On Crustal and Lithospheric Structures of Rift Basins

Total Page:16

File Type:pdf, Size:1020Kb

On Crustal and Lithospheric Structures of Rift Basins ON CRUSTAL AND LITHOSPHERIC STRUCTURES OF RIFT BASINS FORMED WITHIN THE TURKANA DEPRESSION IN THE EAST AFRICA AND THE TRANS-SOUTHERN AFRICAN OROGEN IN THE SOUTHWEST AFRICA By LUELSEGED M. EMISHAW Bachelor of Science in Geology Addis Ababa University Addis Ababa, Ethiopia 2012 Master of Science in Geology Oklahoma State University Stillwater, Oklahoma 2015 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2020 ON CRUSTAL AND LITHOSPHERIC STRUCTURES OF RIFT BASINS FORMED WITHIN THE TURKANA DEPRESSION IN THE EAST AFRICA AND THE TRANS-SOUTHERN AFRICAN OROGEN IN THE SOUTHWEST AFRICA Dissertation Approved: Dr. Mohamed Abdelsalam Dissertation Adviser Dr. Daniel A. Laó Dávila Dr. James Knapp Dr. Hamed Gholizadeh ii ACKNOWLEDGEMENTS I would like to take this opportunity to express my heartfelt gratitude to my committee members. Their kind gesture and guidance made the successful completion of this dissertation possible. I would also like to extend special thanks to my advisor, Dr. Mohamed Abdelsalam. His high level of care and genuine support made my PhD study pleasant and memorable. My sincere appreciation also goes to my academic mentor, Dr. Kevin Mickus, whose invaluable inputs and constructive feedback improved the computational approaches of gravity data presented in the dissertation. Many thanks to Oklahoma State University -- America's Brightest Orange -- for its best education and financial support. I will always cherish my family in Boone Pickens School of Geology. Special thanks to members of TGIF and Geospatial and Geodynamic Lab for the great intellectual discussions we have had over the years. Finally, I would like to thank my lovely wife, Cabraile Emishaw, and the rest of my family. They have been a great source of inspiration and optimism. Thank you! iii Acknowledgements reflect the views of the author and are not endorsed by committee members of Oklahoma State University Name: LUELSEGED M. EMISHAW Date of Degree: DECEMBER, 2020 Title of Study: ON CRUSTAL AND LITHOSPHERIC STRUCTURES OF RIFT BASINS FORMED WITHIN THE TRUKANA DEPRESSION (TD) IN THE EAST AFRICA AND THE TRANS-SOUTHERN AFRICAN OROGEN (TSAO) IN THE SOUTHWEST AFRICA Major Field: GEOLOGY Abstract: This doctoral dissertation examines the crustal and lithospheric structures of rift basins formed within the Turkana Depression (TD) in east Africa and the Trans-Southern African Orogen (TSAO) in southwest Africa. Both regions have undergone complex structural and petrological evolution since the Archean eon and exhibit belts of deformations that resulted from the assembly and fragmentation of both Rodina and Pangaea. Since the Cenozoic, the crust and the sub-continental lithospheric mantle beneath the TD and the TSAO have been significantly weakened and stretched by plume related dynamics triggering the southward and the southwestward propagation of the East African Rift System. The Precambrian suture zones and the Mesozoic rift basins have also influenced these zones of extensional deformations. This doctoral dissertation is designed to explore the spatial extent of these structurally complex tectonic entities and investigate the role of these structures in the nucleation and development of various zones of extensional deformations, particularly rift basins related to the East African Rift System. To this end, geophysical, remote sensing, and numerical methods have been implemented to model the upper crustal-, crustal-, and lithospheric-scale structures beneath the TD and TSAO. For the first time, this doctoral work also introduces improved methods to estimate depth to the Moho and the Precambrian crystalline basement using potential field data. The details are presented in the following chapters summarized as three independent projects. iv TABLE OF CONTENTS Chapter Page CHAPTER I ...................................................................................................................1 I. INTRODUCTORY SUMMARY ..............................................................................1 CHAPTER II ..................................................................................................................5 DEVELOPMENT OF LATE JURASSIC-EARLY PALEOGENE AND NEOGENE QUATERNARY RIFTS WITHIN THE