 and Its Natural Derivatives
    pharmaceuticals Article Simulation of Physicochemical and Pharmacokinetic Properties of Vitamin D3 and Its Natural Derivatives Subrata Deb * , Anthony Allen Reeves and Suki Lafortune Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA; [email protected] (A.A.R.); [email protected] (S.L.) * Correspondence: [email protected] or [email protected]; Tel.: +1-224-310-7870 or +1-305-760-7479 Received: 9 June 2020; Accepted: 20 July 2020; Published: 23 July 2020 Abstract: Vitamin D3 is an endogenous fat-soluble secosteroid, either biosynthesized in human skin or absorbed from diet and health supplements. Multiple hydroxylation reactions in several tissues including liver and small intestine produce different forms of vitamin D3. Low serum vitamin D levels is a global problem which may origin from differential absorption following supplementation. The objective of the present study was to estimate the physicochemical properties, metabolism, transport and pharmacokinetic behavior of vitamin D3 derivatives following oral ingestion. GastroPlus software, which is an in silico mechanistically-constructed simulation tool, was used to simulate the physicochemical and pharmacokinetic behavior for twelve vitamin D3 derivatives. The Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) Predictor and PKPlus modules were employed to derive the relevant parameters from the structural features of the compounds. The majority of the vitamin D3 derivatives are lipophilic (log P values > 5) with poor water solubility which are reflected in the poor predicted bioavailability. The fraction absorbed values for the vitamin D3 derivatives were low except for calcitroic acid, 1,23S,25-trihydroxy-24-oxo-vitamin D3, and (23S,25R)-1,25-dihydroxyvitamin D3-26,23-lactone each being greater than 90% fraction absorbed.
    [Show full text]
  • PGX CYP2C19 Genotyping
    PGX CYP2C19 Genotyping For detection of CYP2C19 variants affecting drug metabolism Clinical Background CYP2C19 isan isoenzyme of the CYP450 superfamily that metabolizes and eliminates common prescription drugs, including anti-convulsants, anti-depressants, proton pump inhibitors, and antithrombotics (clopidogrel/Plavix®), as well as anti-malaria and anti-ulcer drugs. Metabolizer phenotypes can be predicted by the CYP2C19 genotype The clinical impact of the CYP2C19 genotype is influenced by whether a drug is activated or inactivated by CYP2C19, involvement of other metabolic pathways, and other non-genetic factors (eg, other medications) Epidemiology CYP2C19 variant frequency is ethnicity dependent. The poor metabolizer phenotype (caused by two non-functional CYP2C19 alleles) is present in 4% of Caucasians, 5% of African Americans, and up to 25% of Asians. Genetics The CYP2C19 gene has nine exons and is located on chromosome 10q23.33. Inheritance is autosomal recessive. Penetrance is drug-dependent. Indications for Ordering Pre-therapeutic testing to identify individuals who should avoid, or may require unconventional doses of medications metabolized by CYP2C19. Interpretation If no CYP2C19 variants are detected, this suggests *1 allele and normal enzymatic activity. If one decreased functional or non-functional CYP2C19 variant is detected, intermediate-to- normal CYP2C19 enzymatic activity is predicted. If two non-functional variants are present on opposite alleles, this predicts low CYP2C19 enzymatic activity and a poor metabolizer phenotype. Indiana University School of Medicine Division of Diagnostic Genomics - Pharmacogenomics Laboratory 975 West Walnut Street, IB247 Indianapolis, IN. 46202-5251 Tel. 317-274-0143 Genotype results should be interpreted in context of the individual clinical situation. Consultation with a clinical pharmacy professional is recommended.
    [Show full text]
  • Diazepam Therapy and CYP2C19 Genotype
    NLM Citation: Dean L. Diazepam Therapy and CYP2C19 Genotype. 2016 Aug 25. In: Pratt VM, McLeod HL, Rubinstein WS, et al., editors. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012-. Bookshelf URL: https://www.ncbi.nlm.nih.gov/books/ Diazepam Therapy and CYP2C19 Genotype Laura Dean, MD1 Created: August 25, 2016. Introduction Diazepam is a benzodiazepine with several clinical uses, including the management of anxiety, insomnia, muscle spasms, seizures, and alcohol withdrawal. The clinical response to benzodiazepines, such as diazepam, varies widely between individuals (1, 2). Diazepam is primarily metabolized by CY2C19 and CYP3A4 to the major active metabolite, desmethyldiazepam. Approximately 3% of Caucasians and 15 to 20% of Asians have reduced or absent CYP2C19 enzyme activity (“poor metabolizers”). In these individuals, standard doses of diazepam may lead to a higher exposure to diazepam. The FDA-approved drug label for diazepam states that “The marked inter-individual variability in the clearance of diazepam reported in the literature is probably attributable to variability of CYP2C19 (which is known to exhibit genetic polymorphism; about 3-5% of Caucasians have little or no activity and are “poor metabolizers”) and CYP3A4” (1). Drug: Diazepam Diazepam is used in the management of anxiety disorders or for the short-term relief of the symptoms of anxiety. In acute alcohol withdrawal, diazepam may provide symptomatic relief from agitation, tremor, delirium tremens, and hallucinations. Diazepam is also useful as an adjunct treatment for the relief of acute skeletal muscle spasms, as well as spasticity caused by upper motor neuron disorders (3). There are currently 16 benzodiazepines licensed by the FDA.
    [Show full text]
  • Variation in CYP2A6 Activity and Personalized Medicine
    Journal of Personalized Medicine Review Variation in CYP2A6 Activity and Personalized Medicine Julie-Anne Tanner 1,2 and Rachel F. Tyndale 1,2,3,* 1 Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada; [email protected] 2 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada 3 Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada * Correspondence: [email protected]; Tel.: +1-416-978-6374; Fax: +1-416-978-6395 Academic Editor: Stephen B. Liggett Received: 7 October 2017; Accepted: 27 November 2017; Published: 1 December 2017 Abstract: The cytochrome P450 2A6 (CYP2A6) enzyme metabolizes several clinically relevant substrates, including nicotine—the primary psychoactive component in cigarette smoke. The gene that encodes the CYP2A6 enzyme is highly polymorphic, resulting in extensive interindividual variation in CYP2A6 enzyme activity and the rate of metabolism of nicotine and other CYP2A6 substrates including cotinine, tegafur, letrozole, efavirenz, valproic acid, pilocarpine, artemisinin, artesunate, SM-12502, caffeine, and tyrosol. CYP2A6 expression and activity are also impacted by non-genetic factors, including induction or inhibition by pharmacological, endogenous, and dietary substances, as well as age-related changes, or interactions with other hepatic enzymes, co-enzymes, and co-factors. As variation in CYP2A6 activity is associated with smoking behavior, smoking cessation, tobacco-related lung cancer risk, and with altered metabolism and resulting clinical responses for several therapeutics, CYP2A6 expression and enzyme activity is an important clinical consideration. This review will discuss sources of variation in CYP2A6 enzyme activity, with a focus on the impact of CYP2A6 genetic variation on metabolism of the CYP2A6 substrates.
    [Show full text]
  • RESEARCH PROTOCOL Role of CYP2B6 Polymorphisms In
    RESEARCH PROTOCOL Role of CYP2B6 polymorphisms in ketamine metabolism and clearance Evan D. Kharasch, M.D., Ph.D. Russell D. and Mary B. Shelden Professor of Anesthesiology Director, Division of Clinical and Translational Research Washington University School of Medicine Department of Anesthesiology 660 S. Euclid Ave., Campus Box 8054 St. Louis, Mo. 63110 Voice: (314) 362-8796 Fax: (314) 747-3371 E-mail: [email protected] Original Version: July 9, 2013 2 1. SYNOPSIS Study Title Role of CYP2B6 polymorphisms in ketamine metabolism and clearance Objective To determine the effects of cytochrome P4502B6 (CYP2B6) genetic variants on ketamine metabolism and clearance Study Design Single-center, open label, single-session study to evaluate ketamine pharmaco- kinetics in subjects with known CYP2B6 genotype Study Period Planned enrollment duration: Approximately 3 months. Planned study duration: 1 day per subject Number of Patients Approximately 40 healthy volunteers identified by CYP2B6 genotyping by HRPO-approved screening Inclusion and Inclusion Criteria Exclusion Criteria a) 18-50 yr old b) CYP2B6*1/*1, CYP2B6*1/*6 or CYP2B6*6/*6 genotype c) Good general health with no remarkable medical conditions d) BMI < 33 e) Provide informed consent Exclusion Criteria a) Known history of liver or kidney disease b) Use of prescription or non-prescription medications, herbals, foods or chemicals known to be metabolized by or affecting CYP2B6 c) Females who are pregnant or nursing d) Known history of drug or alcohol addiction (prior or present addiction or treatment for addiction) e) Direct physical access to and routine handling of addicting drugs in the regular course of duty (a routine exclusion from studies of drugs with addiction potential) Study Medication Subjects will be studied on one occasion at Washington University in St.
    [Show full text]
  • Relevance of CYP2B6 and CYP2D6 Genotypes to Methadone Pharmacokinetics and Response in the OPAL Study
    Received: 25 September 2018 Revised: 7 March 2019 Accepted: 17 March 2019 DOI: 10.1111/bcp.13936 ORIGINAL ARTICLE Relevance of CYP2B6 and CYP2D6 genotypes to methadone pharmacokinetics and response in the OPAL study Caroline Victorri‐Vigneau1,2,3 | Céline Verstuyft1,5 | Régis Bouquié3 | Edouard‐Jules Laforgue2,3,4 | Jean‐Benoit Hardouin2 | Juliette Leboucher4 | Bertrand Le Geay6 | Corine Dano7 | Gaëlle Challet‐Bouju2,4 | Marie Grall‐Bronnec2,4 1 INSERM UMR_S1178, Team “Depression and Aims: Our study aimed to evaluate the impacts of the cytochrome P450 (CYP) 2B6‐ Antidepressants”, Medicine Faculty, CESP, Paris‐Sud University, Le Kremlin Bicêtre, G516T and CYP2D6 genetic polymorphisms on pharmacokinetic and clinical parame- France ters in patients receiving methadone maintenance treatment. 2 INSERM UMR 1246, SPHERE, Methods in Patient‐Centered Outcomes and Health Methods: Opioid PhArmacoLogy (OPAL) was a clinical survey of the Research, Nantes and Tours University, Nantes sociodemographic characteristics, history and consequences of pathology associated and Tours, France 3 Clinical Pharmacology Department, CHU with methadone maintenance treatment response and current addictive comorbidi- Nantes, Nantes, France ties. A subgroup of 72 methadone patients was genotyped. 4 Addictology and Psychiatry Department, Results: When comparing the three CYP2B6 genotype groups, the methadone (R)‐ CHU Nantes, Nantes, France ‐ 5 Molecular Genetics, Pharmacogenetics and and (S) methadone enantiomer concentrations/doses (concentrations relative to Hormonology
    [Show full text]