TURKANA DEPRESSION, EAST AFRICA ABSTRACT I ................................................................................................................5 2.1 INTRODUCTION .............................................................................................6 2.2 GEOLOGIC SETTING ...................................................................................11 2.3 THE PRECAMBRIAN CRYSTALLINE BASEMENT .................................11 2.4 THE LATE JURASSIC-EARLY PALEOGENE RIFT SYSTEM OF EAST AFRICA .................................................................................................................13 2.4.1 General Description ..........................................................................13 2.4.2 The Anza Rift ....................................................................................14 2.4.3 The Muglad Rift ................................................................................15 2.4.4 Connection of the Anza and Mugland Rifts .....................................16 2.5 THE NEOGENE-QUATERNARY EAST AFRICAN RIFT SYSTEM .........18 2.6 DATA AND METHODS ................................................................................23 2.6.1 Data ...................................................................................................23 v Chapter Page 2.6.2 Methods.............................................................................................24 2.6.2.1 MOHO Depth Imaging With Lithoflex ...............................24 2.6.2.2 2D Forward Gravity Modeling ............................................25 2.6.2.3 Mapping Upper Crust Density Distribution .........................26 2.7 Results ............................................................................................................27 2.7.1 Bouguer Gravity Anomalies .............................................................27 2.7.2 The Depth to the Moho .....................................................................28 2.7.3 The Depth to LAB ............................................................................32 2.7.4 The 3D Density Distribution Model .................................................34 2.8 DISCUSSION ...................................................................................................36 2.8.1 Origin of the Lithospheric Structure Beneath the TD .............................36 2.8.2 Origin of Depth Variation of the Density Contrast Anomalies ...............37 2.8.3 The Role of the Precambrian Structure .................................................39 2.8.4 Implications for the Development of the EARS ....................................... 40 2.9 CONLUSION ..................................................................................................42 2.10 REFERENCES ..............................................................................................43 vi Chapter Page CHAPTER III ..............................................................................................................55 III. SPECTRAL ANALYSIS WITH PIECEWISE REGRESSION APPROACH (SAPRA) OF GRAVITY DATA FOR LITHOSPHERIC STRUCTURE IMAGING: THE LAKE TURKANA RIFT BASIN OF THE EAST AFRICAN RIFT SYSTEM ................................................................................................................................55 ABSTRACT II .......................................................................................................55 3.1 INTRODUCTION ...........................................................................................56 3.2 THE LAKE TURKANA RIFT BASIN ...........................................................59 3.3 FOURIER SPECTRAL ANALYSIS OF GRAVITY DATA .........................62 3.4 SPECTRAL ANALYSIS WITH PIECEWSIE REGRESSION APPROACH (SAPRA) FOR DETERMINING THE DEPTH TO THE MOHO AND PRECAMBRIAN CRYSTALLINE BASEMENT ................................................65 3.5 DEPTH TO THE MOHO AND THE PRECAMBRIAN CRYSTALLINE BASEMENT WITHIN THE LAKE TRUKANA RIFT BASIN ...........................71 3.6 DISCUSSION ..................................................................................................73 3.7 CONCLUSION ................................................................................................76 3.8 REFERENCES ................................................................................................77 vii Chapter Page CHAPTER IV IV. LITHOSPHERIC STRUCTURE OF THE CONGO-TANZANIA-BANGWEULU CRATON, THE ZIMBABWE-KAAPPVAAL-NIASSA CRATON, AND THE TRANS-SOUTHERN AFRICAN OROGEN........................................................84 ABSTRACT III ......................................................................................................84 4.1 INTRODUCTION ...........................................................................................85 4.2 PRECAMBRIAN GEOLOGY ........................................................................88 4.2.1 The Congo-Tanzania-Bangweulu craton ..........................................88 4.2.2 The Zimbabwe-Kaapvval-Niassa Craton ..........................................91 4.2.3 The Trans-Southern Africa Orogen ..................................................91 4.2.4
Recommended publications
  • Back Matter (PDF)
    Index Page numbers in italic refer to tables, and those in bold to figures. accretionary orogens, defined 23 Namaqua-Natal Orogen 435-8 Africa, East SW Angola and NW Botswana 442 Congo-Sat Francisco Craton 4, 5, 35, 45-6, 49, 64 Umkondo Igneous Province 438-9 palaeomagnetic poles at 1100-700 Ma 37 Pan-African orogenic belts (650-450 Ma) 442-50 East African(-Antarctic) Orogen Damara-Lufilian Arc-Zambezi Belt 3, 435, accretion and deformation, Arabian-Nubian Shield 442-50 (ANS) 327-61 Katangan basaltic rocks 443,446 continuation of East Antarctic Orogen 263 Mwembeshi Shear Zone 442 E/W Gondwana suture 263-5 Neoproterozoic basin evolution and seafloor evolution 357-8 spreading 445-6 extensional collapse in DML 271-87 orogenesis 446-51 deformations 283-5 Ubendian and Kibaran Belts 445 Heimefront Shear Zone, DML 208,251, 252-3, within-plate magmatism and basin initiation 443-5 284, 415,417 Zambezi Belt 27,415 structural section, Neoproterozoic deformation, Zambezi Orogen 3, 5 Madagascar 365-72 Zambezi-Damara Belt 65, 67, 442-50 see also Arabian-Nubian Shield (ANS); Zimbabwe Belt, ophiolites 27 Mozambique Belt Zimbabwe Craton 427,433 Mozambique Belt evolution 60-1,291, 401-25 Zimbabwe-Kapvaal-Grunehogna Craton 42, 208, 250, carbonates 405.6 272-3 Dronning Mand Land 62-3 see also Pan-African eclogites and ophiolites 406-7 Africa, West 40-1 isotopic data Amazonia-Rio de la Plata megacraton 2-3, 40-1 crystallization and metamorphic ages 407-11 Birimian Orogen 24 Sm-Nd (T DM) 411-14 A1-Jifn Basin see Najd Fault System lithologies 402-7 Albany-Fraser-Wilkes
    [Show full text]
  • The World Bank
    Document of The World Bank FOR OFFICIAL USE ONLY Public Disclosure Authorized ReportNo. P-3753-SU REPORT AND RECOMMENDATION OF THE PRESIDENT OF THE ASSOCIATION Public Disclosure Authorized INTERNATIONALDEVELOPMENT TO THE EXECUTIVE DIRECTORS ON A PROPOSED SDR 11.6 MILLION (US$12.0MILLION) CREDI' TO THE DEMOCRATICREPUBLIC OF SUDAN Public Disclosure Authorized FOR A PETROLEUM TECHNICAL ASSISTANCE PROJECT June 19, 1984 Public Disclosure Authorized This documenthas a restricteddistribution and may be used by recipientsonly in the performanceof their official duties. Its contents may not otherwise be disclosed without World Bank authorization. CURRENCYEQUIVALENTS Unit = Sudanese Pound (LSd) LSd 1.00 = US$0.77 US$1.00 = LSd 1.30 ABBREVIATIONS AND ACRONYMS GMRD = Geological and Mineral Resources Department GPC = General Petroleum Corporation MEM = Ministry of Energy and Mines NEA = National Energy Administration NEC National Electricity Corporation PSR = Port Sudan Refinery WNPC = White Nile Petroleum Corporation WEIGHTS AND MEASURES bbl = barrel BD = barrels per day GWh = gigawatt hour kgoe = kilograms of oil equivalent KW = kilowatt LPG = liquid petroleum gas MMCFD = million cubic feet per day MT = metric tons MW = megawatt NGL = natural gas liquids TCF = trillion cubic feet toe = tons of oil equivalent GOVERNMENT OF SUDAN FISCAL YEAR July 1 - June 30 FOR OFFICIALUSE ONLY DEMOCRATIC REPUBLIC OF SUDAN PETROLEUMTECHNICAL ASSISTANCE PROJECT CREDIT AND PROJECT SUMMARY Borrower : Democratic Republic of Sudan Amount : SDR 11.6 million (US$12.0million equivalent) Beneficiary : The Ministry of Energy and Mining Terms : Standard Project Objectives : The project would strengthen the national petroleum administration,support the Government'sefforts to promote the explorationfor hydrocarbons,and help address issues that have been raised by the discovery of oil and gas in the country.
    [Show full text]
  • Geological Evolution of the Red Sea: Historical Background, Review and Synthesis
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/277310102 Geological Evolution of the Red Sea: Historical Background, Review and Synthesis Chapter · January 2015 DOI: 10.1007/978-3-662-45201-1_3 CITATIONS READS 6 911 1 author: William Bosworth Apache Egypt Companies 70 PUBLICATIONS 2,954 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Near and Middle East and Eastern Africa: Tectonics, geodynamics, satellite gravimetry, magnetic (airborne and satellite), paleomagnetic reconstructions, thermics, seismics, seismology, 3D gravity- magnetic field modeling, GPS, different transformations and filtering, advanced integrated examination. View project Neotectonics of the Red Sea rift system View project All content following this page was uploaded by William Bosworth on 28 May 2015. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Geological Evolution of the Red Sea: Historical Background, Review, and Synthesis William Bosworth Abstract The Red Sea is part of an extensive rift system that includes from south to north the oceanic Sheba Ridge, the Gulf of Aden, the Afar region, the Red Sea, the Gulf of Aqaba, the Gulf of Suez, and the Cairo basalt province. Historical interest in this area has stemmed from many causes with diverse objectives, but it is best known as a potential model for how continental lithosphere first ruptures and then evolves to oceanic spreading, a key segment of the Wilson cycle and plate tectonics.
    [Show full text]
  • Turkana, Kenya): Implications for Local and Regional Stresses
    Research Paper GEOSPHERE Early syn-rift igneous dike patterns, northern Kenya Rift (Turkana, Kenya): Implications for local and regional stresses, GEOSPHERE, v. 16, no. 3 tectonics, and magma-structure interactions https://doi.org/10.1130/GES02107.1 C.K. Morley PTT Exploration and Production, Enco, Soi 11, Vibhavadi-Rangsit Road, 10400, Thailand 25 figures; 2 tables; 1 set of supplemental files CORRESPONDENCE: [email protected] ABSTRACT basins elsewhere in the eastern branch of the East African Rift, which is an active rift, several studies African Rift. (Muirhead et al., 2015; Robertson et al., 2015; Wadge CITATION: Morley, C.K., 2020, Early syn-rift igneous dike patterns, northern Kenya Rift (Turkana, Kenya): Four areas (Loriu, Lojamei, Muranachok-Muru- et al., 2016) have explored interactions between Implications for local and regional stresses, tectonics, angapoi, Kamutile Hills) of well-developed structure and magmatism in the upper crust by and magma-structure interactions: Geosphere, v. 16, Miocene-age dikes in the northern Kenya Rift (Tur- ■ INTRODUCTION investigating stress orientations inferred from no. 3, p. 890–918, https://doi.org /10.1130/GES02107.1. kana, Kenya) have been identified from fieldwork cone lineaments and caldera ellipticity (dikes were Science Editor: David E. Fastovsky and satellite images; in total, >3500 dikes were The geometries of shallow igneous intrusive sys- insufficiently well exposed). Muirhead et al. (2015) Associate Editor: Eric H. Christiansen mapped. Three areas display NNW-SSE– to N-S– tems
    [Show full text]
  • Pan-African Orogeny 1
    Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny 1 Contents Pan-African Orogeny North African Phanerozoic Rift Valley Within the Pan-African domains, two broad types of Pan-African Orogeny orogenic or mobile belts can be distinguished. One type consists predominantly of Neoproterozoic supracrustal and magmatic assemblages, many of juvenile (mantle- A Kröner, Universität Mainz, Mainz, Germany R J Stern, University of Texas-Dallas, Richardson derived) origin, with structural and metamorphic his- TX, USA tories that are similar to those in Phanerozoic collision and accretion belts. These belts expose upper to middle O 2005, Elsevier Ltd. All Rights Reserved. crustal levels and contain diagnostic features such as ophiolites, subduction- or collision-related granitoids, lntroduction island-arc or passive continental margin assemblages as well as exotic terranes that permit reconstruction of The term 'Pan-African' was coined by WQ Kennedy in their evolution in Phanerozoic-style plate tectonic scen- 1964 on the basis of an assessment of available Rb-Sr arios. Such belts include the Arabian-Nubian shield of and K-Ar ages in Africa. The Pan-African was inter- Arabia and north-east Africa (Figure 2), the Damara- preted as a tectono-thermal event, some 500 Ma ago, Kaoko-Gariep Belt and Lufilian Arc of south-central during which a number of mobile belts formed, sur- and south-western Africa, the West Congo Belt of rounding older cratons. The concept was then extended Angola and Congo Republic, the Trans-Sahara Belt of to the Gondwana continents (Figure 1) although West Africa, and the Rokelide and Mauretanian belts regional names were proposed such as Brasiliano along the western Part of the West African Craton for South America, Adelaidean for Australia, and (Figure 1).
    [Show full text]
  • A Review of the Neoproterozoic to Cambrian Tectonic Evolution
    Accepted Manuscript Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution H. Fritz, M. Abdelsalam, K.A. Ali, B. Bingen, A.S. Collins, A.R. Fowler, W. Ghebreab, C.A. Hauzenberger, P.R. Johnson, T.M. Kusky, P. Macey, S. Muhongo, R.J. Stern, G. Viola PII: S1464-343X(13)00104-0 DOI: http://dx.doi.org/10.1016/j.jafrearsci.2013.06.004 Reference: AES 1867 To appear in: African Earth Sciences Received Date: 8 May 2012 Revised Date: 16 June 2013 Accepted Date: 21 June 2013 Please cite this article as: Fritz, H., Abdelsalam, M., Ali, K.A., Bingen, B., Collins, A.S., Fowler, A.R., Ghebreab, W., Hauzenberger, C.A., Johnson, P.R., Kusky, T.M., Macey, P., Muhongo, S., Stern, R.J., Viola, G., Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution, African Earth Sciences (2013), doi: http://dx.doi.org/10.1016/j.jafrearsci.2013.06.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian 2 tectonic evolution 3 H.
    [Show full text]
  • The Cretaceous Geology of the East Texas Basin Ronald D
    Thesis Abstracts thinking is more important than elaborate FRANK CARNEY, PH.D. PROFESSOR OF GEOLOGY BAYLOR UNIVERSITY 1929-1934 Objectives of Geological Training at Baylor The training of a geologist in a university covers but a few years; his education continues throughout his active life. The purposes of train­ ing geologists at Baylor University are to provide a sound basis of understanding and to foster a truly geological point of view, both of which are essential for continued professional growth. The staff considers geology to be unique among sciences since it is primarily a field science. All geologic research in­ cluding that done in laboratories must be firmly supported by field observations. The student is encouraged to develop an inquiring ob­ jective attitude and to examine critically all geological concepts and principles. The development of a mature and professional attitude toward geology and geological research is a principal concern of the department. Cover: Trinity Group isopach map illustrating depositional trends of Trinity rocks. (From French) THE BAYLOR PRINTING SERVICE WACO, TEXAS BAYLOR GEOLOGICAL STUDIES BULLETIN NO. 52 THESIS ABSTRACTS These abstracts are taken from theses written in partial fulfillment of degree requirements at Baylor University. The original, unpublished versions of the theses, complete with appendices and bibliographies, can be found in the Ferdinand Roemer Library, Department of Geology, Baylor University, Waco, Texas. BAYLOR UNIVERSITY Department of Geology Waco, Texas Fall Baylor Geological Studies EDITORIAL STAFF Janet L. Burton, Editor O. T. Hayward, Ph.D., Advisor, Cartographic Editor Stephen I. Dworkin, Ph.D. general and urban geology and what have you geochemistry, diagenesis, and sedimentary petrology Joe C.
    [Show full text]
  • OIL DEVELOPMENT in Northern Upper Nile, Sudan
    OIL DEVELOPMENT in northern Upper Nile, Sudan A preliminary investigation by the European Coalition on Oil in Sudan, May 2006 The European Coalition on Oil in Sudan (ECOS) is a group of over 80 European organizations working for peace and justice in Sudan. We call for action by governments and the business sector to ensure that Sudan’s oil wealth contributes to peace and equitable development. ECOS is coordinated by Pax Christi Netherlands and can express views and opinions that fall within its mandate, but without seeking the formal consent of its membership. The contents of this report can therefore not be fully attributed to each individual member of ECOS. www.ecosonline.org Oil Development in northern Upper Nile, Sudan CONTENTS I. Findings 3 II. Recommendations 5 III. Introduction 7 IV. Methodology 9 V. Chronology 11 Prelude 11 First Blood 12 The China National Petroleum Company Steps In 13 Against the Background of a Civil War 14 Seeking Refuge in Paloic 15 Along the Pipeline 16 What about the Peace Agreement? 17 VI. Issues 19 Issue 1: Destruction and Displacement 19 Issue 2: Deep Poverty, no Services, no Employment 20 Issue 3: Environment 21 Issue 4: Compensation and Community Development 23 Issue 5: New Settlers 24 Issue 6: Security 24 A look ahead 25 VII. References 27 VIII. Annex 1. Benchmarks for Oil Exploitation in Sudan 29 during the Interim Period 1 Oil Development in northern Upper Nile, Sudan 2 Oil Development in northern Upper Nile, Sudan I. FINDINGS 1. This report documents the impact of oil exploitation in the Melut Basin in Upper Nile State, Sudan, as told by inhabitants of the area and photographed from satellites.
    [Show full text]
  • Lecture Notes in Earth Sciences 40 Editors: S
    Lecture Notes in Earth Sciences 40 Editors: S. Bhattacharji, Brooklyn G. M. Friedman, Troy H. J. Neugebauer, Bonn A. Seilacher, Tuebingen Sunday W. Petters Regional Geology of Africa Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest Author Sunday W. Petters Department of Geology University of Calabar Calabar, Nigeria "For all Lecture Notes in Earth Sciences published till now please see final page of the book" ISBN 3-540-54528-X Springer-Verlag Berlin Heidelberg New York ISBN 0-387-54528-X Springer-Verlag New York Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. @ Springer-Verlag Berlin Heidelberg 1991 Printed in Germany Typesetting: Camera ready by author Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr. 32/3140-543210 - Printed on acid-free paper Dedicated to: Wissenschaftskolleg zu Berlin - Institute for Advanced Study - Preface This book represents the first attempt in three decades to marshall out available information on the regional geology of Africa for advanced un- dergraduates and beginning graduate students. Geologic education in African universities is severely hampered by the lack of a textbook on African regional geology.
    [Show full text]
  • A Detrital Record of the Nile River and Its Catchment
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 26, 2021 Research article Journal of the Geological Society Published online December 7, 2016 https://doi.org/10.1144/jgs2016-075 | Vol. 174 | 2017 | pp. 301–317 A detrital record of the Nile River and its catchment Laura Fielding1, Yani Najman1*, Ian Millar2, Peter Butterworth3, Sergio Ando4, Marta Padoan4, Dan Barfod5 & Ben Kneller6 1 Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK 2 NIGL, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK 3 BP Egypt, 14 Road 252, Al Maadi, Cairo, Egypt 4 DISAT, University of Milano-Bicocca, Piazza della Scienza, 4 20126 Milano, Italy 5 SUERC, Rankine Ave, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, UK 6 University of Aberdeen, Aberdeen AB24 3FX, UK *Correspondence: [email protected] Abstract: This research uses analyses from Nile catchment rivers, wadis, dunes and bedrocks to constrain the geological history of NE Africa and document influences on the composition of sediment reaching the Nile delta. Our data show evolution of the North African crust, highlighting phases in the development of the Arabian–Nubian Shield and amalgamation of Gondwana in Neoproterozoic times. The Saharan Metacraton and Congo Craton in Uganda have a common history of crustal growth, with new crust formation at 3.0 – 3.5 Ga, and crustal melting at c. 2.7 Ga. The Hammamat Formation of the Arabian– Nubian Shield is locally derived and has a maximum depositional age of 635 Ma. By contrast, Phanerozoic sedimentary rocks are derived from more distant sources. The fine-grained (mud) bulk signature of the modern Nile is dominated by input from the Ethiopian Highlands, transported by the Blue Nile and Atbara rivers.
    [Show full text]
  • Chapter2: Geological Review
    Chapter2: Geological Review Chapter 2 Geological Review 2.1. Introduction: In Sudan, five NW-SE trending continental rifts are known. They define together an extensional province, which has a wide of 1000 km and a length of at least 800 km parallel to the strike direction (Figure 2.1) (Fairhead, 1988). From North to South, these rifts are referred to as: The Atbara rift. The Blue Nile Rift (Khartoum and Khartoum South). The White Nile Rift (Melut or Bara and Kosti). The Muglad-Abu Gabra Rift (the Muglad-Abu Gabra and Bahr el Arab rifts are collectively referred to as the Southern Sudan rift). The Muglad is the best known and is the largest of the Sudan rift basins. The Bagarra Basin. Figure(2.1): shows the tectonic model of the West and Central African Rift System (Fairhead,1988). 6 Chapter2: Geological Review In the northwest, the Sudan rift basins terminate along the transcurrent fault zone in continental scale, the Central African Shear Zone (Figure 2.1). The Central African Shear Zone is envisioned to link the Sudan rift basins with the Lower and Upper Cretaceous rift basins in Chad and Niger (Fairhead,1988). The south-eastern terminations of the Sudan rifts are more complex (Schull 1988). 2.2. Muglad Basin: The Muglad basin is rift basin of Meso-cenozoic, which caused by the shear zone of middle-Africa and developed on the firm basement of Precambrian(Vail, 1978; Whiteman, 1971). There are three superimposed rift formations of different periods in Muglad area since Early Cretaceous(Fairhead, 1988). The first one is Abu Gabra Fm - Bentiu Fm of Lower Cretaceous, the second one is the Darfour group of Upper Cretaceous–Paleocene of Paleogene, and the third is Eocene of paleogene– Neogene.
    [Show full text]
  • Final Thesis All 10.Pdf
    ACKNOWLEDGEMENT I would like to express my sincere gratitude to KFUPM for support this research, and Sudapet Company and Ministry of Petroleum for the permission to use the data and publish this thesis. Without any doubt, the first person to thank is Dr. Mustafa M. Hariri, my supervisor, who has been a great help, revision and correction.Thanks also are due to the committee members, Dr.Mohammad H. Makkawi& Dr. Osman M. Abdullatif for their guidance, help and reviewing this work. I am greatly indebted to the chairman of the Earth Sciences Department, Dr. Abdulaziz Al-Shaibani for his support and assistance during my studies at KFUPM. Special thanks to Sudapet Company management. Of these; I am especially grateful to Mr. Salah Hassan Wahbi, President and CEO of Sudapet Co.; Mr. Ali Faroug, Vice Presedent of Sudapet Company; my managers Mr. Ibrahim Kamil and Mr. HamadelnilAbdalla; Mr. HaidarAidarous, Sudapettraining and development; Mr. Abdelhafiz from finance. I would also like to express my sincere appreciation to my colleagues at Sudapet and PDOC, NourallaElamin, Atif Abbas, YassirAbdelhamid and Ali Mohamed. Thanks to Dr. Gabor Korvin from KFUPM for discussion. Likewise, I would like to thank Earth Sciences Department faculty and staff. I extend thanks to my colleagues in the department for their support. Thanks to my colleagues HassanEltom andAmmar Adam for continuous discussions. Sincere thanks to my friends HatimDafallah, Mohamed Ibrahim and Mohamed Elgaili. I would like to gratitude my colleagues form KFUPM, Ali Al- Gahtani and Ashraf Abbas. Thanks for the Sudanese community at KFUPM for their support. Finally, this work would not be possible without the support, patience, help, and prayers of my father, mother, wife, son, brothers, grandmother and all family to whom I am particularly grateful.
    [Show full text]